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ABSTRACT

If p,,....p, is an orthogonal sequence, with p; a monic polynomial of exact
degree jf, all j, then the sequence gq,..., g, of monic polynomials defined by the
requirement that p; = c;q,_;.1p,, at the zeros of p, (with ¢ suitable constants) is
also orthogonal (with respect to a possibly differently weighted scalar product). These
two sequences can be shown to be the upper left, respectively lower right, principal
minors of the matrix ¢ —J, with J a suitable tridiagonal matrix. The sequence g
occurs in the characterization of the discrete least-squares approximation to f from
span(py, ..., p;) in terms of the (n — j — 1)-order divided differences of f/p,_, at the
nodes, i.e., the zeros of p,. A complete characterization of the pair (U, V') of zero sets
of p;_, and gq,_; is given, and an application is made to the problem of recovering a

Jacobi matrix from such data.

0. INTRODUCTION

The connection between two finite sequences of orthogonal polynomials
mentioned in the title arose in the following way. Consider least squares
rational approximation to a function f(z) analytic on the closed unit disk in

the zplane. Given n points 8,, B,,..., 8, exterior to the unit circle, we wish
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to determine the rational function
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where =, denotes the collection of all polynomials of degree at most m. An
elegant theorem of J. L. Walsh [W, p. 244] asserts that, for m > n, the least
squares approximant #, must interpolate f in the m +1 zeros of the
polynomial z™ "*I1}(z — 1/8;). Although Walsh does not discuss the de-
termination of 7, in the case when m < n, his proof leads immediately to the

following characterization, which is stated in terms of divided differences.
Namely, if 0 < m < n, then 7, satisfies

1 - 2" () = : :
—_— ., = 2V ()=, =
.Bj+1 Bj+n;m :8j+1 Bj+nfm
j=0,....m. (0.1)
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A natural question which arises is this: Is there an analogue of the conditions
(0.1) in the case of weighted least squares polynomial approximation in n
distinct real points?

An answer to this question is provided below in Proposition 1 in terms of
the associated sequence (p,) of monic orthogonal polynomials and a second
sequence (g;)y of monic polynomials. The latter are given by the condition
that on the n points,

qun—j—l = pj/pn~l

for some constant ¢j.
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As it turns out, the connection between these two polynomial sequences
has been noted and used before, in [BG], in the study of the numerical
reconstruction of a Jacobi matrix from certain spectral data. To recall, by a
Jacobi matrix is meant a tridiagonal matrix of the form

a; b,
b, a, b,
b, as b,
J= ’ ,
b._s @, n—1
b,., a,

(0.2)

where [ is real and the next-to-diagonal elements are positive; that is, b, > 0
Vi. There is a well-known one-one correspondence between sequences (p,)
of monic orthogonal polynomials and nth order Jacobi matrices J. This
correspondence is given by the rule that

pi(t)=det(t-1), j=0,..,n

with I; the left principal submatrix of order j of J. In terms of this
correspondence, the abovementioned complementary sequence (g,)j is given
by

gt)=det(t—J), j=0,..,n,

where fj the right principal submatrix of order j of J. *

This led us to consider the following recovery problem, in which we
denote by J._; the principal submatrix of J obtained by deleting the kth row
and column from J.

Given an integer k, 1 <k <n, and the sequences A\ :=(\))} and p:=

(1)1, determine an nth order Jacobi matrix J that has A,,...,\, as its
eigenvalues and py,...,p,_, as the eigenvalues of its principal submatrix
J<k

The numerical solution of this problem for the cases k =1 and k = n was
the subject of [BG] and, more recently, [GH]. These cases are also discussed
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in other publications, e.g., [GW], [Ha], and [Hoc]. Here we take the opportun-

ity to discuss the remaining cases k= 2,...,n — 1.

Existence of a solution to this problem can only be ensured under certain
conditions. Assuming that A, < +-- <X, and g, < -+ <p,_,, these condi-
tions are

A< <A, all 4, (0.3)
and
Ai=pyo= o A= (0.4)

We shall show that the recovery problem has a unique solution if the
condition

A <p<Nigops i=1,...,n—1, (0.5)

holds and k — 1 of the y,’s have been chosen to make up the spectrum of the
submatrix J,_,. However, if p, ;= A, = p, for one or more i, then [with the
assumptions of (0.3) and (0.4)] the recovery problem has infinitely many
solutions.

1. DISCRETE ORTHOGONALITY

We are given a set X = {x,,...,x,} of n distinct real points, which we
assume ordered, x,< :-- <x,, when convenient. We shall consider the
discrete inner product

(frgy= 2 flx)a(x).

xeX

This means that we are only concerned with functions restricted to X, and
therefore write

fze

to mean that f(x)=g(x) for all x € X; this implies f =g in the ordinary
sense as long as f, g € @,_,. We also write f L g when {(f,g)=0.
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Let
P=By= ] (-~2).

xe X

Then
_ " f(xi) _ 1
(21,02, ] f= igl m— <f,F>,

j*i

and so
%L%d. (1.1)

This implies
Lemva 1. (m_ )" 5 7oy /P k=1,...,n.

Proof. Both sides are linear spaces of dimension n — k, and the right side
is obviously contained in the left, since forany p € n,_, and ge 7, _,_,, we
have pg € 7, _, and so, by (1.1),

q 1 0
s —Y={pq,—)=0. |
(p P,> {rq P,)

Let (p;); be the sequence of monic orthogonal polynomials for the inner
product (-, -5 . with

(f.8),=(fw,g)

and w > 0. Then Lemma 1 implies

COROLLARY. P; < qPr-1 for some g € Tp_j1

Proof. Since pjwLlm_, we have pjws q/P’ forsome g7, _;_;. In
particular,

c
oWy P for some constant ¢ # 0;
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hence

qpr, W

>

pw

><l|

-1
X p’ c

from which the corollary follows. [ ]

RemMaRrk. The fact that p,_, doesn’t vanish on X, ie. ¢ # 0, is quite
evident here, since p,_ (x) = 0 for some x € X would 1mply Pn 150, which
is impossible for a monic polynomial of degree n — 1.

The corollary answers the question concerning discrete least squares and
matching of divided differences raised in the introduction. Let P, f denote the

weighted discrete least squares approximation to f from =, i.

(fw,p) p>
= L Cpaonpy ™

ProposiTion 1. Let g € m;. Then g = P, f iff

g .
[xi""’xi+n4j71]—p__l= [xi,---’xi+n-j—1];)—f_—1_’ alli,
n— n—

ie, fori=1,...,j+1L

Proof. 1Tt is clear that g = P,f iff (f —g)/p,_, € span(p,/p,_,:1>j).
By the Corollary to Lemma 1,

Pi

I3
pnfl

q forsome gem,_, ;.

Hence the n — j — 1 functions (p, /p,_,:i=j+L....,n—Dalllieinm,_; ,
(when considered as functions on X) and so, since they are linearly indepen-
dent, must form a basis for 7, _;_,. Moreover, h € 7,_, is actuallyin 7, _;_,
iff

[%iseeesXisnoj1)h=0  for i=1,... j+L [

Remark. Since, as we have just seen, (p; /P, _ 1);’;11 is a basis for 7,_;_,
for all j, it follows that p;/p,_, must be of exact degree n — j — 1, all i. This
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allows us to define q,_;_, as the monic polynomial of degree n — j—1 for
which

Pi X Cidn—j-1Pn-1 (1.2)

for some constant c;-

2. THE COMPLEMENTARY SEQUENCE

We call the sequence (g,)i ' of monic polynomials defined by (1.2)
complementary to (p,)3~'. As one can immediately verify, the g,’s are also
orthogonal, but with respect to a possibly different inner product; namely, the
one with the weight

* 2
w" = u)pn—l'

This makes it possible to state Proposition 1 in the following form.

ProposiTION 2. Let P;f (Q;f) be the w-weighted (w*-weighted) least
squares approximation to f from 7). Then

fsPf+ pn—lon—j~2(pi)‘ (2.1)

Proof. From (1.2) and the definition of w*, we have

f-rf
Prn-1

_ Z <fw>p1> p;
X i>j <piwa‘pi> pn—l

Z <(f/Pn—1)w*’Qn—i—1>

Gn—i
i>j Qi1 Qi) '

Qn—j—z(f/pn~1)‘ n

-1

>l

>|l
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The particular connection between the two sequences (p;)3™', (g,)a !
has been explored before, in [BG], where the following is shown.

Fact. Let J in (0.2) be the Jacobi matrix for (p,)§, i.e.,
(t=1)(1,..., j)=p,t), all §. (2.2)
Then X is the spectrum of ], and
(t=1)(j+1,....,n)=q,_,(¢), all j. (2.3)

Thus, our defining equation (1.2) for q,_;_; can also be thought of as a
determinant identity. In fact, starting with (2.2) and (2.3) as definitions and
using Laplace’s expansion by minors, one gets

Piu—i = biPi_1Gn_i—1=P, =P, (2.4)

which can already be found in [Hou, p. 48]. Indeed, more explicitly than
(1.2),

2
(bn—l'”bj+1) pj?qn—jflpn—l' (25)
In any case, it follows from the Fact that

re=pi_1gox=C—-1)1,...k=1Lk+1,...,n),

that is, r(t) is the (n — 1)st order principal minor of ¢ — ] obtained by
omitting the kth row and column. The results of [BG] are concerned with
reconstructing J from p, = P and r for k=1 or k = n. We prepare now to
consider this problem for k=2,...,n—1.

This requires a precise description of the possible zero set of such a minor.
We write

P=Pr-1> q°=q,_x

for short, and derive the necessary information directly from the defining
identity (1.2}, i.e., from

P = Cqp,_ 1, (2.6)

together with the facts that p€ 7, _,, g€ 7, _;, ¢+ 0.
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Since p,,_, does not vanish on X, (2.6) implies that
p(x;)=0 iff g(x,)=0. (2.7)
Now define Z,(a) to be the multiplicity with which a is a zero of r := pg, i.e.,
Z,(a)=min{j: r'P(a)+#0}.

Further, for any interval [a, b] define

Z[a.b) = ZADTZD) 5 g,

a<t<b

Then

Z.la,b]l=2Za,t)|+Z,[t,b] for a<t<b.

THEOREM 1. Ifr=p,_ 19, s then Z [x;,x,.,]1=1, alli.

Proof. We first prove that Z [x,,x,,,]> 1. Indeed, if 7(a)=0 for
a=x; or a=x,,, then also r'(a) = 0 by (2.7); hence Z (a) > 2 in this case.
Otherwise r(a)#0 for a=x;, and x,,,; hence »(x,)r(x,,,)<0, since
= cq®p, _,, and therefore Z (t)>1 for some x, <t <x,,,.

" This implies that

n——1< Z‘Zr[xi’xi+1] =Zr[x1>xn] <Zr(l‘) <n—1;

hence equality must hold throughout. a

The proof shows that, in fact, all the zeros of r lie in the open interval
(x,x,). The theorem implies that each interval [x,, x,, ] contains a zero of
r. If this is an interior zero, then it must be a simple zero and the only zero
there, of either p or g, and we call [x,, x,_ ] accordingly a p-interval or a
g-interval. Else, it is a boundary zero. But then it must be a zero of both p
and g, by (2.7); hence it is a double zero of r, and again r cannot vanish
elsewhere in [x;, x; ,]. In this case, we call [x,, x,, ,] a pg-interval. Since this
. zero cannot be x; or x,, it follows that pg-intervals come in pairs, with the
zero their common end point.
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This implies that p,_, = P, and q,,_, = Py, with the zero sets U and V
satisfying the following conditions:

U,VC(xy,x,), (2.8i)
#U=k-1, #V=n-k, (2.8ii)

and for each i,
#HUuV)Nn[x,x,,,]=1
and
UnVv)N[x, 2, 1=(0UV)n{x,x,.,} (2.8iii)
With this, we have established half of the following.

Tueorem 2. Given U and V, there exist weights w such that p, _, =P,
and q,_, = Py, iff U,V satisfy (2.8).

Proof. We show how to construct the requisite weight w from U and V.
Let p:= P, q = P,. Guided by Lemma 1, we define

-
x;), «x,&€U
w;={ pP’ ! J (2.9)
positive otherwise.

We claim that w; >0, all j, and prove this by induction on j. For j=n, we
have x, ¢ U UV by (2.8i), and both ¢ and p are monic with all zeros to the
left of x; hence

q
=(x.)>0,
(,)

while also P/(x,)> 0. Therefore w, > 0. Assuming now that w;, |, w; ,...,
are known to be positive, consider w;. If x i€ U, then w; > 0 by the
definition. Otherwise x JEU, and there are two cases:

If x i1 & U, then, from (2.8iii), (x P X +1) contains exactly one point from
U UV and none from U NV, hence q/p changes sign across (x j»%j41) and
does not vanish at x;,x;,,. Since P’ has the same property, we get

w;w;, > 0; hence w; > 0.
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If x;,, €U, then j+1<n by (2.8i) and x]HEV x;,2 €U by (2.8iii).
Hence both p and q change sign across (x;, x;,,), viz. at x; ), and so q/p
does not change sign across (%, x; o). Smce afso P'(x ;)P (x]+2) >0, we get
w;w;, 5> 0; hence w; > 0.

“ Since pw < q/ P’ by (2.9), it now follows from Lemma 1 that pw L m_,.
- Since p is also monic of degree k — 1, this proves that p is the (k— 1)st
monic orthogonal polynomial for the scalar product (-, - },,. Further,

qp,,—\w
c

_9_
PP x

for some constant ¢. Hence, by (1.2), g =g, _;. [ |

We have in hand all the information required to answer a related question.

Cororrary. For any U there exists a sequence {p;}§ of monic orthogo-
nal polynomials such that P, = p,_, and Py = p, iff

Uc(xy,x,) (2.101)

#U=k—1 (2.10ii)

#UN[x, %)<, Vi (2.10iii)
#X NU<n—k. (2.10iv)

Proof. Under these conditions,
YH#UN[x,x,,,] =k—1+#XNU;

hence there are exactly n —1—(k—14+#XNU)=n—k —#X NU intervals
[x,, ;] entirely free of U, and this number is nonnegative by (2.10iv). We
can therefore obtain a V such that U, V satisfy (2.8) by adjoining to X N U one
point from the interior of each U-free interval [x,, x,,,]. ]

Remark. We recognize in (2.10iii) the wellknown necessary condition

.(see, e.g. [S, Theorem 3.3.3]) that any two points of U be separated by a
point in X. Thus only (2.10iv) is not mentioned in standard texts.
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3. RECOVERY OF A JACOBI MATRIX FROM SPECTRAL
INFORMATION

Suppose now that we are given the spectrum A,,..., A, of a Jacobi matrix
J along with the spectrum py,..., &, _, of its n — 1 order principal submatrix
]\ r» and wish to reconstruct J from this information, by choosing an -
appropriate weighted discrete scalar product (-,-), and generating the
entries of J as the coefficients in the three-term recurrence relation for the
corresponding sequence (p;); of monic orthogonal polynomials. We set
X=(Ap..., A,), of course. Further, it must be possible to split p,,..., ¢,
into two sets U and V satisfying (2.8). Since we assume that 1 < k < n, this
can be done in many ways if it can be done at all. Assuming that pu, < -+ <
P, _ 1, one checks that it can be done at all provided there are no more than
min{k —1,n —k} doublets in the sequence u, and p; is the one and only
point of p in [x;,x,,,], all 4, with the convention that any doublet y;=d =
By is split into p;==d~ and p,;,,=d". Once we have split p,..., 11, ,
into suitable U and V, taking care that, from any doublet, one member gets
into U and the other into V, the Jacobi matrix is uniquely determined in case
there are no doublets in p. If there are m doublets, then there is an
m-parameter family of Jacobi matrices, parametrized by the corresponding
free choice of m of the weights. One can obtain all of these Jacobi matrices as
limits of Jacobi matrices corresponding to nearby strictly increasing p, as
certain neighboring p,’s, one from U and the other from V, coalesce.

Remark concerning computations. Use of the weights (2.9) produces the
entries of J from top to bottom. It follows that using instead the weight w*
given by

P (
x;), x;&U,
w;" — qP’ 7 7

positive otherwise

produces the entries of J from bottom to top. As in the case k = n discussed
in [BG], one would prefer to work with w in case k — 1 < n — k and with w*
otherwise, since this will more nearly balance numerator and denominator.

This work was done at the Forschungsinstitut fiir Mathematik of the
Eidgenossische Technische Hochschule Ziirich, whose hospitality the authors
greatly and gratefully enjoyed.
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