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, Abstract For a function £(z) analytic on Izl <p, p>1, we
consider two schemes of rational interpolants which have poles equally |
spaced on the circle |z| =0 , 0 > 1 . The first scheme interpolates 1
£(z) in the roots of unity, while the second consists of best
Lz-approximants to f(z) on the unit circle. We obtain precise
regions of equiconvergence for the two schemes of rational functions,

thus extending a well-~known result of J. L. Walsh.

l. Introduction

Let A, denote the class of functions £(z) which are analytic
: ' in the open disk [z| < p,but not on |z| < p . A fundamental result
2 o concerning the equiconvergence of certain segquences of polynomials is
the following theorem of J. L. Walsh [5, p. 153]:

Theorem 1.1. Suppose £ € Ap with p > 1 . For each positive
integexr n , let Ln_l(z) denote the Lagrange polynomial. interpolant

to f in the n th roots of unity, and denote by s _;(z) the (n-1)th
order Taylor polynomial of £ about the origin. Then .

A1) dim ) -5, @1 =0 LV 2] < 0

the convergence being uniform and geometric on any compact set in

lz] < p2 . Moreover,the result is sharp in the sense that for any
s 2 ] . . . .
point Z4 on Izl = p , there is a function 1n7 Ap for which

(1.1) does not hold at zg -
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!
s ) For f €A , p>1 , it is a simple consequence of the con-
k vergence properties of the two sequences {Ln-l‘z)}i and {sﬁ_l(z)}:
that (1.1) holds for |z| < p . The essential feature of Walsh's
theorem is that equiconvergence holds in the 1arger disk |z| < 02 .
| A discussion of various exten51ons of Theorem 1.1 and related results
1 can be found in [3] and [4]. N .
’ The purpose of the present paper is to describe generalizations
of Theorem 1.1 to the case of interpolating rational functions whose
e pdies are equally spaced on a given circle |z|] =0, ¢ >1 . 1In
1ally place of the Lagrange polynomial Ln_l(z) , we will take the unique
blates function n+m n(z) of the form
(z) :
n+m n
. (1.2) Rn+m,n(z) - _;Hijgﬁ—— ’ Bn+m,n(z) € Tnem *
ons, | v
; which interpolates £(z) in the (n+m+1) th roots of unity;
that is,
_ n_ _n . n+m+l_ . i
(1.3) Bn+m,n(z) = f(z) (z )y , 1if =z 1=0 .
(Here and below, Ty denotes the collection of all polynomiais of
stic degree at most k . ) Since the (n-1) th Taylor polynomial
sult sn_l(z) is also the least squares approximation to £(z) from
s is m _3 on the unit circle |z| = 1 , we shall replace this polynomial
by the unique rational function
(z) S
! _ n+m n . Ce
i (1.4) rn+m,n(z) - __Eij;ﬁ_— ' Pn+m,n(z) Ebﬂn+m ’ :
plant j
h-1)th which minimizes the integral
2 .
(1.5) |£(z) - r(z)||az]
Izl:l ‘ ) ) e
over all rationals of the form p(z)/(zn-on) , p(2) € ﬂﬁ%m' . .From
H another elegant theorem of Walsh [5, §9.1), for each integer m > -1,
ny : the rational fotm n(z) must interpolate £(z) in the (n+m+1)
I -— .
; roots of the equation m+1(z -0 =0 ; that is, for m > -1,
n n . m+l, n -n, _
(1.6) Pn+m,n(z) = f(z)(z -0o) , if 2z (z -0 7y =0 .

!
i In the spirit of Theorem 1.1, we shall examine the difference "'\

anada.
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B z) - P Z)
R (z) - r (z) = n+m,n( ) n+m,n( )
n+m,n ‘n+m,n 20 _oh !

for each fixed integer m and show that the phenomenon of equiconver-

gence persists. In fact, if p2 > 0

, a new phenomenon arises which
is described in Theorem 2.3 of §2.

Of special interest is the situation when m < -1 since, in this
case, the interpolation property of (1.6) no longer holds. As we
shall show in §4, the L -extremal rational function rn+m,n(z) =

Poim n(z)/(zn-—on) for m < -1 has the following simple characteri-
’

zation. If we write

n-1
_ k
(1.7) Ppo1a(®) = kz=:o By oz
where (as in (1.6)) P _,  (z) interpolates £(z) (z" -o®) in the
- ’
roots of z' -0 B = 0 , then for each m=-2,-3,... and n > -m ,
we have
n+m X
(1.8)  Poo(2) = D0 b2t
k=0
2. Equiconvergence of {Rn+m,n(z)} and {rn+m,n(z)} form > -1 .

The first two theorems concern the separate convergence properties

of the sequences {R

for fixed
n+m,n

(z)}2=1 and {rn+m,n(z)}z=l

m > -1 . We shall use the symbol [I-HA to denote the sup norm
taken over the set A .

Theorem 2.1. Let p>1 , o > 1 and an integer m > =1 Dbe fixed.
If f € Ap and if Rn+m n(z) is the rational function of the form
D R ’

(1.2) which interpolates f£f(z) in the (n+m+1l) th roots of unity,
then

(2.1) lim R

n-+ o

n+m,n(z) = f(z) , v |z] < min{o,p} .

More precisely, if T :=minf{o,p} and K C {z : |z| < 1} is compact,
then
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n

/m
(2. i - <z ) 1.
(2.2) li?»ifp I £(z) Rn+m,n(z)'& < 7 max{l ||zHK } o<1

Furthermore, if p > ¢ , then for all |[z]| > ¢

0 , for m= -1

(2.3) lim R (z) = m
n+e oimn z akzk , for m=0,1,... ,
k=0 :

N (-]
where f£f(z) = Z akzk .
k=0

Theorem 2.2. Let p >1 , o0 >1 and an integer m > -1 be fixed.

If £€ A, and rn+m,n(z) is the rational function of (1.4) of least

sguares approximation to f on the unit circle, then the conclusions

(2.1), (2.2) and (2.3) of Theorem 2.1 remain valid if Rn n(z) is
3 r

replaced by rn+m’n(z) .

+m

Remark 1. The proofs of Theorems 2.1 and 2.2 are immediate consequences
of the following Hermite formula representations for m > -1 :

1 (Zn+m+l_1) (tn__on) £(t)
(2.4) £(z) - Ry n(2) = — n_n,, n+mEl at .
. A 27i (z" -0) (¢t =1) (t - =)
I",
1 2L G TRy (P s o) £ (n)
(2.5) £(2) - rpennf®) = =7 n_ n, ,.n_ _-n, m+l at
' 27 (z"~0)(t7 -0 )t (t -2)
- — - r ] )
; where T is the circle |t| =f , 1l <p<p,and |z|] <p . 1In
writing (2.5) we have used the interpolation property of (1.6). From
5 (2.4) and (2.5),one can obtain integral formulae for Rn+m n(Z) and
; r

Toem n(z) , valid@ for all 2z € €, which imply (2.3).
’
It follows from Theorems 2.1 and 2.2 that if p < o , then

(2.6) lim (R (z) (z)}=0 , V |z] <p ,

-r
nse DiM,D n+m,n

and, if p > ¢ , then (2.6) holds V |z] # 0 . A better result is
given by
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Theorem 2.3. Let o > 1, ¢ > 1 and an integer m > -1 be fixed.
If £ € Ap + then the rational functions of (1.2) and (1.4) satisfy
\4 lz|<92 ¢ if °.>_.pz
(2.7) lim {Rn+m,n(2) - rn+m’n(z)} =0 )
if p" >0 .

ne , .V|Z|;éo,_

Moreover, the result is sharp.

Remark 2. The proof of Theorem 2.3 folléws from the representations
(2.4) and (2.5) which yield

(2.8) Rn+m,n(2) - "rn+m,n(z)=

iVt -2 zn__on tm+1(tn__0—n)(tm+n+l_l)

r

1 .sf(t)(tn__on> [tm+l(tn_0—n)_zm+l(Zn_o-n)_tm+lzm+l(tn_zn)o-n ] at

One can also use (2.8) to obtain degree of convergence results. That
' i6,~1
e’ ")

(2.7) is sharp can be easily seen by taking f£(z) = (z-p

Remark 3. Letﬁing o tend to infinity in Theorem 2.3 gives the
classical result of Theorem 1l.1. ‘

2

Remark 4. For the case p® > 0 , Theorem 2.3 asserts that equiconvér—
gence holds at all points of the plane not on the circle [z] = o .

This is a new phenomenon‘which does not arise in Walsh's Theorem 1.1

where o = « ., (See also [2].)

3. Extension of Theorem 2.3.

Our next goal is to extend Theorem 2.3 in the spirit of'Theorem 1
of [1]. The essence of the latter theorem is a representation of the
Lagrange polynomial Ln_l(z) kinﬁerpolating f(z) in the roots of.
zZ"-1=0 . Namely, it is shown that; for each fixed n ,

(3.1) Ln_l(z) = 2: sn;l(z;v) '
v=0

AL o B 1

o+ o

wil
r¢

wh
th

th
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where s __,(zjv) := aj~+vnzj is the shifted (n-1) th section

Ll
of the Taylor expansion 2: a, zX for £(z) . The representation

k=0 X

(3.1) has two important properties. First, since sn_l(z;O) = sn_l(z),
equation (3.1) relates to an asymptotic formula for the difference
Ln_l(z) - sn;l(z) occuring in Waish's Theorem 1.1. Second, it yields
a systematic way to construct the values of £ in the nth roots of

unity from the knowledge of the values of f and its derivatives at
n .

the origin; that is, if «" -~ 1 = 0 ,then from (3.1) ' we have
@ n-1 . 3
- j+vn) .
f((l)) = Z f (0) wj . +
v=0 j=0 (3 +vn)!
) : - ' o n_ n
In a like manner, for the rational Rn+m,n(z) = Bn+m,n(z)/(z - 07)
which interpolates f(z) in the roots of zm+n+1—1v= 0 , we seek a
representation '
(3.2).  R,.on(2) = :E: oam,n (V)
. v=0
where rn+m’n(z;0) rn+m'n(z) and, for each v = 0,17..., rn+m'n(z;v)

is a rational function of the form

P Z;V
r (z3v) = n+m,n( iv) P
’ - n !
n+m,n 2" - g

(z;v) € 7

(3.3) n+ﬁ

n+m,n

which is determined solely by the values of £ and its derivatives in

the roots of z% 1 (zP-6"") =0 . | -

For this purpose, it is convenient to have the following .

Lemma 3.1. For fixed integers m i -1, n>1, set N(v):=(v+1)(n+m+l)—1,_

v =0,1,... , and put

(3.4) a_ (2):i= 1-2z L B (2) =2 o™, o> 1 .

Let SN(V)(Z)> denote the unique polynomial in’ ﬂN(v) which interpo- ;
lates the function {an m(z)}v(zn--on)f(z) in the Hermite sense in

r N T
v+1

0 . If £(z) is analytic in

the N(v) +1 roots of {8, ,(z)}
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lz] <1 , then for each n sufficiently large,

] (z) i
(3.5) lim N o PooMr(n)
v+o {q (z)}
n,m

uniformly on |z| <1 . Furthermore,

: _ v
(3.6) SN (v) (z) - an’m(z)SN(v_l) (z) = {Bn,m(z)} Pn_,_m'n(z;v) .
where Pn+m,n(z7v) € Tham ,' ve=1,2,... .

Consequently, for lz] <1 ,

i m{z)
(3.7) 2" - o™ £(2) E ; X )f Pomon(ZiV)
z r

where Pn+m,n(z7o) = SN(O)(Z) .

Remark 5. Notice that since SN(O)(Z) interpolates (zn-cn)f(z) in
the zeros of Bn,m(Z) , then Pn+m’n(z;0) = Pn+m,n(z) which is
the numerator polynomial in (1.4), i.e.,

Prim,n(370)

(3.8) —n 1 — = Tntm,n
z -0

(z) .

Furthermore, since from (3.7), the polynomial Pn+m,n(z;v) € LI,

interpolates the function

(z)

(z) v[ n n e vil a,m
(z -0 )f z) - g——-_.__s P (z;k)]
n+m,n
m(z) k=0'% m(Z) ’
in the zeros of Bn'm(z) , we see that Pn+m{n(z;v) is determined

only from the values of f and finitely many of its derivatives at

these zeros.

Proof of Lemma 3.1. We first prove (3.6). Clearly, from the interpo-
lation properties of the polynomials SN(v)(z)’ we see that {Bn m(z)}v
R r

divides the polynomial SN(v)(Z)'—an,m(Z)SN(v-l)(z) . Hence

wl
St

fc

we
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_ v
SN(\)) (z) - o‘n,m(z)SN(\)-l) (z) = {Bn,m(z” 1’rri—m,n(z’\’) ’

where the degree of P oim n(z;\)) is at most N(v) ~(n+m+1)v = n+m .
14

In order to prove (3.5), we observe that for |z| <1 ,

SN(\)) (z)

E (z) := (2" - 6®) £ (2) =
v v .
{an'm(Z)} _

v+l v :
- 1 ;Bn,m(Z) ;an,m(t)i (£" - o™ £(t) at
r
2mi Bn,m(t) an,m(Z) t-z
[t]=b
where $ > 1 is selected so that f£(t) is analytic on |t]| < p .
Straightforward estimates then yield
1/v -n M+l ~n
lin sup B, (2)]] < nﬁfon )(£n+o o_n ) <1
V> lz]<1 pT(BT -0 (10T

for n > no(m,ﬁ,o) . This proves (3.5). Combining (3.5) and (3.6),
we get (3.7). O ‘ :

Corqllarz 3.2. let f €& Ap , P > 1,and Bn+m,ne Ttm * ™ > -1,

interpolate (zn-cn)f(z) in the (n+m+1) th roots of unity. Then,

for each n large (n > ng (m,p-,o)) , we have
(3.9) Bn+m,n(z) = Z Pn_,_m’n(z;\)) ’ Y ze€¢ ,
v=0

where the polynomials Pn’_'_m'n(z;\)) e Tosm 2ES defined in (3.6).
Proof. If w is an (n+m+1)th root of unity, then since
Bn'm(w) = an,m(w) , we deduce from (3.7) that

(wyv) .

n n
Bn+m,n(w) (z" -0 ) £(2) n4m, n

= P
Z=W v=0
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Thus, by the uniqueness of the interpolant, (3.9) follows. o ' ) k3‘
The next theorem gives a generalization of Theorem 2.3.
" Theorem 3.3. Let p>1 , o > 1 and an integer m > ~1 be fixed.
If f e Ap and if % is any given positive integer, then
‘ . -f",
; : Thu
» o+ 1 2+1 . :
-1 v lz] <o**l,if a0 S ze
(3.10)  lim {Rn+m,n(z) - rn+m,n(27v)} =
n-+ o ’ . 241 .
. V=0 Viz|to , if o7 " >0, 1 - 6o
' — n__n . . .
where n+m n(z) = Bn+m,n(z)/(z ¢) is defined in (1.2) and
. .= . n_ n = -
(3.11) rn+m,n(z,v) : Pn+m’n(z,v)/(z ag) v 0,1,...
The convergence in (3.10) is uniform and geometric on compact sub- A'?
sets of the regions described.. Moreover, the result is sharp. f{ 
— z!
Notice from (3.8) that,in the case 1==l,\Theorem 3.3 reduces to
. Theorem 2.3. : : ’ _ - ‘ R s - ’ ‘ (3;1
Proof of Theorem 3.3. For n sufficiently large; wé have by
v Corollary 3.2, _ ’
(3.12) B, (2 —z Plm,n(ZiV) = Z Pham,nZiV) oV z€C .
‘ ‘v=0 : . .v=L v ' e i
- - ftbz

Also, from the 1nterpolat1ng property of the polynomlal SN(V)(Z)
defined in Lemma 3.1, we have :

) , +
, £(t) (" - o™ {a, _(£)}V1{8_ (t)}"*l ROt I
_ 1 n,m ) a
SN(v)(z)_ vl t
2mi (t-—z){Bn m(t)-} : ’
N 7 +
T
where : |t] = , 1l<t<p , and %om By, o 2re given in
(3.4). Using this representatlon and equatlon (3 6), we obtain after

. ‘ This
some algebra the follow1ng integral representatlon for Pn+m’n(zwv) ’ ,'f

v>1 :
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(3.13) Pnﬂn’n(z;v) =
n_ _n, _ ' v,
_ j’f(t) (t" -0 ){an,m(z)ﬁn,m(t) an,m(t)Bn’m(Z)} %, m(t) at.
xed. o (E-z)a, (B, (t) Pr,m(t)
Thus, from (3.11), - (3.12)' and (3.13) we get, for ' n large and all '
zEC , : ’
‘ , 2-1
>0 - . .
’ (3.14) Rn+m,n(z) rn+m'n(z,v)
v=0
. n n L.
_ A jf(t) (t" -0 ){an,m(Z)Bn,m(t) _an,m(t)sn,m(z)} an,m(t)z at.
. m+n+1 n n : !
2mi d (t-2)(t - l)an"m(t) (z"-0") Bn,m(t) ‘ )
5 A straightforward analysis of (3.14) then yields (3.10).
- s To prove the sharpness assertion of Theorem 3.3, we take
£(z):= 1/(z - p) . From (3.14), we obtain in this case
t to .
es o -1 ,
(3'1$) Rn+m,n(z) - Z rn+m'h(z;\)) N
: v=_0 .
n__n ' . = ' R
~ (p =0 ){an'm(,Z)Bn'm(p) an'm(p)sn’m(Z)} ;an'm(p)g _
- m+n+1 n_.n !
c . (z-p)(p - Doy pe)(z7-07) an,'m(p)
N from which it is easy to show. that
) i -1 L . .
2+1 41 L 1 L+l
vim {Ro P - i} =L it o > M
n o o n-+m, n \)z=:0 n+m,n , ! ! 'p_pil,+l ' v ' ‘ - -
+ly : . oo » - o - L
at, . 1 o S . . o
o » ~ m+1 ' -
S ' 241 .
vim {R (2 2 (@)=t i o0t 2] > 0.
e U BHMMY & “nimen oMt (z-p)
ren in ' ’
after : K
) This completes the proof of Theorem 3.3. O
ARV ’ : . . .
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4. Equiconvergence of {Rn_u’n(z)} and {rn—u,n(Z)} for u > 2 .

This case differs slightly from the case in §2 and §3. However,
as we shall see, there is an essential continuity in the results which

come out. We shall begin by proving a lemma.

Lemma 4.1. Let p>1 , o >1 and an integer uw, 2 < u <n,be

fixed. Let Pn-u,n(z) denote the polynomial in "n-u for which
' o(z) |2
: (4.1) min lf(Z) - ——ﬂ—'—n' |dZ|
z2 -0
QE ﬂn—u lz|=1

is attained, where £f(z) & Ap . Then Pn—u n(z) is given by the
r

formula
(4.2) P (z) = _}_.s f(t)tu_l(f_n"“+1 - zn-u+l)(tn__dn) a
n=-y,n 2mi (t ~ z) (tn - o—n)
r
where T : [t =7, l<t<p .

Proof. The minimization problem (4.1) is equivalent to finding

(4.3) min j | £(z) - Z afy (z) ] }dzl ,
{aj} 35=0 i
lz|=1
where fj(z):==zj/(zn-0n) , 3 =0,1,...,n~-yu . It is easy to see
that the minimum in (4.3) is attained if and only if

. n-u .
(4.4) A j {£(z) - ¥ a,f.(2))E (@ ]dz| =0, (£=0,1,...,0-n).
- 373 2 _
2ti -
j=0 ,
lz]|=1
Since
g ks .
f02) = 5t = —Ip T Z ;o= TR
z' -0 no 2z - gu®

(2=0,1,...,n~-1)

it fol

From t

(4.5)

Moreov:
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it follows that

£,(2) = - 1 —2 ., lz}l =1 .

From this observation, we see that -

(4.5)  oio £, az] = 5o | £@F T $2

21 2ri
[z]=1 lz]=1
i n-1 -
= i w k2 f(z) dz
n—{ 211
no =0 z-w /O
. |z[=1
n-1 k
_ i =kl fw
= %7 ) £%) -
no
=0
n=-u v
Moreover, if we set Pn—u n(z) = bvz , we get
. . B -
v=0 -

1 Pn-u n(Z) —~(—y| I i nz—jl -k wk
s L £ (z)|dz| = —————— w P —_—
2mi R gD 2 o™ 2(0 n_on) = n~y,n\ o

lz]|=1
i n-u n-1 X ( %)
_ i -V v -
- nc‘n—R.(U—n_dn) Z bvo E w N
v=0 k=0

On using the properties of roots of unity, this yields

P (2) ' i
1 n-u,n 2 N
(4.6) T ——tr T (2) |dz| = —
211 zn_cyn 2 » on(o n _ cn)
|z|=1

(2=0,1,...,n-u) .

From (4.4), (4.5) and (4.6), we see that
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formula (4.7) for the coefficients of P
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1 (™0 _ o™ s f(;)tn“l‘j

(4.7) bj = 57 g at , 3=0,1,...,n-u ,
r
since
A-1-3 o3 nml o kg
Ao T =T Z 7 o L.k -
k=0

We now easily see from (4.7))that.

—n__cn j f(t)tu—l(tn—u+l _ zn—u+1)

(4.8) P (z) = = at .
n={n 2mi (t-2z) (" -o™
r
Since
o - =™ - Rt -,

the above integral splits up into two integrals, one of which is

dt = 0 .

1 j £(e) e hTHAL _ gnmEid,
2mi t-z

T

‘This vields (4.2) and completes the proof. p

n-l,n(z) interpolates

, from which it

Remark 6., As stated in (1.6), the polynomial P
£(z) (z%-6™ in the n. roots of Z - = ¢

follows- that -

1 j £() (7 - 2T (7 - o) o
2mi (t-2) (£" -0 -
r

(4.9) Ppoq,n(®) =

Thus, equation (4.2) also holds for u = l". Indeed, the derivation

-of (4.2) given above is valid in this case. Moreover, note that the

n~u,n(z) is 1nde?endent o?

¥ . Thus, if we write

(4.10) B, (2) =

2

n-1 .
b, _zJ '
J.n

j=0
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it follows that Pn— u’n(z) is just a partial sum of Pn-—l,n(z) r

n-u .
- 3 -
(4.11) B _ o (z) = > by 2’ 4+ W =2,3...m ,
j=0

as claimed in (1.8). A similar situation arises.in the case of dis-
crete least squares approximation in the nth roots of unity. Namely,
it is known (cf.[6,p.8]) that the polynomial Phy € ﬁﬁ_” PR >2

for which the minimum

n

. 2 : .
min Z IF(wk) - p(mk)] , w = eZm./n ,
k=1
pE'nn_u

.is attained is just a partial sum of the polynomial P,.1 € ﬁn-—l

which interpolates F(z) in the nth roots of unity. This known
characterization can be viewed as a limiting case of (4.11) where

o+ 1 and £(z) = F(z)/(z"-0¢") . '
We can now prove that Theorem 2.3 holds for all negative integers

m .

Theorem 4.2. Let o >1,0>1 and an integer u > 2 be fixed.

| | . . _ n_n
If £ € Ap , then the rational functions Rn-u,n(z) ~Bn_u'n(;)/(z o),
= n__n . .
rn-u,n(z) = Pn—u,n(z)/(z ¢) defined in (1.2) and (1.4)

(with m = -u) satisfy

- i 2 . 2
Vlz] <0, if o> 0p
(4.12) nlin; {Rn—u,n(Z) - rn—u,n(z” =0 ‘ .
T o Viz| #o0,if o7 >0 .
Moreover, the result is sharp.
Proof. From formula (4.2) and. the representation
@.13) B (=t [EwretoohEr o g,y
Doy, n 2mi (t-z) (£PHH Ly :

r

where T : |[t| =8, 1 <p <p, we find
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(4.14) B (2)

n-u,n - Pn-u,n(z)=

k)

1 j f(t)(tn-on)(tn'u+l - zn—u+l)(tu—1 _
2mi (£=2) (£7 - o™ (7HH L

at .

T
Equation (4.12) then follows by estimating the integral in (4.14).

To prove the sharpness assertion, take %(z) = 1/(z~-p) . Then

it is easy to verify from the interpolating properties that, for
n > 2(u~-1), we have ' '

n n__u-1 n-yp+l_ u-1_ n
(4.15) B _ _(2)=B_ _  (z;8) =T E 42 _ (e g .
Yy M, p-z p-2 1

Moreover, from (4.8), we find for u > 1,

n /s _ 0 n-u+l _ _n-p+l
(4.16) B _(z2)=PB__ (z:8) ="} °_n)<° z__. ) .
Y H, ot -0 p-2z

On subtracting (4.16) from (4.15), it can be shown that

. 2 2 2 200 1 ) 2
(4.17)  lim (R 0%E) - r 0%E) = 2, if o>,
n-+e p-p
X 2 2 2P TH 2
. (4.18) nlin;{Rn_u'n(z;f) - rn:u,n(Z;f)} = —E—:—p‘—,lf o=p ’ IZ[ >0,

which proves that (4.12) is sharp. D

Theorem 4.2 can be extended in a manner similar to the generaliza-
tion of Theorem 2.3, given in Theorem 3.3 by introducing the
corresponding polynomials Pn-u n(z;v) defined by

r

(4.19) Pn ,n(Z;v):=

at,

1 l‘f(t)tu_l(tn-on) (gRmul_n-utly u-1_-nyv
-u

-n, v+1

2%i (t-2z) (tP ="M

Jt]=1
v =_0,l,2,... .

The details are left for the reader.
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