APPROXIMATION BY POLYNOMIALS THAT OMIT A POWER OF Z

J. Clunie

(Open University, England)

M. Hasson

(Mellon University, U.S.A.)

E. B. Saff*

(University of South Florida, U.S.A.)

Received Oct. 20, 1986

Abstract

Let E be a compact set in the z-plane and f a function analytic in the interior of E and continuous on E. Our goal is to study approximation—to f on E by polynomials that omit a single power of z. Such questions arise, for example, in the analysis of certain numerical methods where it is required to approximate on E the function $f(z) \equiv 1$ by polynomials with zero constant term (cf. [4]).

1. Introduction

One important aspect of our investigation is the connection of the above problem with inequalities of Bernstein and Markoff type that relate the growth of the derivative of a polynomial to the norm of the polynomial on E. To be specific, let P_n denote the collection of all algebraic polynomials (with complex coefficients) of degree at most n and set

$$\mu_{a}(z_{o}) = \mu_{a}(z_{o}, E) := \sup \left\{ \frac{|p'(z_{o})|}{\|p\|_{E}}, p \in P_{n}, p \neq 0 \right\},$$

(1.1)

where $\|.\|_E$ denotes the sup norm on E. We shall examine the behaviour

^{*}The research of this author was supported, in part, by a National Science Foundation research grant.

of the sequence $\mu_n(z_o)$ as $n\to\infty$. In the classical settings where E is a disk or a line segment, this behaviour is well-known from the sharp inequalities of Bernstein and Markoff. But for general sets E, no mention is made in the recent monograph of Rahman ane Schmeisser [5] as to whether $\mu_n(z_o)\to\infty$. We prove as a special case of Corollary 2.7 and and Theorem 2.9, that if the complement $C\setminus E$ is connected and z_o lies either on the boundary of E or in the exterior of E, then $\mu_n(z_o)\to\infty$.

The inspiration for the present work comes from two sources. First the elegant paper of G. Szego [6] that analyzes the behaviour of $\mu_n(z_0)$ in the case when E is a Jordan region bounded by finitely many analytic arcs. Second is the work of M. Hasson [1], [2] who studied the convergence behaviour of "incomplete polynomials" in the case when E is a real interval. By working in the complex domain, the present paper lends geometric insight to the later results.

The outline of the paper is as follows. In Section 2 we introduce the necessary notation and discuss some properties of best uniform approximation by polynomials that omit the term z^k . In Section 3, we give some asymptotic results for the error in this uniform approximation and provide examples of our results.

2. Notation and Basic Properties

We assume throughout that the compact set E contains infinitely many points. As in the introduction, $\|.\|_E$ denotes the uniform norm on E and P_n the collection of all polynomials of degree at most n. We also define

$$B_n(E) := \{ p \in P_n : ||p||_E \le 1 \},$$
 (2.1)

$$\mu_{n,k}(E) := \sup\{|p^{(k)}(0)| : p \in B_n(E)\},$$
 (2.2)

$$P_{n,k} := \{ p(z) = \sum_{j=0}^{n} a_{j} z^{j}, a_{k} = 0 \} = \{ p \in P_{n}, p^{(k)}(0) = 0 \},$$

(2.3)

$$C(E) := \{f, f \text{ continuous on } E\},$$
 (2.4)

A(E):= $\{f \in C(E), f \text{ analytic in the interior of } E\},$

(2.5)

$$E_n(f) := \inf \{ ||f - p||_E; p \in P_n \},$$
 (2.6)

$$E_{n,k}(f) := \inf \{ ||f - p||_{E}; p \in P_{n,k} \}.$$
 (2.7)

the ler

the

gi.

рc

T

. -

from the sharp ets E, no mention eisser [5] as to forollary 2.7 and cted and z₀ lies en $\mu_n(z_0) \rightarrow \infty$.

o sources. First aviour of μ, (z,) ly many analytic who studied the e case when E is the present paper

2 we introduce of best uniform z^k. In Section in this uniform

ontains infinitely niform norm on most n. We also

(2.1)

(2.2)

 $p^{(k)}(0) = 0$

(2.3)

(2.4)

erior of E},

(2.5)

(2.6)

(2,7)

For k a fixed nonnegative integer and $f \in A(E)$, we shall examine the asymptotic behaviour of $E_{n,k}(f)$ as $n \to \infty$, and its relationship to the behaviour of the sequence $\mu_{n,k}(E)$. We begin with some basic lemmas.

Lemma 2.1. If k is any nonnegative integer, then

$$E_{n,k} (z^{k}) = \frac{k!}{\mu_{n,k}(E)}, \quad n \ge k.$$
 (2.8)

The proof of this lemma is straightforward using the definitions given above for μ_n , μ_n

Lemma 2.2. Let $f \in C(E)$ and p_n^* $(z) = \sum_{i=0}^n a_{n,i}^* z^i \in P_n$ be the

polynomial of best uniform approximation to f on E; that is

$$E_n(f) = || f - p^* ||_E.$$

Then for all $k \ge n$,

$$\frac{|a^{*}| k!}{\mu_{n,k}(E)} - E_{n}(f) \leq E_{n,k}(f) \leq \frac{|a^{*}| k!}{\mu_{n,k}(E)} + E_{n}(f).$$
(2.9)

Proof. Let p e P satisfy

$$E_{n,k}(f) = \| f - p_{n,k}^* \|_{E}.$$

Then

$$\begin{split} E_{n,k}(f) \geq & \|p_{n}^{*} - p_{n,k}^{*}\|_{E} - \|f - p_{n,k}^{*}\|_{E} \\ &= \|a_{n,k}^{*} z^{k} - q\|_{E} - E_{n}(f) \quad (q \in P_{n,k}) \\ &\geq |a_{n,k}^{*}| E_{n,k}(z^{k}) - E_{n}(f). \end{split}$$

Using Lemma 2.1, we then get the lower bound in (2.9). The upper estimate in (2.9) is similarly established.

Lemma 2.3. Let f, p_n^* be as in Lemma 2.2. For k a fixed nonnegative integer, $\lim_{n \to \infty} E_n$, k (f) = 0 if and only if

$$\lim_{n\to\infty} E_n(f) = 0 \text{ and } \lim_{n\to\infty} \frac{\left| a^* \right|}{\mu_{n,k}(E)} = 0. \tag{2.10}$$

Proof. If E_n , k (f) $\rightarrow 0$, then clearly E_n (f) $\rightarrow 0$ as $n \rightarrow \infty$. From the lower estimate in (2.9) we then deduce that

$$\lim_{n\to\infty} |a^*_{n,k}|/\mu_{n,k} (E) = 0.$$

The sufficiency of the conditions (2.10) follows immediately from the upper estimate in (2.9).

Lemma 2.4. If $0 \in \mathring{E}$, the interior of E, then there exist positive constants $c_1 = c_1$ (E, k), $c_2 = c_2$ (E, k) such that

$$0 < c_1 \leq \mu_n, k \in E \quad (2.11)$$

Proof. The upper bound in (2.11) follows by applying the Cauchy estimates on a closed disk about zero contained in E(cf. Szego[6]). We get the positive lower bound by considering $p(z) = z^{k}/\|z^{k}\|_{E} \in B_{a}(E)$ for $n \ge k$.

We remark that, by Mergelyan's theorem, $E_n(f) \rightarrow 0$ for all $f \in A(E)$ if and only if the compact set E does not separate the plane; that is, $C \setminus E$ is connected.

Theorem 2.5. Suppose $0 \in \stackrel{\circ}{E}$ and CNE is connected. Let $f \in A(E)$. Then $\lim_{n \to \infty} E_n$, f(f) = 0 if and only if f(k)(0) = 0.

Proof. Let p_n^* $(z) = \sum_{i=0}^n a_{n+i}^* z^i \in P_n$ be the polynomial of best

unifrom approximation to f(z) on E. By Mergelyan's theorem, $p_n^*(z)$ converges uniformly to f(z) on E. Since $0 \in \mathring{E}$, it follows from the convergence of the derived sequences that

$$\lim_{n\to\infty} a^* = \frac{f(k)(0)}{k!}.$$

The assertion of the theorem is now immediate from Lemmas 2.3 and 2.4.

The case when zero lies exterior to E is also easy to handle.

Theorem 2.6. Let $f \in A$ (E) and assume C\E is connected. If $0 \notin E$, then for each $k = 0, 1, \dots$,

$$\lim_{n\to\infty} E_{n},_{k}(f) = 0.$$
 (2.12)

Proof. Set $F(z) := f(z)/z^{k+1}$. Then $F \in A(E)$ and, since $C \setminus E$ is

n→∞. From the

nediately from the

re exist positive

(2.11)

plying the Cauchy of Szego[6]). $z^{k}/\|z^{k}\|_{E} \in B_{a}(E)$

 \rightarrow 0 for all ferate the plane,

Let $f \in A(E)$.

ynomial of best

lyan's theorem,
, it follows from

om Lemmas 2.3

handle. cted. If 0∉E,

(2.12)

, since C/E is

connected, there exists a sequence of polynomials p_n , $p_n \in P_n$, $n = 0, 1, \dots$, such that $p_n(z) \rightarrow F(z)$ uniformly on E. But then z^{k+1} $p_n(z) \rightarrow f(z)$ uniformly on E and so (2.12) follows.

On taking $f(z) = z^{K}$ in Theorem 2.6 and applying Lemma 2.1 we obtain,

Corollary 2.7. If 0∉E and C\E is connected, then

$$\lim_{n\to\infty} \mu_{n},_{k}(E) = \infty, \quad k=0, 1, \dots.$$

It remains to consider the more interesting case when $0 \in \partial E$, the boundary of E. The situation for k=0 is trivial.

Lemma 2.8. Let $f \in \Lambda$ (E), with CVE connected, and assume $0 \in \partial E$. Then $\lim_{n \to \infty} E_n$, 0 (f) = 0 if and only if f(0) = 0.

It was shown by Szego [6] that if E is a closed Jordan region bounded by a finite number of analytic arcs and if the exterior angle at $0 \in \partial E$ is $\alpha \pi$, with $0 < \alpha \le 2$, then there exist positive constants A, B such that

$$Bn^{\alpha} \leq \mu_{n},_{1} (E) \leq An^{\alpha}, \quad n=1, 2, \cdots.$$
 (2.13)

He has also proved that if the exterior angle at $0 \le \partial E$ is zero, then μ_n , μ_n , μ_n , μ_n , μ_n . Szego did not prove, however, that μ_n , μ_n

Theorem 2.9. Assume CVE is connected and $0 \in \partial E$. Then for each $k = 1, 2, \dots$,

$$\lim_{n\to\infty} \mu_{n},_{k} (E) = \infty.$$
 (2.14)

Theorem 2.9 is a consequence of the following result.

Theorem 2.10. Assume $C\setminus E$ is connected and $0\in \partial E$. If $f\in A$ (E), then for each $k=1, 2, \cdots$,

$$\lim_{n\to\infty} E_{n+k}(f) = 0.$$
 (2.15)

Theorem 2.10 is actually a special case of a result due to $\Lambda.\Lambda$. Nersesyan [3] which establishes uniform convergence to f on E by polynomials having prescribed derivatives at finitely many points on ∂E . We shall give a simple proof of Theorem 2.10 that follows from a key lemma used in the proof of Mergelyan's theorem, namely

Lemma 2.11. Suppose CNE is connected and \$€∂E. Then for each

 δ , $0 < \delta < 1$, there is a polynomial p(z) for which

$$|p(z)| \leq A/\delta, z \in E,$$
 (2.16)

$$|p(z) - \frac{1}{|\zeta - z|}| < \frac{B\delta^2}{|\zeta - z|^3}, \quad z \in E \cap \{z, |\zeta - z| > 10\delta\},$$

(2.17)

where A, B are absolute constants.

(See, for example, the appendix of Walsh's book [7, p.369].)

Proof of Theorem 2.10. To prove Theorem 2.10 it is, in fact, enough to show that given $\varepsilon > 0$ there is a polynomial q_1 such that

$$\|z-z^2 q_1\|_{\mathcal{E}} < \varepsilon. \tag{2.18}$$

Note that by considering

$$(z-z^2q_1)^k=z^k-z^{k+1}q_k$$

for some polynomial q_k , it follows from (2.18) that given a positive integer k and $\epsilon > 0$, there is a polynomial q_k such that

$$||z^{k}-z^{k+1}||q_{k}||_{E} < \varepsilon$$
 (2.19)

To deduce Theorem 2.10, first of all, given ε>o, choose a polynomial p, using Mergelyan's theorem, so that

$$\|\mathbf{f} - \mathbf{p}\|_{\mathbf{E}} < \underline{\varepsilon}$$
.

Assume $p \in P_n$ with n > k and write $p(z) = \sum_{i=0}^{n} a_i z^i$. From (2.19) we

see that there is a polynomial q such that

$$\|a_k z^k - z^{k+1} q\|_E < \epsilon$$

and therefore

$$\|f-(p-a_kz^k+z^{k+1}q)\|_E<2\epsilon$$
.

and $p - a_k z^k + z^{k+1}$ $Q \in P_N$, for all large N. Hence Theorem 2.10 follows.

It remains to show that (2.18) is true. Consider Lemma 2.11 with $\zeta=0$, $0<\delta<1$. From (2.16) and (2.17)

$$|z^{2}p(z)| < A|z|^{2}/\delta$$
, $(z \in E)$

$$|z^2p(z)+z|<\frac{B\delta^2}{|z|}$$
, $(z\in E, |z|>10\delta)$.

Hence for $z \in E$, $|z| \leq 10\delta$,

$$|z^{2}p(z)+z| \leq |z^{2}p(z)|+|z|$$

an

Gi

w

po:

co

 $\sum_{i=1}^{n}$

ðΕ

the

10

wi

Fr Si

hс

Le wl

Tł

ar

ſr

(2.16)

 $|\xi-z|>10\delta$

(2.17)

.369].)

in fact, enough hat

(2.18)

given a positive

(2.19)

ε>o, choose a

From (2.19) we

Theorem 2.10

Lemma 2.11 with

$$<\frac{A}{\delta}$$
 100 δ^2 + 10 δ = (100 A + 10) δ ;

and for $z \in E$, $|z| > 10\delta$,

$$|z^2p(z)+z| < B\delta/10$$
.

Given $\epsilon > 0$, choose δ so that

$$\max\{(100A+10)\delta, B\delta/10\}>\epsilon$$
.

We then obtain (2.18) by setting $q_1 := -p$.

As an application of Theorem 2.10 we obtain the folloowing best possible result concerning the behaviour of coefficients for a uniformly convergent polynomial sequence.

Corollary 2.12. Suppose $C\setminus E$ is connected and $0\in \partial E$. If $p_n(z) =$

 $\sum_{i=0}^{n} a_{i}, i = 1$ is a sequence of polynomials which converge uniformly on

 δE , then, for each $k=1, 2, \cdots$.

$$a_{n}, k = 0 (\mu_{n}, k (E)) \text{ as } n \to \infty.$$
 (2.20)

Proof. Since $C \setminus E$ is connected and p_n converges uniformly on ∂E , then p_n converges uniformly on E to a function $f \in A(E)$. As in the lower bound of (2.9) we have

$$\frac{|a_{n},k|k!}{\mu_{n+k}(E)} \leq e_{n}(f) + E_{n},k(f), \qquad (2.21)$$

where

$$e_n(f) := ||f - p_n||_E.$$

From Theorem 2.10 we know that E_n , k (f) $\rightarrow 0$ as $n \rightarrow \infty$ for each $k \ge 1$. Since, also, E_n (f) $\rightarrow 0$ as $n \rightarrow \infty$, the assertion (2.20) follows.

If, in Corollary 2.12, zero lies outside E, then the conclusion (2.20) holds for every $k \ge 0$.

We also remark that (2.20) is best possible in the following sense. Let ε_n be any sequence such that $\varepsilon_n \rightarrow 0$ as $n \rightarrow \infty$. Set $p_n(z) = \varepsilon_n p_n(z)$, where $p_n(z) \in B_n(E)$ satisfies

$$\mu_{n,k}(E) = |p_n^{(k)}(0)|.$$

Then the sequence p_x converges uniformly on E (to the zero function) and

$$\frac{|a_n,k|}{\mu_{n,k}(E)} = \frac{|\varepsilon_n|}{k!}.$$

Example 2.13. If E is an interval, say E=[a, b], then it follows from Corollary 2.12 and the inequalities of Markoff and Bernstein [5]

that if $p_n(x) = \sum_{j=0}^n a_{n,j} x^j$ converges uniformly on [a, b], then, as

 $n \rightarrow \infty$,

$$a_{n,k} = o(n^{k}), k = 1, 2, \dots, \text{ if } 0 \in (a, b),$$
 (2.22)

and con sim

tha

 Th_1

Lc:

{z:

lic

Н

while

$$a_{n,k} = o(n^{2k}), k = 1, 2, \dots, \text{ if } a = 0 \text{ or } b = 0.$$
 (2.23)

If E is a closed disk, say $E = \{z, |z| \le R\}$, and $\{P_n(z)\}$ is a sequence of polynomials of respective degrees at most n which converge uniformly on |z| = R, then for any point ξ with $|\xi| = R$ and any $k \ge 1$, there holds

$$|p_n^{(k)}(\xi)| = o(n^k) \text{ as } n \to \infty.$$
 (2.24)

3. Asymptotic Results and Examples.

In this section we provide some asymptotic formulas for the error E_n , k (f).

Lemma 3.1. Let $f \in C(E)$ and suppose $f^{(k)}(0)$ exists and is nonzero.

Let $p_n^*(z) = \sum_{i=0}^n a_{n,i}^* z^i \in P_n$ be the polynomial of best uniform

approximation to f(z) on E. If

$$\lim_{n \to \infty} a^*_{n,k} = \frac{f^{(k)}(0)}{k!}$$
 (3.1)

and

$$\lim_{n\to\infty} \mu_n,_k(E) E_n(f) = 0. \tag{3.2}$$

then

$$E_{n,k}(f) \approx \frac{|f^{(k)}(0)|}{\mu_{n,k}(E)} \quad \text{as} \quad n \to \infty.$$
 (3.3)

Proof. Multiplying the inequalities (2.9) of Lemma 2.2 by μ_n , μ_n

Theorem 3.2. Suppose E is a compact set whose complement K is connected and regular in the sense that K possesses a Green's function G(z) with pole at ∞ . Assume that f(z) is analytic on E and $0 \in E$. Then, if $f^{(k)}(0) = 0$, the asymptotic formula (3.3) holds.

Proof. It is well-known (cf. Walsh [7, §4.7]) that since f is analytic on E,

$$\lim_{n\to\infty} \sup_{\infty} [E_n(f)]^{1/x} < 1, \qquad (3.4)$$

[a, b], then, as

(2.22)

(2.23)

 $\{P_n(z)\}$ is a which converge and any $k \ge 1$,

(2.24)

for the error

and is nonzero.

f best uniform

(3.1)

(3.2)

(3.3)

y gives (3.3).

nplement K is Green's function E and $0 \in E$.

that since f is

(3.4)

and the polynomials $p_n^*(z)$ converge uniformly to f on some open set containing E. The latter property implies (3.1). Moreover, it is a simple consequence of the Bernstein-Walsh lemma (cf. Walsh [7, § 4.6]) that

$$\lim_{n\to\infty} \sup_{} [\mu_n, k(E)]^{1/n} \leq 1.$$
 (3.5)

The inequalities of (3.4) and (3.5) imply that (3.2) holds. Hence, by Lemma 3.1, the asymptotic formula (3.3) follows.

A similar argument gives

Theorem 3.3. let E be as in Theorem 3.2 and suppose that $0 \in \Gamma_R := \{z: G(z) = \log R\} (R>1)$. If f(z) is analytic inside and on Γ_R and f(x) = 0, then the asymptotic formula 3.3 holds.

Example 3.4. Let E be the closed disk $|z-c| \le |c|$ ($c \ne 0$) so that 0 lies on δE . Then, as is known,

$$\mu_{n,k}(E) = \frac{k!}{|c|^k} \begin{bmatrix} n \\ k \end{bmatrix}, \quad n \ge k.$$
 (3.6)

Hence, by Theorem 3.2, if f is analytic on E and $f^{(k)}(0) \neq 0$, then

$$E_{n,k}(f) \approx \frac{|f^{(k)}(0)| |c|^{k}}{k! {n \brack k}} \text{ as } n \to \infty.$$
 (3.7)

Example 3.5. Let Ebe the closed disk $|z-c| \le \rho$, where $|c| > \rho > 0$, so that 0 lies exterior to E. Then

$$\mu_{n,k}(E) = \frac{k!\rho^{n}}{|c|^{n+k}} \begin{bmatrix} n \\ k \end{bmatrix}. \tag{3.8}$$

Hence, by Theorem 3.3, if f is analytic on $|z-c| \le |c|$ and $f^{(k)}(0) \ne 0$, then

$$E_{n,k}(f) \approx \frac{|f^{(k)}(0)|}{k!\rho^{n} \begin{bmatrix} n \\ k \end{bmatrix}} \text{ as } n \to \infty.$$
 (3.9)

Example 3.6. Let E = [0, b], b>0. Then

$$\mu_{n,k}(E) = \begin{bmatrix} -2 \\ -b \end{bmatrix}^{k} T_{n}(k)(1), \text{ as } n \to \infty,$$
 (3.10)

where $T_n(x) = \cos(n \operatorname{arc} \cos x)$ is the Chebyshev polynomial of the first kind. Hence, by Theorem 3.2, if f is analytic on [0, b] and $f^{(k)}(0) \neq 0$, then

$$E_{n,k}(f) \approx \frac{|f^{(k)}(0)|}{T_n^{(k)}(1)} \left[\frac{b}{2}\right]^k \text{ as } n \to \infty.$$
 (3.11)

Example 3.7. Let E = [a, b], where 0 < a < b. Then

$$\mu_{n,k}(E) = \left[\frac{2}{b-a}\right]^k T_n^{(k)} \left[\frac{b+a}{b-a}\right], \text{ as } n\to\infty.$$

(3.12)

[:

L

Ε

Hence, by Theorem 3.3, if f(z) is analytic inside and on the ellipse with foci at a, b and passing through the origin, and if $f^{(k)}(0) = 0$, then

$$E_{n,k}(f) \approx \frac{|f^{(k)}(0)|}{T_n^{(k)} \left[\frac{b+a}{b-a}\right]} \left[\frac{b-a}{2}\right]^k \text{ as } n \to \infty$$
 (3.13)

Example 3.8. Suppose E is a closed Jordan region bounded by a finite number of analytic Jordan arcs. Let $0 \in \partial E$ and suppose that the exterior angle at 0 is $\alpha \pi$, where $0 < \alpha \le 2$. If f is analytic on E and $f^{(k)}(0) \neq 0$, then there exist positive constants c_1 , c_2 such that

$$c_2/n^{k\alpha} \leq E_n, k (f) \leq c_1/n^{k\alpha}.$$
 (3.14)

The inequalities (3.14) follow from (3.3) and a previously mentioned result of Szego [6].

The authors wish to thank Paul Gauthier for pointing out the reference to the work of A.A. Nersesyan.

References

- [1] Hasson, M., Comparison between the Degrees of Approximation by Lacunary and Ordinary Algebraic Polynomials, J. Approx. Theory, 29 (1980), 103-115.
- [2] _____, Approximation by Lacunary Polynomials, Approximation Theory IV (ed. by C. K. Chui, L.K. Schumaker, J.D.

Power of Z

(3.10)

nomial of the on [0, b] and

(3.11)

n→∞.

(3.12)

on the ellipse $f^{(k)}(0)
ightharpoonup 0$,

(3.13)

bounded by a ppose that the ic on E and that

(3.14)

isly mentioned

nting out the

Approximation s, J. Approx.

s, Approximahumaker, J.D. Ward), Academic Press, New York, (1983), 505-508.

- [3] Nersesyan, A.A., Uniform Approximation with Simultaneous Interpolation by Analytic Functions, Izv. Akad. Nauk Armyan. SSR. Mat., 15 (1980), 249-257.
- [4] Niethammer, W. & Varga, R.S., The Analysis of K-Step Iterative Methods for Linear Systems for Summability Theory, Numer. Math., 41 (1983), 177-209.
- [5] Rahman, Q.I. & Schmeisser, G., Les Inégalites de Markoff et de Bernstein, Séminaire de Mathématiques Supérieures, Presses de 1' Université de Montréal, Montréal, Québec, 1983.
- [6] Szegő, G., Uber einen Satz von A. Markoff, Math. Z., 23 (1925), 45-61.
- [7] Walsh, J.L., Interpolation Approximation by Rational Functions in the Complex Domain, A.M.S. Colloq. Publ., XX, Providence, R.I., 5th ed., 1969.