DISTRIBUTION OF ZEROS OF POLYNOMIAL SEQUENCES,

ESPECIALLY BEST APPROXIMATIONS

H.-P. Blatt and E. B. Saff

Mathematisch-Geographische Fakultät, Katholische Universität Eichstätt, D-8078 Eichstätt, Federal Republik of Germany

Department of Mathematics, University of South Florida, Tampa, FL 33620, U.S.A.

In [2] the asymptotic behavior of the zeros of polynomials of near best approximation to functions f on a compact set E was studied in the case when f is not everywhere analytic on E. For example, suppose E is a finite union of compact intervals of the real line and f is continuous, but not analytic on E; then we have shown that every point of E is a limit point of zeros of the polynomials of best uniform approximation to f on E. Moreover, if the complement K of E is simply connected and the boundary of E consists of a finite number of analytic Jordan arcs, then the distribution of the zeros of the polynomials of best uniform approximation was analyzed. The purpose of this paper is to give a new interpretation of this distribution, namely to show that these zeros are uniformly distributed with respect to the normal derivative of G(x,y) on ∂E , where G(x,y) is Green's function of K; furthermore results are obtained for the general case when K is connected.

1. Introduction

Let E be a closed bounded set in the z-plane (z = x+iy)

whose complement K (with respect to the extended plane) is connected and <u>regular</u> in the sense that K has a Green's function G(x,y) with pole at infinity: G(x,y) is harmonic in K except at infinity and in a neighborhood of the point of infinity we have

(1.1)
$$G(x,y) = \log (x^2 + y^2)^{1/2} + G_0(x,y)$$
,

where $G_{O}(x,y)$ approaches a finite value at infinity; moreover, G(x,y) is continuous in the closed region \overline{K} except at infinity and vanishes on the boundary of K (Walsh [8]). The function

(1.2)
$$t = \Phi(z) := e^{G(x,y) + i H(x,y)},$$

where H(x,y) is conjugate to G(x,y) in K, maps K onto the exterior of the unit disk. Hence, it follows by (1.1) that

$$|\Phi(z)/z| = 1/c + O(1/z)$$

as $z \to \infty$, where the constant c > 0 is called the (logarithmic) capacity of the set E.

For each $\sigma > 1$ we consider the equipotential locus

(1.4)
$$\Gamma_{\sigma} := \{z = x + iy \in K : G(x,y) = \log \sigma\}$$

with interior

(1.5)
$$E_{\sigma} := E \cup \{z = x + iy \in K : O < G(x,y) < log \sigma\}.$$

If K is simply connected, the function $\Phi(z)$ is single-valued in K and each locus Γ_σ is an analytic Jordan curve. If K is multiply connected, the function $\Phi(z)$ cannot be single-valued in K and has <u>critical</u> points, i.e. points where $\Phi'(z) = 0$. Each locus Γ_σ consists of a finite number of Jordan curves which are mutually exterior except for a finite number of critical points. Moreover, the normal derivative $\frac{\partial G}{\partial n}$ exists at every point of the locus Γ_σ except for such critical points (n being the exterior normal for \overline{E}_σ).

If a function f(z) is analytic on E, there exists a largest real number σ (finite or infinite), say $\sigma=\rho$, such that $\rho>1$ and f(z) is single-valued and analytic on E. Then, denoting

by Π_n the collection of all complex polynomials of degree $\leq n$, there exist (cf. [8]) polynomials $p_n \in \Pi_n$, $n = 0, 1, 2, \ldots$, such that we have

(1.6)
$$\overline{\lim}_{n\to\infty} ||f-p_n||_E^{1/n} = 1/\rho,$$

where we denote by $\|\cdot\|_E$ the uniform norm on the set E. But there exist no polynomials $p_n \in \Pi_n$ such that the left-hand side of (1.6) is less than $1/\rho$. A sequence $\{p_n\}$ satisfying (1.6) is said to converge maximally to f(z) on E.

In [2] the following characterization of functions f, which are not analytic on E, is given in terms of the leading coefficients of the polynomials of best uniform approximation to f(z) on E: This result is analogous to the Cauchy-Hadamard formula for the radius of convergence of a power series.

Theorem 1: Let E be a closed bounded point set whose complement K is connected and regular, and suppose that the function f is continuous on E, analytic in the interior of E. For each $n = 0, 1, 2, \ldots$, let $p_n^*(z) = a_n z^n + \ldots \in \Pi_n$ be the polynomial of best uniform approximation to f on E. Then f is not analytic on E if and only if

(1.7)
$$\overline{\lim}_{n\to\infty} |a_n|^{1/n} = 1/c,$$

where c is the capacity of E.

Just the same arguments as in the proof of the above theorem in [2] lead to an analogous result for functions f analytic on \boldsymbol{E}_{ρ} , namely

Theorem 2: Let E be a closed bounded set whose complement K is connected and regular, and suppose the function f is analytic on E_{\rho}, 1 < \rho < \infty, but not on F_{\rho}. Let {p_n}, n = 0,1, ..., p_n(z) = a_n zⁿ + ... \(\emptyre{\pi}_n, \) be a sequence of polynomials converging maximally to f(z) on E. Then

(1.8)
$$\overline{\lim}_{n\to\infty} |a_n|^{1/n} = 1/c\rho,$$

where c is the capacity of E.

Hence, the polynomials of best uniform approximation in Theorem 1 or the maximally convergent polynomials of Theorem 2 can be considered as special cases of the following situation: There is given a closed, bounded set E of $\mathbb C$ such that the complement K of E is connected and regular, and a polynomial sequence $\{p_n\}$ satisfying the following properties:

(A1)
$$n \in \mathcal{X} := \{n_1 < n_2 < n_3 < \dots \},$$

(A2)
$$p_n(z) \in \Pi_n \setminus \Pi_{n-1}$$
 with leading coefficient $a_n \neq 0$,

(A3)
$$\lim_{n\to\infty} |a_n|^{1/n} = \frac{1}{c},$$

(A4)
$$\lim_{n\to\infty} ||p_n||_E^{1/n} = 1.$$

In (A3) and (A4) the limits are considered for $n = n_1, n_2, n_3, \dots$

2. Distribution of zeros: K simply connected

In [2] the distribution of the zeros of polynomial sequences satisfying (A1) - (A4) was studied in the neighborhood of an analytic Jordan arc $J \subset \partial K$, when K is simply connected. The equation of an analytic Jordan arc J in $\mathbb C$ is given for $z \in J$ in parametric form $z = \gamma(t)$, where t runs through a real compact interval [a,b], a < b, $\gamma(t)$ is continuous and $\gamma(t_1) = \gamma(t_2)$ only if $t_1 = t_2$; in addition, $\gamma(t)$ is analytic in the open interval (a,b) and $\gamma'(t) \neq 0$ for all $t \in (a,b)$. Hence, there exists a region Δ , symmetric to the interval (a,b), with the property that $\gamma(t)$ is analytic for all $t \in \Delta$. If, moreover, $J \subset \partial K$ and the region Δ can be chosen in such a way that $\gamma(t) \in K$ when t lies in the upper half Δ^+ of Δ ,

(2.1)
$$\Delta^{+} := \{t \in \Delta : Im (t) > 0\},\$$

and that $\gamma(t) \notin K$ for $t \in \Delta^-$, where

$$(2.2) \qquad \Delta^{-} := \{t \in \Delta : \text{ Im } (t) < 0\},$$

then J is a <u>free one-sided boundary arc of K</u>; if, for an appropriate Δ , $\gamma(t) \in K$ for all $t \in \Delta^+ \cup \Delta^-$, then J is a <u>free two-sided</u> boundary arc of K.

A point $z \in \partial K$ is an <u>accessible boundary point of</u> K if there exists a Jordan arc J with endpoint z such that all other points of J lie in K. If K is simply connected and all points of ∂K are accessible boundary points of K, then, for the inverse mapping $\psi(t)$ of $\Phi(z)$, there exists a continuous extension to $\{t: |t| \le 1\}$. Therefore, suppose J is a free one-sided boundary arc of K, then there are two arguments α and β , $\alpha < \beta < \alpha + 2\pi$, such that

(2.3)
$$\psi^{-1}(J) = \{t = e^{i\phi} : \alpha \le \phi \le \beta\};$$

if J is a free two-sided boundary arc of K, then

(2.4)
$$\psi^{-1}(J) = \{t = e^{i\varphi} : \alpha \le \varphi \le \beta \text{ or } \tilde{\alpha} \le \varphi \le \tilde{\beta}\},$$

where $\alpha < \beta \le \tilde{\alpha} < \tilde{\beta} \le \alpha + 2\pi$.

In stating the next theorem it is convenient to introduce the following notation: For any set C in C let \mathbf{Z}_n (C) be the number of zeros of the polynomial \mathbf{p}_n in C, counted with their multiplicities, where $\{\mathbf{p}_n\}_{n\in\mathcal{M}}$ is a given sequence of polynomials satisfying (A1) - (A4). Then, in [2], the following result was proved.

Theorem 3: Let E be a closed bounded set whose complement K is simply connected and suppose that all boundary points of K are accessible boundary points. Furthermore, let J be a subarc in the interior of a free one-sided boundary arc of K such that the connected component B of E, where $J \subset \overline{B}$, is a Jordan region, and assume

(2.5)
$$Z_n(C) = o(n) \text{ as } n \to \infty$$

for any compact set C in B. If D is a neighborhood of the interior of J such that $\overline{D} \cap \partial E = J$, then for the distribution of the zeros of the polynomials p_n in D holds

(2.6)
$$\lim_{n\to\infty} \frac{Z_n(D)}{n} = \frac{\beta-\alpha}{2\pi},$$

where α and β are defined by (2.3).

Theorem 4: Let E be a closed bounded point set whose complement K is simply connected and suppose that all boundary points of K are accessible. If J is a subarc in the interior of a free two-sided boundary arc of K and D is a neighborhood of the interior of J such that $\overline{D} \cap \partial E = J$, then

(2.7)
$$\lim_{n\to\infty} \frac{z_n(D)}{n} = \frac{\beta - \alpha + \tilde{\beta} - \tilde{\alpha}}{2\pi},$$

where $\alpha, \beta, \tilde{\alpha}, \tilde{\beta}$ are defined by (2.4).

For obtaining results in the next section when K is connected it is useful to give a new interpretation for the right-hand side of (2.6) and (2.7): Suppose the conditions of Theorem 3 are satisfied and J is a free one-sided boundary arc of K, then $\Phi(z)$ can be analytically extended to J and

$$\beta - \alpha = \int_{\alpha}^{\beta} dt = \frac{1}{i} \int_{J} (\log \Phi(z))'dz$$

$$= \frac{1}{i} \int_{J} \frac{\Phi'(z)}{\Phi(z)} dz = \frac{1}{i} \int_{J} \left(\frac{\partial G(x,y)}{\partial x} - i \frac{\partial G(x,y)}{\partial y} \right) dz$$

where J is oriented in such a way that K lies to the right. If J has the equation $z = \gamma(t)$, $a \le t \le b$, the direction of the tangent is determined by the angle $\alpha = \arg \gamma'(t)$ and we can write

=
$$|\gamma'(t)|$$
 $\left(\frac{\partial G}{\partial s} + i \frac{\partial G}{\partial n}\right) dt$.

Here, $\frac{\partial G}{\partial s}$ is the tangential derivative which is identically zero in the interior of J, since $G(x,y)\equiv 0$ on the boundary of K. The expression $\frac{\partial G}{\partial n}$ is the right-hand normal derivative with respect to the curve J. Or, with other words, $\frac{\partial G}{\partial n}$ is the normal derivative where n is the normal directed into K.

Summarizing we have obtained

(2.8)
$$\beta - \alpha = \int_{a}^{b} \frac{\partial G}{\partial n} |\gamma'(t)| dt = \int_{J} \frac{\partial G}{\partial n} |dz|.$$

If J is a free two-sided boundary arc of K, we consider the region Δ of section 2 such that $\gamma(t) \in K$ for all $t \in \Delta^+ \cup \Delta^-$. Then, there exists a harmonic extension $G_1(x,y)$ of the function G(x,y), defined in $\gamma(\Delta^+)$, across J into some neighborhood of int(J), where

(2.9)
$$int(J) = {\gamma(t): a < t < b}.$$

This follows from Schwarz's principle of reflection. Moreover, let us denote by n_1 the normal of the curve J directed into $\gamma(\Delta^+)$. Analogously, let $G_2(x,y)$ be the extension of G(x,y), defined in $\gamma(\Delta^-)$, to some neighborhood of int(J) and let n_2 be the normal of the curve J directed into $\gamma(\Delta^-)$. Then we obtain

(2.10)
$$\beta - \alpha + \tilde{\beta} - \tilde{\alpha} = \int_{J} \left(\frac{\partial G_1}{\partial n_1} + \frac{\partial G_2}{\partial n_2} \right) |dz|.$$

Hence, we may replace in Theorem 3 equation (2.6) by

(2.11)
$$\lim_{n\to\infty} \frac{Z_n(D)}{n} = \frac{1}{2\pi} \int_{J} \frac{\partial G}{\partial n} |dz|$$

and equation (2.7) in Theorem 4 by

(2.12)
$$\lim_{n\to\infty} \frac{z_n(D)}{n} = \frac{1}{2\pi} \int_{J} \left(\frac{\partial G_1}{\partial n_1} + \frac{\partial G_2}{\partial n_2} \right) |dz|.$$

3. Distribution of zeros: K connected

The first main result for the more general case, K connected, can be stated as follows.

Theorem 5: Let E be a closed bounded set whose complement K is connected and regular, $\{p_n\}_{n\in\mathbb{N}}$ a sequence of polynomials satisfying (A1) - (A4).

Then, for any $\sigma > 1$,

(3.1)
$$\lim_{n\to\infty} \frac{Z_n(K\setminus \overline{E}_0)}{n} = 0.$$

Moreover, the convergence relation

(3.2)
$$\lim_{n\to\infty} \sum_{z_{n,k}\in \overline{E}_{\sigma}} \frac{1}{z^{-z_{n,k}}} = \frac{\Phi'(z)}{\Phi(z)}$$

 $\underline{\text{holds}}\ \underline{\text{locally}}\ \underline{\text{uniformly}}\ \underline{\text{in}}\ \mathbf{K} \smallsetminus \overline{\mathbf{E}}_{\sigma}.$

Now we are in position to formulate results about the distribution of the zeros of \mathbf{p}_n where K does not have to be simply connected any more.

Theorem 6: Let E be a closed bounded point set whose complement K is connected and regular, $\{p_n\}_{n \in \mathcal{N}}$ a sequence of polynomials satisfying (A1) - (A4), $\sigma > 1$. If J is a Jordan curve contained in Γ_{σ} , then

(3.3)
$$\lim_{n\to\infty} \frac{Z_n(S)}{n} = \frac{1}{2\pi} \int_J \frac{\partial G}{\partial n} |dz|,$$

where S is the region interior to J.

As an application let us consider an example due to Walsh [10]: Let E be the set $|z(z-1)| \le 1/16$ bounded by the lemniscate |z(z-1)| = 1/16, so $G(x,y) = \frac{1}{2} \log |z(z-1)| + \log 4$. We choose f(z) identically zero in the right-hand oval of the lemniscate

niscate bounding E and 1/(1-4z) in the left hand oval. Then f(z) is analytic in E_{ρ} , where $\rho=\sqrt{3}$ is maximal, and E_{ρ} is the lemniscate |z(z-1)|=3/16 passing through z=1/4. Let $p_{2n-1}(z)$ be the polynomial of degree 2n-1 which is determined by interpolation to f(z) in the points z=0 and z=1, each considered of multiplicity n. Define $p_{2n}(z):=p_{2n-1}(z)$, then the sequence converges maximally to f(z) on E. Since G(x,y) has a critical point at z=x+iy=1/2 on E_2 , by Theorem 5, for any $\sqrt{3}<\sigma\le 2$ the right-hand and the left-hand oval contain n+o(n) zeros of $p_{2n}(z)$, at least for a subsequence of $\{p_{2n}\}$. But this result holds for the whole sequence $\{p_{2n}\}$, since $\lim_{n\to\infty}|a_{2n}|^{1/2n}=4$ and the capacity of E is 1/4. For the right-hand oval this can be easily verified, since n zeros of $p_{2n}(z)$ lie at the point z=1.

In the above-mentioned paper of Walsh [10] it was shown that every point \mathbf{z}_0 of the boundary of Γ_ρ which is a limit of points of \mathbf{E}_ρ on which $\mathbf{f}(\mathbf{z}) \neq \mathbf{0}$, is again a limit point of zeros of the polynomials \mathbf{p}_n ; therefore nothing was said about the right-hand oval in the example above.

4. Proofs

Proof of Theorem 5: For any $\sigma > 1$, the equation (3.1) was already proved in [2].

Let
$$Z_{n,\sigma} := Z_n(K \setminus \overline{E}_{\sigma})$$
 and

(4.1)
$$p_n(z) = \frac{a_n}{|a_n|} \cdot \tilde{p}_n(z) \cdot q_n(z),$$

where $q_n \in \Pi_{Z_n,\sigma}$ is the monic polynomial whose zeros are the zeros of $p_n(z)$ in $K \setminus \overline{E}_{\sigma}$. Let K^* be a simply connected subregion of K such that the point at infinity lies in K^* . We define a fixed branch of $\Phi(z)$ in K^* by

(4.2)
$$\Phi(z) = \frac{1}{c} z + \alpha_0 + O(\frac{1}{z}) \quad \text{for } z \to \infty$$

and set for $z \in K^*$

(4.3)
$$h_{n}(z) := \frac{\{\tilde{p}_{n}(z)\}^{1/(n-Z_{n},\sigma)}}{\Phi(z)},$$

where the branch of the numerator is chosen such that $h_n(\infty) > 0$. For $z \in E$ we have

$$|\tilde{p}_{n}(z)| \leq \frac{|p_{n}(z)|}{(d_{1})^{Z_{n,\sigma}}}$$

where \textbf{d}_1 is the minimal distance of $\boldsymbol{\Gamma}_{\sigma}$ to the set E. Since

$$\log \frac{|\tilde{p}_{n}(z)|}{|\Phi(z)|^{n-Z_{n-\sigma}}}$$

is harmonic in K and continuous in \overline{K} , except at the zeros of $\widetilde{p}_n(z)$, we conclude from the maximum principle for harmonic functions that

$$\frac{\left|\tilde{p}_{n}(z)\right|}{\left|\Phi(z)\right|^{n-Z_{n,\sigma}}} \leq \frac{\left|\left|p_{n}\right|\right|_{E}}{\left(d_{1}\right)^{Z_{n,\sigma}}}.$$

Hence, we obtain from (3.1) and (A4) that the functions $h_n^{}(z)$ are uniformly bounded in $K^\star \smallsetminus \overline{E}_\sigma^{}$ and satisfy

(4.4)
$$\overline{\lim}_{n\to\infty} |h_n(z)| \leq \overline{\lim}_{n\to\infty} ||p_n||_E^{1/(n-Z_{n,\sigma})} = 1.$$

Moreover, because of the normalization in (4.2) and the condition (A3), it follows that

(4.5)
$$\lim_{n\to\infty} h_n(\infty) = 1.$$

Since each function $h_n(z)$ is analytic in $K^* \setminus \overline{E}_{\sigma}$, we conclude from (4.4), (4.5) and the maximum principle that the functions $h_n(z)$ converge uniformly to the constant function 1 in any compact subset of $K^* \setminus \overline{E}_{\sigma}$. Consequently the functions $\log h_n(z)$ converge uniformly to zero in any compact set of $K^* \setminus \overline{E}_{\sigma}$, if

we take for the logarithm the branch with log $h_n(\infty) = 0$. Then, on differentiating log $h_n(z)$ we get

$$\lim_{n\to\infty} \frac{1}{n-Z_{n,\sigma}} \frac{\tilde{p}_n'(z)}{p_n(z)} = \frac{\phi'(z)}{\phi(z)}$$

or, using (3.1),

(4.6)
$$\lim_{n\to\infty} \frac{1}{n} \sum_{z_{n,k}\in \overline{E}_{\sigma}} \frac{1}{z^{-z_{n,k}}} = \frac{\Phi'(z)}{\Phi(z)}$$

locally uniformly in $K^* \setminus \overline{E}_{\sigma}$. Now, we observe that the function

$$\frac{\Phi'(z)}{\Phi(z)} = \frac{\partial G(x,y)}{\partial x} - i \frac{\partial G(x,y)}{\partial y}$$

is independent of the branch of $\Phi(z)$. Since (4.6) holds locally uniformly in $K^* \setminus \overline{E}$, where $K^* \subset K$ is any simply connected region with $\infty \in K^*$, it follows, that (3.2) is true.

Proof of Theorem 6: For any $\sigma > 1$, the locus Γ_{σ} consists of a finite number of Jordan curves which are mutually exterior except for a finite number of critical points of $\Phi(z)$. Let us fix a function f(z) analytic in E_{σ} and continuous in the interior and the boundary of each Jordan curve of Γ_{σ} , except at the critical points. Then, by Cauchy's integral formula, we obtain for any ρ , $1 < \rho < \sigma$, from (3.2)

$$\lim_{n\to\infty} \frac{1}{n} \sum_{z_{n,k}\in\overline{E}_{\rho}} f(z_{n,k}) = \frac{1}{2\pi i} \int_{\Gamma_{\sigma}} f(z) \frac{\Phi'(z)}{\Phi(z)} dz,$$

where Γ_{σ} is oriented in such a way that E_{σ} lies to the left. Since $Z_{n}(E_{\sigma} \setminus \overline{E}_{\rho}) = o(n)$ as $n \to \infty$, it follows that

(4.7)
$$\lim_{n\to\infty} \frac{1}{n} \sum_{z_{n,k}\in E_{\sigma}} f(z_{n,k}) = \frac{1}{2\pi i} \int_{\Gamma_{\sigma}} f(z) \frac{\Phi'(z)}{\Phi(z)} dz.$$

Now, let us consider the function f(z) defined by f(z) = 1 for $z \in \overline{S}$ and f(z) = 0 for $z \in \overline{E}_{\sigma} \setminus \overline{S}$. Then we obtain from (4.7) and (3.1):

$$\lim_{n\to\infty} \frac{Z_n(\overline{S})}{n} = \lim_{n\to\infty} \frac{Z_n(S)}{n}$$

$$= \frac{1}{2\pi i} \int_J \frac{\Phi'(z)}{\Phi(z)} dz$$

$$= \frac{1}{2\pi} \int_J \frac{\partial G(x,y)}{\partial n} |dz|. \square$$

5. References

- 1. L. V. Ahlfors: Complex Analysis, McGraw-Hill Book Company, third edition, 1979.
- 2. H.-P. Blatt, E. B. Saff: Behaviour of zeros of polynomials of near best approximation, to appear.
- 3. P. Borwein: The relationship between the zeros of best approximations and differentiability, Proceedings of the Fourth Texas Conference on Approximation Theory, College Station, 1983.
- 4. G. M. Golusin: Geometric Theory of Functions of a Complex Variable, American Mathematical Society, Vol. 26, Providence, Rhode Island, 1969.
- 5. R. Jentzsch: Untersuchungen zur Theorie analytischer Funktionen, Inangural-Dissertation, Berlin 1914.
- 6. P. Ch. Rosenbloom: Sequences of polynomials, especially sections of power series, Dissertation, Stanford University, 1943.
- 7. G. Szegö: Über die Nullstellen von Polynomen, die in einem Kreis gleichmäßig konvergieren, Sitzungsberichte der Berliner Math. Gesellschaft, 21 (1922), 59-64.
- 8. J. L. Walsh: Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloquium Publications, vol. 20, 1935, Fifth Edition 1969.
- 9. J. L. Walsh: Overconvergence, degree of convergence and zeros of sequences of analytic functions, Duke Math. Journal 13 (1946), 195-234.
- 10. J. L. Walsh: The analogoue for maximally convergent polynomials of Jentzsch's theorem, Duke Math. Journal 26 (1959), 605-616.