DISTRIBUTION OF ZEROS OF POLYNOMIAL SEQUENCES,

ESPECIALLY BEST APPROXIMATIONS

H.-P. Blatt and E. B, Saff

Mathematisch-Geographische Fakult&dt, Katholische Uni-
versitat Eichst&dtt,D-8078 Eichst&tt,Federal Republik of Germany

Department of Mathematics, University of South Florida,
Tampa, FL 33620, U.S.A,. ’

s

In [2] the asymptotic behavior of the zeros of poly-
nomials of near best approximation to functions £ on a compact
set E was studied in the case when f is not everywhere analytic
on E. For example, suppose E is a finite union of compact inter-
vals of the real line and f is continuous, but not analytic on
E; then we have shown that every point of E is a limit point of
zeros of the polynomials of best uniform approximation to f on
E. Moreover, if the complement K of E is simply connected and
the boundary of E consists of a finite number of analytic Jordan
arcs, then the distribution of the zeros of the polynomials of
best uniform approximation was analyzed. The purpose of this pa-
per is to give a new interpretation of this distribution, namely
to show that these zeros are uniformly distributed with respect
to the normal derivative of G(x,y) on 9E, where G(x,y) is Green's
function of K; furthermore results are obtained for the general
case when K is connected.

1. Introduction

Let E be a closed bounded set in the z-plane (z = x+1iy)



whose complement K (with respect to the extended plane) is con-
nected and reqgular in the sense that K has a Green's function

G(x,y) with pole at infinity: G(x,y) is harmonic in 'K except at
infinity and in a neighborhood of the point of infinity we have

/2

(1.1) G(x,y) = log (x2+y2)1 +Go(x,y).

where Go(x,y) approaches a finite value at infinity; moreover,
G(x,y) is continuous in the closed region K except at infinity
and vanishes on the boundary of.K (Walsh [81]1). The function

(1.2) t=g(z): =el Xr¥) +1HEY)
where H(x,y) is conjugate to G(x,y) in K, maps K ontc the ex-

terior of the unit disk. Hence, it follows by (1.1) that

(1.3) [o(z)/z| =1/c+0(1/2) .

as z -, where the constant ¢ >0 is called the (logarithmic)

capacity of the set E.

For each 0 > 1 we consider the equipotential locus
(1.4) Iy := {z =x+iy €K: G(x,y) =1log o}

with interior

(1.5) E := EU{z =x+iy € K: 0<G(x,y) <log ol.

If K is simply connected, the function ¢(z) is single-valued in
K and each locus FO is an analytic Jordan curve., If K is multi-
ply connected, the function ¢(z) cannot be single-valued in K
and has critical points, i.e. points where ¢'(z) =0. Each locus
FO consists of a finite number of Jordan curves which are mutu-
ally exterior except for a finite number of critical points.
Moreover, the normal derivative %g exists at every point of the
locus FG except for such critical points (n being the exterior
normal for Ec)'

If a function f£(z) is analytic on E, there exists a
largest real number o (finite or infinite), say o =p, such that

p>1 and £(z) is single-valued and analytic on E. Then, denoting



by ﬂn the collection of all complex polynomials of degree <n,
there exist (cf. [8]) polynomials pne:nn, n=0,1,2, ..., such

»

that we have

(1.6) 1w |l£-p,lI2/" = 170,

T1->00

the uniform norm on the set E. But there

where we denote by | -HE
exist no polynomials pn(Eﬂn such that the left-hand side of (1.6)

is less than 1/p. A sequence {pn} satisfying (1.6) is said to

converge maximally to f(z) on E.-

In [2] the following characterization of functions £,
which are not analytic on E, is given in terms of the leading
coefficients of the polynomials of best uniform approximation to
f(z) on E: This result is analogous to the Cauchy-Hadamard for-
mula for the radius of convergence of a power series.

Theorem 1: Let E be a closed bounded point set whose

complement K is connected and regular, and suppose that the func-

tion £ is continuous on E, analytic in the interior of E. For

each n=0,1,2, ..., let p;(2)=e%]zn+ ...EHI1 be the polynomial

of best uniform approximation to £ on E. Then f is not analytic

on E if and only if

1/n ;

(1.7) 1im Ianl 1/c,

N —co

where ¢ is the capacity of E.

Just the same arguments as in the proof of the above
theorem in [2] lead to an analogous result for functions f ana-

lytic on Ep, nanely

Theorem 2: Let E be a closed bounded set whose comple-

ment K is connected and regular, and suppose the function £ is

analytic on Ep, 1 <p<e, but not on Fp. Let {pn}, n=0,1, «oc.,

n . .
pn(Z) =a_ z + ...EIHI, be a sequence of polynomials converging

maximally to f(z) on E. Then



(1.8) Tin |an|1/n - 1/co,

n-co

where ¢ is the capacity of E.

Hence, the polynomials of best uniform approximation
in Theorem 1 or the maximally convergent polynomials of Theorem
2 can be considered as special cases of the following situation:
There is given a closed, bounded set E of € such that the comple-
ment K of E is connected and regqlar, and a polynomial seguence

{pn} satisfying the following properties:
(A1) ne dl: ={n1<<n2‘<n3<...},

(22) pn(z)Eiﬂn\ﬂn_1 with leading coefficient a, *0,

. 1 "
(23)  1lim Ja |"/" =1,
n—oo
e 1im [l 117 - 1
N-»co

In (A3) and (A4) the limits are considered for N =N,,N,Nyp cen .

2. Distribution of zeros: K simply connected

In [2] the distribution of the zeros of polynomial se-
quences satisfying (A1) - (A4) was studied in the neighborhood of
an analytic Jordan arc J < 3K, when K is simply connected. The
equation of an analytic Jordan arc J in € is given for z €J in
parametric form z = y(t), where t runs through a real compact in-

terval [a,b]l, a<b, y(t) is continuous and Y(t1)==y(t2) only if

t1 =t2; in addition, y{(t) is analytic in the open interval (a,b)
and y'(t) £+ 0 for all t€ (a,b). Hence, there exists a region A,
symmetric to the interval (a,b), with the property that y(t) is
analytic for all t €A, If, moreover, Jc< 3K and the region A can
be chosen in such a way that y(t) € K when t lies in the upper
half AY of 4,

(2.1) At := {tea: Im (t) >0},



and that y(t) ¢ K for t €A , where
(2.2) A” := {t€A: Im (t) <0},

then J is a free one-sided boundary arc of K; if, for an appro-
priate A, y(t) €K for all t(EA+lJA‘, then J is a free two-sided

boundary arc of K.
A point z € 3K is an accessible boundary point of K if

there exists a Jordan arc J with endpocint z such that all other
points of J lie in K. If K is simply connected and all points
of 3K are accessible boundary péints of K, then, for the inverse
mapping ¥ (t) of ¢(z), there exists a continuous extension to
{t:]t|£1}. Therefore, suppose J is a free one-sided boundary arc

of K, then there are two arguments a and B, a < B <a+ 27, such
that

(2.3) w‘1(J)j={tf=elw:a SesBl);
if J is a free two-sided boundary arc of K, then

1

(2.4) v (J) = {t = co<p<B or GS@<BY,

1Y

where a <B<a<B<a+2m.

In stating the next theorem it is.convenient to intro-
duce the following notation: For any set C.in € let Zn(C) be the
number of zeros of the polynomial Pn in C, counted with their
multiplicities, where {pn}nEZLiS a given sequence of polynomials
satisfying (A1) - (A4). Then, in [2], the following result was

proved.

Theorem 3: Let E be a closed bounded set whose

complement K is simply connected and suppose that all boundary

points of K are accessible boundary points. Furthermore, let J

be a subarc in the interior of a free one-sided boundary arc of

K such that the connected component B of ﬁ, where chﬁ, is a

Jordan region, and assume

(2.5) Zn(C)=:o(n) as n- o



for any compact set C in B. If D is a neighborhood of the inte-
rior of J such that DN JE =J, then for the distribution of the

zeros of the polynomials P, in D holds .

z_ (D) _
(2.6) lim -2— = %—9,
n-oo n m

where o and B are defined by (2.3).

Theorem 4: Let E be a closed bounded point set

whose complement K is simply connected and suppose that all

boundary points of K are accessible. If J is a subarc in the in-
terior of a free two-sided boundary arc of K and D is a neigh-

borhood of the interior of J such that DN 3E =J, then

z_ (D) ~ .
. n _ B-a+R-d
- ;(;2'7) . llm n L 2. !

Il

where a,B,&,E are defined by (2.4).

For obtaining results in the next section when K is
connected it is useful to give a new interpretation for the
right-hand side of (2.6) and (2.7): Suppose the conditions of
Theorem 3 are satisfied and J is a free one-sided boundary arc

of K, then ¢(z) can be analytically extended to J and -

B
B-o = [ dt = 1 [ (log ®(z))'dz
1
o J
o1 ¢ 9'(2) _ 1 ¢ [ 3G(x,y) _ . 3G(x,y) \
“ié@(z) dz’-ig\’a_xi“l 3% ) 92

where J is oriented in such a way that K lies to the right. If
J has the equation z=y(t), a<t £b, the direction of the tangent

is determined by the angle a =arg y'(t) and we can write

3G _, 2GY g, - (3G, 2€) ..
(.Sx 1gy) 92" (Bx * BY) v’ () de

= |y'(t)] <%§-—i %%) (cos o +1isina) dt



= |vy'(t) | (—g—g’-+i %g) at.

»

Here, %% is the tangential derivative whiéh is identically zero
in the interior of J, since G(x,y) =0 on the boundary of K. The
expression %g is the right-hand normal derivative with respect

to the curve J. Or, with other words, %% is the normal derivative
where n is the normal directed into K.

Summarizing we have obtained

-

. .
f 3 [yt ] ae = [ 22 az].
a : J

(2.8) B-a N

If J is a free two-sided boundary arc of K, we con-
sider the region A of section 2 such that y(t) €K for all
t:€A+\JA—. Then, there exists a harmonic extension G1(x,y) of

the function G(x,y), defined in Y(A+), across J into some neigh-
Y g

borhood of int (J)}, where
(2.9) int(J) = {y(t): a<t<b}. _

This follows from Schwarz's principle of reflection. Moreover,
let us denote by n, the normal of the curve J directed into
y(A+). Analogously, let Gz(x,y) be the extension of G(x,y), de-
fined in y(A”), to some neighborhood of int(J) and let n, be the

normal of the curve J directed into Y(A ). Then we obtain
8G1 oG

+ 2) [az].

8n1 3n2

(2.10) B-a+B=-a = [ (

Hence, we may replace in Theorem 3 equation (2.6) by

Zn(D) 1
L1 1i = — |d
2.1 lim 2 | da las

and equation (2.7) in Theorem 4 by

~ 2, (D) {771
2.12 1i = d
( ) niz n 27 g \3n, © anj |az




3. Distribution of zeros: K connected

The first main result for the more génerél case, K

connected, can be stated as follows.

Theorem 5: Let E be a closed bounded set whose

complement K is connected and regular, {pn}nea_g sequence of
polynomials satisfying (A1) - (A4).

Then, for any ¢>1, -
Zn(K\EO)
(3.1) lim — = 0.
n-> n

Moreover, the convergence relation

. 1 o' (z)
(3.2)  lim ] =
S\3.2) o ez zn,k 9 (2)

Zn,kEEG
holds locally uniformly in K*\EG.

Now we are in position to formulate results about the
distribution of the zeros of P, where K does not have to be sim-

ply connected any more.

Theorem 6: Let E be a closed bounded point set

whose complement K is connected and reqular, {pn}n€&,3 sequence
of polynomials satisfying (A1) - (A4), o>1. If J is a Jordan

curve contained in FO, then

z_(S) |
(3.3) lim -2 = = 1 28 az|,
. n m o3 on _

where S is the region interior to J.

As an application let us consider an example due to
Walsh [10]: Let E be the set [z(z-1)]| £1/16 bounded by the lem-
niscate |z(z-1)|=1/16, so G(x,y)==% log |z(z-1)| +log 4. We
choose f(z) identically zero in the right-hand oval of the lem-



niscate bounding E and 1/(1-4z) in the left hand oval. Then f(z)
is analytic in E _, where p==/§—is maximal, and Ep is the lem-
niscate |z(z -1)| =3/16 passing through z = 1/4. LetQpZn_1(z) be
the polynomial of degree 2n-1 which is determined by interpola-
tion to f£(z) in the points z =0 and z==1,!each considered of
multiplicity n. Define p2n(z): =p2n_1(z), then the sequence con-
verges maximally to f£(z) on E. Since G(x,y) has a critical point
at z=x+iy=1/2 on E2, by Theorem 5, for any Y3 <0<2 the right-
hand and the left-hand oval contgin n +o(n) zeros of pzn(z), at
least for a subsequence of {p2n}. But this result holds for the

1/2n:=4 and the capacity of

whole sequence {p,_}, since lim |a,_|
2n n-oo 2n
E is 1/4. For the right-hand oval this can be easily verified,

since n zeros of pzn(z) lie at the point z =1.

o In the above-mentioned paper of Walsh [10] it was
shown that every point z, of the boundary of Fp which is a limit
of points of Ep on which f£(z) # 0, is again a limit point of ze-
ros of the polynomials P, therefore nothing was said about the

right-hand oval in the example above.

4. Proofs -

Proof of Theorem 5: For any o> 1, the equation (3.1)

was already proved in [2].

Let Zn,o 1= Zn(K‘\EO) and
an
(4.1) pn(Z) = EN . §n(z)-qn(z)p
n

where qnfiﬂz s is the monic polynomial whose zeros are the zeros
n,o_

of pn(z) in K2~E0. Let K* be a simply connected subregion of K

such that the point at infinity lies in K*. We define a fixed

branch of @(z) in K* by

(4.2) @(z)==% z4-ao-+0(%) for z-» e



and set for z €K*
(8, (z)}1/(""%n,0)

(4.3) h_(z): = ,
n b(z)

where the branch of the numerator is chosén such that hn(w):>0.
For z € E we have
p. (z)
]pn(z)| g L Z 4
n,c
(dT) -
where d1 is the minimal distance of Fo to the set E.

Since

lﬁn(z)l
n-2%2
|Q(Z)| n-o

log

is harmonic in K and continuous in K, except at the zeros of

§n(z), we conclude from the maximum principle for harmonic func-
tions that
18, (2) | . Py
lo(z) |® %n,0 (d1)znr0

Hence, we thain from (3.1) and (A4) that the functions hn(z)

are uniformly bounded in K**~EO and satisfy

T _ 1/ (n-2 )
(4.4) lim |h (2) | < Tim |lp |l n,o) - 4.

oo 110

A

Moreover, because of the normalization in (4.2) and the condi-

tion (A3), it follows that

(4.5) lim hn(w)r=1.

n->o
since each function h_(z) is analytic in‘K**\EO, we conclude
from (4.4), (4.5) and the maximum principle that the functions
hn(z) converge uniformly to the constant function 1 in any com-
pact subset of K*\~EO. Consequently the functions log hn(z)

converde uniformly to zero in any compact set of K**\EU, if



we take for the logarithm the branch with log hn(w)==0. Then,

on differentiating log hn(z) we get

pim 1 P etia)
— n--zn’0 pn(Z) o(z)
or, using (3.1),
. 1 1 _ 9 (2)
n=ee z €E n,k
n,k— o

e

locally uniformly in K*‘\EG. Now; we observe that the function
®'(z) _ 3G(x,y) _, 3G(x,y)
¢(z) X oy

is independent of the branch of ¢(z). Since {4.6) holds locally
uniformly in K* ~E , where K¥ cK is any simply connected region

" with € K*, it follows, that (3.2) is true. o

Proof of Theorem 6: For any ¢ > 1, the locus TO con-—

sists of a finite number of Jordan curves which are mutually
exterior except for a finite number of critical points of &(z).
Let us fix a function £(z) analytic in E0 and continuous in the
interior and the boundary of each Jordan curve of To' except at
the critical points. Then, by Cauchy's integral formula, we ob-
tain for any p, 1<p<o, from (3.2)

N o' (2)
lim — ) f£(z [ £(=2) 572y 9%+

In-—»co = T

where FO is oriented in such a way that E0 lies to the left.

Since Zn(EG*\Ep)==o(n) as n-o, it follows that

1 1 o0 (z)
(4.7) lim _I'; z f(Zn’k) = 71?3? FI f(Z) W dz.
EE0 o



Now, let us consider the function f(z) defined by £(z) =1 for
z€S and £(z) =0 for z €E ~5. Then we obtain from (4.7) and

(3.1): .

z_(9) Z_(S)
1im = lim -2
n-»o - n n-»o n
_ 1 $'(z)
= 3t L Sra) 9%
J
- 1 G (x,y)
- 27 5’* s lazl L e
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