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Abstract

Let E be @ compact set in the z-plane and f a function analytic n
the interior of E and continuous on [E. Our goal is to study approxima-
tion—to f on E by polynomials that omit a single power of =z. Such
questions arise, for example, in the analysis of certain numerical methods
where it is required to approximate on E the function f(z) =1 by polynomials

with zero constant term Ccf. [4]) .

1. Introduction

One important aspect of our investigation is the connection of the
above problem ‘with inequalities of Bernstein and Markoff type that
relafe the growth of the derivative of a polynomial to the norm of the
polynomial on E. To be specific, let P, denote the collection of all
algebraic polynomials ( with complex coefficients ) of degree at most n

and set

Bo(z,) =K, (z,, E)t=sup {—'—3'—”.(;1‘17‘—;—2—'—-; peP., px0 }

(1.1)

where ||.||z denotes the sup norm on E. We shall examine the behaviour
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of the sequence B (z,) as n—»co, In the classical settings where E is a
disk or a line segment, this behaviour is well-known from the sharp
inequalities of Bernstein and Markoff. But for general sets E, no mention
is made in the recent monograph of Rahman ane Schmeisser [5] as to
whether #_(z,)—>o. We prove as a special case of Corollary 2.7 and
and Theorem 2.9, that if the complement C\E is connected .and z, lies
either on the boundary of E or in the exterior of E, then B (z,) >,

The inspiration for the present work comes from two sources, First
the elegant paper of G. Szego [ 6]that analyzes the behaviour of 1 (z,)
in the case when E is a Jordan region bounded by finitely many analytic
arcs. Second is the work  of M, Hasson [11], [271who studied the
convergence behaviour of “incomplete polynomials” in the case when E is
a real interval, By working in the complex domain, the present paper
lends geometric insight to the later results, '

. The outline of the paper is as follows. In Section 2 we introduce
the necessary notation and discuss some properties of best uniform
approximation by polynomials ‘that omit the term =z, In Section
3, we give some asymptotic results for the error in this uniform

approximation and provide examples of our results,

2. Notation and Basic Properties

We assume throughout that the compact set E c_ontains‘ ipfinii:ely
many points. As in the introduction, ||.||g denotes the uniform snorm on
E and P, the collection of all polynomials of degree at most n, We also

define
B,(E):={peP,:|plle<1}, ' (2.1)
R, (E):=sup{|p*?(0)|:pEB,(E)}, : (2.2)

n

Poo:= {Pi(z)'—:Z a; zl ak=0}.={PEP,.; pt¥)(0) =0},

j=0 .

. (2.3)

C(E):={f; | conti.nuous on E}, (2.4)
A(E):={feC(E); f analytic in the interior of E},

(2.5)

E,(f):=inf {J{-plles PEP.}, (2.6)

En’k(f)==inf {l!f—Pﬂr,; Pepqw}. B (2.7)
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For k¥ a fixed nonnegative integer and f{EA(E ), we shall examine
the asymptotic behaviour of E_,,(f)as n-»o, and its relationship to
the behaviour of the sequence B _, , (E). We begin with some basic
jemmas, ' '

Lemma 2.1. If k is any nonnegative integer, then

kg__ .
ey =k (2.8)

The proof of this lemma is straightforward using the definitions
given above for u,,, (E)and E,,, (f).

En’l (zk)-:'

Lemma 2.2, Let fcC(E ) and p‘ (Z)=.z a ~zl € P, be the
n nd}
j=0
polynomial of best uniform approximation to f on E; thatis
CE.CD) =] -7 s

Then for all k>n,

la ki la’ ki

nk — < 23k .

ey "B (D SEan () St Bl (D)
i To(2.9)

Proof. Let p' EP satisfy

sk n?k

B (E) =]l £p" |e.
ark
*Then

Eoe ()2l =9 le=l f-0 I

nek 'k

=2’ z*-qle-E. (1) (a€P,,u)

2 l a' ¢ lEn$k(zk)—El(f)-

n’ .
.

Using Lemma 2.1, we then get the lower bound in (2.9). ‘The‘ ﬁpper
estimate in ( 2.9 )is similarly established,

Lemma 2.3. Let f, p‘ be as in Lemma 2.2, For k a fixed nonnega-

tive integer, lim Enn-( f) =0 if. and only if

n—» o0

lim E,(f)=0and 1l —-——-——l a"“ 0 (2,10)
im E, =0 an im 22 =90, .

B> ) avw Pox(E)



.

66 J. Clunic et aly Approximation by Polynomials without a Power of Z

Proof. I E,,. ({)~—0, then clearly E,(f)~>0.as n—»>e, From the
lower estimate in (2.9) we then deduce that
lim la* |/1,, (E) =0.
n-—»o "’k
The sufficiency of the conditions (2.10) follows immediately from the

upper estimate in (2.9),

Lemma 2.4. If ()Gﬁ, the interior of E, t‘hen there exist positive
constants ¢;=¢, (E, k), ¢,=¢,(E, k) such that :

0<c, <K, ,; (E) =c,, n>k, (2.11)

Proof. The upper bound in (2.11) follows by applying the Cauchy
estimates on a closed disk about zero contained in E (cf. Szego[61).
We get the positive . lower bound by considering p( z) =z/||lz¥||;€B, (E)
for n>k. . _

We remark that, by Mergelyan’s -theorem, E,(f) —0 for all {¢
A (E)if and only if the compact set E does not. séparate the plane;
that is, C\E is connected, A ‘

Theorem 2.5. Suppose 0€ E and CAE is connected. Let fcA(CE).
Then lim E,, . (f) =0 if and only if {1t (0) =0,

n-» oo -

Proof. Let p* (z)=_z a ~zig€P, be the .p.olynomial of best
n ntl .

unifrom approximation to f(z) on E. By Mergelyan’s theorem,

p* (z) converges un.iforml'y to f(z)on E. Since 0¢ i‘, it follows from

the corvergence of the derived sequences that

. f)(0)

lim a =
n—»o "%k ki ,

The assertion of the theorem is now. immediate from Lemmas 2.3
and 2.4. ' N ‘

"~ The case when zero lies exterior to E is also easy to handle,
:irhéorem 2.6. Léet fcA(E )an(i assume C\E is connected. If ' oéE,
then for each k=0, 1, -, T : :

lim E_,, (f)=0.

n— 0.

(2.12)

Proof, Set F(z):={(z)/zk*!, Then FEA(E Yand, “since’ C\E is
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connected, there exists a sequence of polynomials p,, p,éPn, 1=0, 1,,
such that p, (z)—>F (z)uniformly on E. But then zk*! p.(z)—={(z)
uniformly on E and so (2.12) follows.
On .taking--f(:z ) =zX in Theorem 2.6 and applying Lemma 2.1 we
ohtain, - .
Corollary 2.7. 1f 0¢ E and C\E is connected, then
lim g, , (E)=00, k=0, 1,
n—+c0 -
- "1t remains to consider the more interesting case when 0EQE, the
boundary of E. The situation for k=0 is trivial, o .
Lemma 2.8. Let fCA(E ), with C\E connected, and assume 0€3E.
Thén lim E,,o(f) =0 if and only if £¢0) =0.

n—» 00
It was shown by Szego[ 6] that if E is a closed Jordan region
bounded by a finite number of analytic arcs and if the exterior angle at
0€JE is ax, with 0<a<2, then there' exist -positive constants A, B.
such that '

Bn*<p,,, (E) <An®, n=1, 2, -, o (2.13)

He has also proved that if - the exterior angle at (<9E is zero, then
B.,1 ( E)can increase arbitrarily slowly as n-»co, Szego did not prove,
however, that i ,, ( E ) necessarily tends to infinity in such a case, The
next theorem establishes this fact in a mach more general geometric
sﬂeliting. - A ‘
Theorem ' 2.9. Assume C\E is connected and 0€8E. Then for each
k=1, 2, -, : '
lim #,,, (E) =00, (2.14)
n-—»Cco .
Theorem 2.9 is a consequénce of the following result,.
Theorem 2.10. Assume C\E is connected and 0€OE. If f€A(E),
then for each k=1, 2, -, | .
lim E,,.().=0. "(2,15)
n—»co .
Theorem 2.10 is actually a special case of a result due to A.A.
Nersesyan [ 3] which establishes uniform convergence to { on E by
polynomials having prescribed derivatives at finitely many points on JE.
We shall give a simple proof of Theorem 2.10 that follows from a key
lemma used in the proof of Mergelyan’s theorem, namely
Lemma 2,11, Suppose C\E is connected and {€3E, Then for each
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3, 0K5<J, there is a polynomial p(z) for which

lpCz)|<A/b, z€E, (2.16)

By?

Ip Cz) - -IC__—Z{Q—, z€ EN{e It_"zl>m105}9

| 1
| —_— <
| £z |
| (2.17)
wherg A, B are absolute constants,
(See for example, the appendix of Walsh’s book [7, p.3697.)

Proof of Theorem 2.10. To prove Theorem 2.10 it is, in fact, enough
to shpw that given e>o there is a polynomial q, such that

| :

lz-2¢ qifle<c. O (2as)
Note ‘ithat by considering
(z-2z%q, ) k=zt-zk*1q,
for sdme polynomial gq,, it follows from(2. 18 ) that - given a positive
mteger k and £>0, there is a polynomial q; such that

: ‘ lzk = zx*1 q,|z<e S (2.19)

Tp deduce Theorem 2,10, first of all, given &>o0, choose

a
pol'ym‘?mial p, using Mergelyan’s theorem, so that

|
L Meple<e

‘1 Y

Assixnie PEP, with n>k and write p(z) = 2 a; z!, From(2.,19) we

o

1
|

see that there is a"polynomial q such that
| lae 2k =261 glp<e

and th{erefore -
If- Cp-a,zk+2i*t q) |l <2e.

and Pi"axzk"'zkﬂ Q€Py,x for all large N. Hence Theérem' 2._10
follows. | |

It jremains to show that. (2.18) is true,

Consider Lemma 2.11 Witil"
=0, 0<3<<1. From (2.16) and (2.17)

l2*p(z) [<A|z]|%/8, (z€E)

12'p(2) ¥ 2| < Bf’l ; (Z€E, [2>108).

1229 (2) +2|<|22p(z) |+]2] I

an
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<1005 + 105 = (1004 +10)3,
and for z€E, |z]>10), ,
122p (2> +2|<Bb/10.
Given £>0, choose § so that
max{ ( 100A +10)d, Bd/10}>e.

We then obtain (2.18) by setting q,:= —p.

As an application of Theorem 2.10 we obtain the folloowing best
possible result concerning. the behaviour of coefficients for a uniformly
convergent polynomial sequence.

Corollary 2.12. Suppose C\E is connected and 0¢dE. If p.(z)=

. )
z a,,; z! is a sequence of polynomials which converge uniformly on

j=o
oE, then, for each k=1, 2, ..,
an"k=°(p‘n,‘|‘(E))aS >0, (2-20)

Proof. Since CA\E is connected and p, converges uniformly on SE,
then p, converges uniformly on E to a function f€A(E). As in the
lower bound of (2.9) we have )

]an’k'k!

p'u’k(E) <en(f>+En’k(f), (2.21)

where
e, (£)s=|f-p,le.

From Thecorem 2.10 we know that E,,; (f)—>0 as n—»oco for each k>1,
Since, also, E, (f) >0 as n—»oo, the assertion (2.20) follows. ,

If, in Corollary 2.12, zero lies outside E, then the conclusion (2.20)
holds for every k>0.

We also remark that (2.20) is best possible in the following sense.
Let ¢, be any sequenec such that e,—»0 as n-»co, Set p,(z.)=e,,pn (z),

where p, (z ) €B, ( E ) satisfies’
Basi(E)=[p,t¥YC0) .

Then the sequence p, coanverges uniformly on E ( to the zero- funciion)
and C
!anﬂt l ] = lsn|

R CE)D ky
Example 2.13. 1f E is an interval, say E=[a, b], then it follows

from Corollary 2.12 and the inequalities of Markoff and Bernstein [5]
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n

that if p,(x) = 2 a,,; x! converges uniformly on [a, b], then, as

=0 ,
n—>00,
ase=0(nt), k=1, 2, =, il 0€ Ca, b), (2.22)
while B
a,, =o0(n’), k=1, 2, = if a=0 or b=0. (2.23)

If E is a closed disk, say E={z; |z|<R}, and {P.Cz)} is a
scquence of polynomials of respective degrees at most n which converge
uniformly on |z|=R, then for any point z‘; with [&]= and any k>1,
there holds ‘ o F
.lpn(k)(g)|=o(_n*)as n—>00. . ' - (2.24)

3. Asymptotic Results and Examples.

In this section we provide some asymptotic formulas for the error
En’k ( f ) .
Lemma 3.1. Let f€C(E) and suppose f(¥) (0 ) exists and is nonzcro,

n

Let pn*(z)=zv a,,;* zi€P, be the polynomial of best uniform

i=o

approximation to f(z)on E. If

nl-i’n;o a* = f_(_'f_)ﬁ(_10) A (3.1 ).
and

lim #,,(E)E,({)=0. o T (3.2)

n-»0co ) )
then

() m- b “:::E%’) as oo, (3.3)

Proof. Multiplying the inequalities (2.9) of Lcmma 2.2 by Pnu(E)
[EGY 0) |and using conditions (3.1 Yand (3.2 ) 1mmed1ately gives(3.3).

Theorem 3.2. Suppose E is a compact set whose complement K is
connected and regular in the sense that K possesses a Green’s function
G ( z ) with pole at oo, Assume that f(z)is analytic on E and 0CE.
Then, if () (0) %0, the asymptotic formula (3.3) holds.

Proof. It is well-known (cf. Walsh [7, §4.7]) that since I is
analytic on E, ' '

lim sup [E,(f)3'/*<1, (3.4)

n-—»Cco

and

con
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and the polynomials p,*(z) converge uniférmly to f on some open set
containing E. The latter property implies (3.1). Moreover, it is a

simple conscquonce of the Bernstein-Walsh lemma (ef, Walsh [7, §4.6])

that - . .
lim sup [ll,‘,k(E)]""’*\ - (3.5)

11—-» 00

The incqualities of (3.4) and (3.5) imply that (3.2) holds, Hence, by
Lemma 3.1, the asymptotic formula (3.3) follows.

A similar argumeat gives ‘ L

Theorem 3.3. let E be as in Theorem 3.2 and suppose that 0€Ty:=
{z:G(z)=log R}I(R>1). If f(2z) is analytic ‘inside and on 'y and
ft:)¢0) 20, then the asympfotic formula 3.3 holds.

IZxample 3.4. Let E be the closed disk [z-—c]<{cl (c0) so that 0

lics on OE. Then, as is known, .

po (B = [§] 5 mzk (3.6)

Hence, by Theorem 3.2, if £ is analyt?c on E and £(¥)(0) %0, then

if¢¢oy] felt

kg[;]'

En’k( f )z
[xample 3.5.

mon CE) =20 [R] BRERD

o]+

Hence, by Theorem 3.3, if { is analytic on |z-c|<|c| and f(¥)(0) %0,
then

E,,. ()~ LE2C0 ] el
S .k!pn{i]

Example 3.6. Lct E=[0, b], b>0. Then

as n-»0o, . (3.9)

as n-»c0, (3.7)

Let Ebe the closed disk !z—ci.<p, where [c|>p>0,’
so that 0 lies exterior to E. Then
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[\

B CE) = [-,—-]" T,U(1), as oo, (3.10)

o

where T,(x) =cos(n arc cos X ) is ‘the Chebyshev polynomial of the
first kind. Hence, by Theorem 3.2, if { is analytic on [0, b] and
() (0 ) %0, then ‘

o~ fle) ¢ 0)
Eue € )= di k( ')[

oo

]" as oo, (3.11)

Example 3.7. Let E=[a, b], where 0<<a<<b., Then

B, (E) = [b—f;]" T, [—g—ﬂ‘—] as n»co.

-a
(3.12)

Hence, by Theorem 3.3, if £ (z) is analytic inside and on the ellipse
with foci at a, b and passing through the origin, and if (%) (0) =0,
then

o)l b-a

E“’*(f)zztk>[-b+a ]*[ 5 ]* as n->co (3.13)

- ) a b~—a

Example 3.8. Suppose E is a closed Jordan region bounded by a
finite number of analytic Jordan arcs, Let 0€OE and suppose that the
exterior angle at 0 is an, where 0<<a<c2., If f is analytic on E and
ft&) (0) %0, then there exist positive constants ¢,, c, such that

cz/nkagEu’k(f)gcl/nk“. (3.14)

The inequalities ( 3.14)follow from (3.3) and a previously mentioned
result of Szego [6].
The authors wish to thank Paul Gauthier for pointing out the

reference to the work of A A, Nersesyan,
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