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Abstract Some theoretical and computationél aspects of Faber-Padé
approximants are discussed. 1In pérticular, a Montessus type theorem
is proved and a new method for computing the approximants is presented.
Results of numerical tests for the latter are included. v

1. Introduction

The purpose of this paper is to further discuss the Faber-Padé
(FP) approximants introduced in [4]. 'In this section we review some
of their basic properties and, in Section 2, we prove a Montessus type
theorem. A new methoa for computing the FP approximants is presented
in Section 3. .

Let E be a closed bounded point set (not a single point) in the
z-plane whose complement K is simply connected on the sphere. By
the Riemann mapping thecorem, there exists a conformal map w = ¢(z)
of K onto |w| > 1 with the property that, in a neighborhood of

infinity,

(1.1) $(z) =

[e1E]
+
[
+

If F(w) is analytic on |w| <1 , then the Faber transform of .F

is defined by

- = L [F(ece)) o
(1.2) £f(z) = T(F) (z2) := 5511{_Ef75—_ d¢ , =z inside Q) ’
r
p
where §) = {g: [¢(&)] = p} and p(>1) is chosen so that F(w)

is analytic on |w| <p . When E is a Jordan region bounded by
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a rectifiable Jordan curve C , +then T(F) is further defined for
‘any F analytic in |w| < 1 and continuous on lwl < 1 by replacing
Tp by € in (1.2). (Further extensions are discussed in the paper
{1] by Anderson in this volume.)

Denoting by ¥ the inverse of the mapping ¢ , it is straight-
forward to prove that the Faber transform has the following "singularity

preserving property."

Lemma 1.1. Let F be analytic on the closed disk |w| < 1 , and
let £ =T(F) . Then F(w) - £(¢(w)) can be extended analytically
to |w| > 1, including the point at infinity.

As a consequence of the above property we have

Proposition 1.2. Let R(w) be a type (m,n) rational function with

all its poles in |w| > 1 . Then «r(z) := T(R){z) is a type (m,n)
rational function, where m := max(m,n-1) , and the poles of 1r(z)

are the images under ¢ of those of R{(w) , with corresponding

multiplicities.

Proof. It follows from (1.2) and Lemma 1.1 that r is meromorphic in
the extended plane and hence is rational. The second part of the
proposition is also an easy consequence of Lemma l.1. (Different proofs

of this result are given in [1] and [5].) g

We observe also that ¢n(z) 2= T(wn)(z), n=20,1,..., is a poly-

nomial of degree n , the so-~called Faber polynomial. If

F(w) = :E: akwk ,
k=0

then T(F) has the expansion ) §

£(z) = T(F) (2) = ) a0, (2)
k=0

Indeed, this property is often taken as the definition of the Faber
transform. In practice, of course, we will be given the function f

rather than F , but provided the mapping function ¢ is known the
coefficients a, can easily be computed from the former (see [31). i
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Observe that if R(w) 1is a normal type (m,n) Padé approximant
to F(w) , and has all its poles in |w| > 1 , then r = T(R)

satisfies
(1.3) £(z) - r(z) = _5_ b, ¢y (2)
k=m+n+1
for suitable coefficients bk . This (with an obvious modification

if R 1is not normal) is the Faber-Padé approximant of £(z) as
introduced in [4]. (see also [5}). 1In the special case when E is the

real interval [-1,1] , the FP approximant reduces to the Chebyshev- |

Padé approximant. For arbitrary point sets E , the FP approximant
has two apparent drawbacks. First, it need not be of the "correct"

type if m < n-1 ; second, the associated rational R(w) is required
to have no poles in the unit disk. Although, as is well-known, the
first difficulty can be overcome in the special case of Chebyshev-Padé
approximation, there appears to be no simple technique to extend this

to the general setting. The second problem is, for the case of mero-
morphic functions F , addressed in the next section.

2. A Montessus Theorem

The following theorem guarantees the existence of the Faber-Padé
under certain conditions and also shows that it behaves in the expected
manner. The proof is a straightforward application of the singularity
preserving property (Lemma 1.1) and it is possible to generalize other
properties of the classical Padé approximants in a similar manner.

With E and ¢ as described in the introduction, we have

Theorem 2.1. Let f be analytic on E and meromorphic with precisely
n poles (counting multiplicities) in the Jordan region Ep bounded
by the level curve |[¢(2)] =p , p > 1 . Then for each m suffi-
ciently large, the type (m,n) Faber—PaQé approximant S exists

, el T
satisfying (1.3) on E . . The- Ton have precisely n finite poles,
-~ Lo — - r

and as m > « , these poles approach, respectively, the n poles of

£ in Ep . Moreover, the sequence r.on Sonverges uniformly to £
- r
on every compact subset of Ep which excludes the poles of £ .

Proof. F = T—l(f) exists since £ 1s analytic on the closed set E

and hence has a Faber series expansion that converges in an open set
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containing E . In view of Lemma 1.1, the function F 1is analytic
on |w| < 1 and meromorphic with n poles in |w| < p (these are the
images of the poles of £ under the map w = $(z) ). ‘From the classi-
cal Montessus theorem (see e.g. [2, p. 2461), it follows that there
exists a sequence R PoMm > My of type (m,n) Padé approximants

m,n
to F with the following properties:

(A) For each m > mg s

F(w) - R (w) = O(wm+n+l) as w>0 ;

(B) For each m > m4y R on has precisely n finite poles'which
17

approach the n poles of F in |w] < o ({with corresponding

multiplicities);
(C) lim R (W) = F(w) uniformly on every compact subset of Jwi < p
m-> 4

which contains no poles of F .

From property (B), we see that for each m large, R, , is
!
analytic on |w| < 1 and hence its Faber transform exists. With

r := T(R
m,n m

)
,n

we note from Proposition 1.2 that r is a type (m,n) rational for
’
each m large. In view of property (A) we have

oo

(2.0 £@) - ) = D B e . zEE
k=m+n+1 '

and, since the poles of Tmon are the images under ¢ of the poles of

’
, the assertion of the theorem regarding the poles of Tnon
r

Rm,n
follows immediately.

To prove convergence, cbserve that from (1.2) we have

F(6(E) - R ,(6(E))
; 1 ,
(2.2) f(z) - rm'n(z) = "2—1?5: j‘ E pa— ’
T ;
for z inside T : l¢(g)| =0 , where o(>1) is suitably chosen. d

Equation (2.2) is valid for z on any'compact set K C Ep\\{n poles
of f} provided m is sufficiently large and R} is replaced by
the curve TI_ : ¢(g)] =1 , with p-7 >0 sufficiently small,
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- together with small circles around the poles of £ . Since, from
property (C), the sequence Ry n(¢(E)) converges uniformly to

?
F(¢(£)) on these curves, the convergence of ro n(z) to £(z) on K

follows. O

3. Computing the Faber Transform of a Rational Function

A crucial stage in computing Faber-Padé or Faber-CF approximants !
is the computation of the transform of a rational function R analytic
on the unit disk. In [4] this was carried out by computing the poles
of R and applying Proposition 1.2 in an obvious fashion. We describe
here an alternative and much faster method based on the integral repre-
sentation (1.2) of the transform. In so doing, we suppose that E is
bounded by a rectifiable Jordan curve C and that the origin lies

interior to C . Then, for any f = T(F) , Wwe have i

(k) j j
£7%700) _ -1 1 FOE) 4eg,
Kt 4 2 zk+l £~z )

|z]=6 c
where ¢ > 0 is sufficiently small. By interchanging the order of
integration and computing the integral with respect to 2z we obtain

(x)
£® o) _ 1 (e
(3.1) —kl——*mj*gk—u—di

C

If F 1is entire, we may replace the curve C by a circle and evaluate
as many of the integrals as we require éimultaneously by the trapezium
rule and the fast Fourier transform. However, this is not in general
possible for the case required here where F = R 1is a type (m,n)
rational function. Instead, we make the substitution w = ¢(&) in

(3.1) and obtain, for r = T(R) ’

(k) '
r (0) _ 1 Rw)y' (w) -
(3.2) — =37 J s A k=0,1,... .

k! [y (w)1]

lwl=o
In (3.2), the constant p > 1 is chosen sufficiently small to ensure
that the circle |w| = p does not enclose any poles of R . Note
that in practice this may be easily checked by evaluating (to the

nearest integer) the inteqral
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where Q is the denominator of R , since this integral gives the
number of zeros of Q inside the circle.

To calculate the transform of a type (m,n) rational function
R (with m > n-1) we first evaluated the integrals (3.2) for
k=20,1,...,m+n+1 wusing the 512 point trapezium rule on a VAX 11
using double precision (about 16 decimal digits). These m+n+ 2
values uniquely determine the type (m,n) rational r = T(R) = p/q ,
and - p,q can befcompuﬁed from the Padé equations. Some of our
numerical results are given below. Although these refer only to real
poles (the correct position of the.pole is easier to calculate in this
case), the method has also been used successfully with conjugate pairs

of poles.

Example 1: yY(w) = w+1/4w (an ellipse).
Since this curve is analytic we may choose p = 1 here.

i) R is type (2,2) with a pole at 1.1. The corresponding pole
of the transformed raticnal r was calculated to be
1.327272727272730 which is correct to 16 figures.

ii) R is type (4,5), near degenerate, with a pole at 2.0 and
a zero at 2.01. The corresponding pole of the transformed “
rational r was calculated to be 2.124999998829719 which

is correct to 10 figures.

iii) R 1is type (4,4), degenerate with a pole and zero at 2.0.
The spurious pole and zero of the transformed rational «r
agreed to 15 figures, but they were inside the ellipse.
This suggests that it would be advisable to check for:

L
degeneracy before making use of these approximants. W
!

iv) R is type (2,2), with a double pole at 2. THe poles of the
transformed rational r were only calculated correct to
eight figures, but this turned out to be due to the ill-
conditioning inherent in the determination of multiple zeros

of a polynomial; examination of the coefficients of the
rational function revealed them to be correct to 16 figures,

;
i

Thus this is another reason for preferring this method of

i
\
|
i
#
i

calculating the approximants over that given in [4].
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Example 2. ¢(w) = J}l-&w-4)l/2 dw (a square) .

*

In this example we chose p = 1.1 and evaluated Y (w) on the
circle |w| = p by expanding as a series which was then summed
using the fast Fourier transform. For an example where R has
poles at 2 and 5, the poles of the transformed rational r agreed
with the true values as accurately as the latter could be computed,

which was to about eight figures.

The above examples therefore indicate that the method described
here is an effective way to evaluate the Faber transform of a rational
function when computing Faber-Padé and Faber-CF approximants.
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