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By a quadrature method for integration over an interval [, b], we mean a set of

distinct points x, < x; < *-- < Xx,, a set of constants ay, ..., a,, and a formula
n
(1) 0.(f) = X af(x))
j=0

that serves as an estimate of the integral

j:)f(x) dx.

*The research of this author was supported, in part, by a National Science Foundation research grant.
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In this note, we present a new proof of a recent result [3] due to Claus Schneider
that provides a simple and elegant method for determining the error and degree of
precision for general quadrature formulae. The essential feature of our proof is the
use of complex variable techniques, which simplify the algebraic manipulation of
divided differences, and provide a straightforward derivation of a formula for the
error

E(f) = [1(x) dx = 0,(1).
We shall prove

THEOREM 1 [3: Prop. 21). Let xo<x;, < -+ <x,=a< -+ <x,=b<

- <x,, and let Q,(f) as given in (1) be any quadrature rule approximating
[2 f(x) dx, where f is continuous on [x, x,). Suppose that F' = f and define the
polynomials

(2) Q(x) = jljo(x = xj)’
3 g ){___lz:_a_ r }
(3) a(x) = VN T n ) ,=o<x—x>

Then
(4) E,(f) = fahf(x)dx ~ 0,(f) = (Fg,)[x0» Xor- - %, x,].

Here, (Fq,){x¢, Xg, ..., x,, X,,] is the (2n + 1)st divided difference of the product
Fgq, at the points x, X, ..., X,, X,. Notice that there are no restrictions on the
signs of the weights a,. Moreover, since some of the weights may be zero, there is no
loss of generality in our assumption that the endpoints a, b are nodes of the
quadrature formula.

Before embarking on the proof of Theorem 1, we briefly discuss divided dif-
ferences.

DEerFINITION 1. Let P,(x) = X7, a,x* be the unique polynomial of degree at
most m that interpolates (agrees with) the function g at the points ¢, ¢,,..., ¢
Then the mth divided difference of g in these points is given by

(5) gltgs-- st} =a,,.

m*

If ¢y,..., ¢, are distinct, this definition is unambiguous. In the case that some of
the ¢; are repeated we are to understand “interpolating polynomial” in the Hermite
sense. That is, if 7, is repeated i times, then we mean that the polynomial P,, and its
first i — 1 derivatives agree with g and its first ;/ — 1 derivatives at ¢ "
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In the case of distinct 7;, a simple induction yields the familiar recursive
definition:
g[t] =2(1), ji=0,...,n,
gltg,-- s ten] — gl 1]

Logyeeost = >
g[ 0 k] ] to_tk

where k ranges from 1 to n. More important for us is the following known
representation theorem for the divided difference of an analytic function (cf. [2,

§3.6]).

THEOREM 2. Let t,...,t,, be m + 1 (not necessarily distinct) points, and let C be
a simple closed rectifiable curve in the z-plane surrounding t,, ..., t,. If g is analytic
inside and on C, then
g(z)

1
6 tgsoo sty = — dz.
() g[O m] 2WiL‘(Z—to)"'(Z—tm) Z
Proof. The representation (6) can be derived from the Hermite error formula

(”) (0) = 2ol = 5 [y,

2mi
w(z)=TI(z-1),

j=0
for z inside C, where P is the interpolating polynomial of Definition 1. Using the
Cauchy integral representation for g(z), formula (7) is equivalent to

(8) P(2) = i.fc[“(zz — et fij))

dt.

Notice that the right-hand side of (7) vanishes at the points ¢; (the zeros of w(z)) in

the Hermite sense, and that the integral in (8) is a polynomial of degree at most m

in z. (These two observations show that the right-hand side of (8) is indeed the
interpolating polynomial P,.) Now since
w(z) — w(t)

. z—t

we see from (8) that the coefficient a,, of z” in P,, is just the integral

a =L,./C§£-tldt,

zm+...’ '

which verifies formula (6). O

Theorem 2 removes much of the mystery surrounding divided differences with
coincident points, and permits a simple proof of Theorem 1. Schneider’s proof of
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Theorem 1, which makes use of Leibniz’s rule for divided differences and other
identities, is algebraic in nature. Our proof shows that the result follows in a natural
way from the Cauchy Integral Theorem.

The Proof of Theorem 1. First assume that f is analytic on the interval {x, x,];
then we can assume f has been analytically continued to an open domain contain-
ing [xg, x,]. Since f? f(x) dx = F(b) — F(a), we have

E,(f) = F(b) - F(a) = ¥, a,F(x,)

Jj=0

=m-/;:z—bdz_mfcz—a 2’2"”‘[(2"‘)‘1

- j;: {(z-—b)(z a) Jgo(z x) }

where C is a suitably chosen contour. Now observe from (2) and (3) that the portion
of the integrand in brackets is just q,,(z)/ﬂz(z) Hence

©) B = 5m [ opn i

Since g,, is a polynomial, F(z)q,(z) is analytic inside and on C and so, by Theorem
2, E, () is the divided difference given in (4). This proves the result for analytic f.

In the general case where f is continuous on [x,, x,], we construct the interpolat-
ing polynomial p that satisfies

p(x;) = F(x,), P'(x.') =f(xi)’ i=01,...,n
Since

[[7/(x) dx = p(b) ~ p(a) = F(5) ~ F(a) = [*1(x) d,

we see that E,(f) = E,(p’). Moreover we have

(Pqn)['xO’ Xgseeos Xy, xn] = (Fqn)[xo’ Xgseoes Xy, xn]

because, in general, g[x,, x,,..., X,, X,] is a linear combination of the numbers
8(xg), 8'(x0), .-+, 8(x,), 8'(x,) (see [1, p. 12]). Thus, applying the first part of the
proof to p’, we obtain (4) in the general case. O

We now apply Theorem 1 to the study of precision in quadrature methods.

DEFINITION 2. The quadrature method (1) has precision m if it integrates exactly
every polynomial of degree m or less, but does not integrate exactly some poly-
nomial of degree m + 1. That is, for every polynomial p with degree < m,
Q,(p) = [ p(x)dx, but Q,(x"*1) # [} x™*!dx.
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In Theorem 1, the polynomial ¢, is of degree at most 2n. As the next corollary
shows, the smaller the precise degree of g,, the higher is the precision of the
quadrature scheme.

COROLLARY 1. Let d = deg q,. If d < 2n — 1, then the degree of precision of the
quadrature scheme (1) is 2n — d — 1.

Proof. Let P, be a polynomial of degree k and P, , be an antiderivative of P,.
Then the product P, ,q, has degree k + 1 + 4. Since

E,(P) = (Piirga)lx0s Xgs - o5 X, %, ],

and the jth order divided difference of a polynomial of degree at most j — 1 is
zero*, then E, (P,)=0fork+1+d<(2n+1)—1; thatis,fork <2n—-d -1,
Hence the method integrates exactly every polynomial of degree 2n — d — 1 or less.

It remains to show that E (x2""9) # 0. With F(z) = z2""9*!  formula (9)
asserts that (2)au(2)

1 F(z)q,(z
2n-dy . - -

(10) E(x"74) = — fc R
where C can be taken as any circle centered at the origin having sufficiently large
radius. Since the integrand in (10) is a rational function with numerator degree
2n + 1 and denominator degree 2n + 2, then (after cancelling common factors) we
have, in a neighborhood of infinity,

F(2)a,(z) A A
Q2(z) z  z? ’
where 4, # 0. Hence, from (10),

1 A A
E"(x2n—d)=_../;[_l+_22+...

dz =4, # 0.
2ai z z g 1#0.0

We remark that if we say that the quadrature scheme (1) has degree of precision
—1 if it will not even integrate constants exactly, then Corollary 1 also holds for
d=2n.

The reader is invited to apply Corollary 1 to familiar quadrature formulae such
as the trapezoid rule, Simpson’s rule, and Gaussian quadrature. For example,
Simpson’s rule is a special case of (1) where n =2, ay = a, = (b —a)/6, a; =
2(b—-a)/3, xg=a, x, = (b+ a)/2, and x, = b. A routine calculation shows that
¢,(x) reduces to a constant polynomial (d = 0) and so (as is well known) Simpson’s
rule has precision2n -d—-1=4 -1 = 3.

Using the fact (proved by Rolle’s theorem) that for smooth functions g and real

points 7,
(m)
g (1)
(11) gltos- s tml = —
we can derive the following representation for the error E,(f) in (4).

, for some p € [min ¢;, max ¢,],

*This is an immediate consequence of Definition 1.
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COROLLARY 2. If f € C®"[x,, x,], then for some p. € [x,, x,],

(12) E(f) = ——— 3 (2 Vg () remn(u),
(2n+ 1)t T\ J

where d = deg q,,.

Proof. From (4), (11), and Leibniz’s rule for differentiation we have

(2n+1)
En(f) = (Fqn)[x()’ Xy -y Xy xn] = %‘Q_

1 2n+1 In+1 . )
=@t z ( j )q,(,’)(M)F‘Z"”'“(M)
Wt

1 dn+1) j
= —_— . ) @2n-j) 0
sy A R ELOVEt®

We. remark that formula (12) can be used to give an alternative proof of
Corollary 1, which we previously established without appealing to Rolle’s theorem.
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