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Abstract A convergence theorem for yectof valued Padé épproximahts

(simultaneous Padé approximants) is established. The theorem ig a

natural extension of the theorem of de Montessus de Ballore for a row
sequence of (scalar) ‘Padé approximants. The result is also
generallsed to the case of Vector valued (N-point) rational inter-

polants.

_ _ 1. Introducfion

‘ The theorem of R. de Montessus de Ballore {7} is a‘remarkably
elegant theorem on the convergence of row sequences of Padé approxi-_
mants to a meromorphic function. Here, in section 2, we present its

exten31on to. the case of simultaneous Padé approximation (see Theorem

1) and to vector valued Padé approximation (see Theorem 2). The
generallsatlons of de Montessus' theorem to multipoint rational inter- =
polation, as distinct from padé approx1matlon derived by Saff [8}

and Warner [9] are extended to the case of vector valued rational

interpolation in Theorem 3.

Simultaneous Padé approximation:involves approximation of several

functions {f (z), i=1,2, ,d} by rationals of the form {PN i(z)/QN(z),
- 1 1,2, d} where the denomlnator polynomial QNQZ) is common to each
_of the d ratlonal approximants. A full specification of the problem

of _constructing such polynomials was given by Mahler (6] in 1968. He;

also considered the extension to the case- of 1nterpolat1ng ratlona1s,
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and such problems were called ”Gefﬁan Polynomial Aﬁproximation i
problems', because-& Gothic font was originally used for_printing the. .
polynomiale. Tor the simultaneous Padé apnvoxlmwtlon problem, an
explicit solution 4n terms oiﬂdetermlnants was given by de Bruin [11,
and the explicit solution for the corresponding vector valued rational
interpolation problem was given by Graves-— Morris [41.
- The first extension of de Montess gus' theorem to olmultaneous Padé
- approximation was given by Mall [6]1 in 1934. His results are a
special caee of the theorems of this paper, as we point out in remark o
3 of section 2. Gon&ar and Rahmanov [3] have recently presented a o ,

powerful convergence theorem for 1mu1taneous Padé aporoxlmants of

Stieltjes functions. It is an exten51on of the work of Chebyshev and
Markov on the convergence of an. [N-1/N] Sequence oi padé approx1mante
to a Stieltjes function in the cut plane ¢ = C-(-«,01. 1In the theorem
“of Gonoar:and Rahmanov, ?he stieltjes functions are~generated by S —
Tmeasures supported on mutually disjoint intervals of the real axis. (1t
should be noﬁed that there is d small but significant difference in

the use of the parameters p; in the equivalent definition of a

gimultaneous Padé Approx1mant used by Gonlar and Rahmanov and our own ‘ -

usage (see (2. 6).) ) i )
- The more elegani proof of de Montessus' theorem uses complex

variable methods [8] Nevertheless, the original proof using Hadamard

determlnants is also 1nstruct1ve This is also true for our extension

of de Montessus' theorem to vector valued rational interpolants.— For

ceﬁcisenese,’we present the proofs using complex variable methode only;y
—knowing thatoresults stuch as (2:8) pbelow may be proved, and the detail -

of Definition 1 motivated by determlnantal representationsv

2. Extensions of de Montessus' Theorem

As stated in the introduction the vector valued Padé approxima-
tionAproblem is concerned with elmultaneous rational approximation of
d functions, f (z), £ (z),.. L (z), thh are analytic at the origin.
The degrees of the polynomla]e 1nvolv ed in-_forming the approximants
are speoif:ed by non- negative integers N and 01’02"“ P We use the
symbol sfn(x)} to denote the degree of a polynomlal m(x). By ingpect-

ion of the determlnants which occur in the construction of these

approximants from the power series coefficients of fl’fZ""’fd{ (see
Mall (6], de Bruin [1] or Graves- Morris [4]), we see€ that fl(z)j fz(z)z
,fd(z) must, in some sense,—be quite different from each other for N
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the set of rational appyoximants to be unique. In the context of de

Montessus type theorems, the concept is made‘precise by the following.

- Definition 1 Det each of the functions fl(z);fz(z),.i.,fd(z) be
meromorphic in the disc DR:sz: izl < R} and let non-negative integers
pl,pz,...,pd be-given for which

d
(2.1) Y op; >0
LM
- i=1

Then the functions fi(z) are said to be polewise independent, with

respect to the numbers p,, in DR if there do not exdst polynomials

m,(z),™ (z),...,nd(z), at least one of which is now=null, satisfying
(2.2a) B{Wi(z}} < pi-l, if o - v B -
(2.2b) ni(z) =0 , it 0y = 0 -

and such that : T

) . ‘ |
(2.3) o(z) == 'Zlﬂi(Z) fi(z),_ - ) .
: o i=

is analytic throughout D . -

Remark 1 Under the assumptlons of Definition 1, each fi must have
poles of total multlpllelty at least Py in D, On the other hand a
particular fi may be analytic throughout D§3 in which case, nécessarily,
2y =0. The power series coefficients of such an f do not appear in the
standard determinantal representatlon of the denom]nator polynomial. )
The theorem of de Montessus de Ballore [7] app]les to the cabe
where the degree of the denominator precisely matches the number of
poles (countlng multiplicity) of the given function in some disc U
This is generalised to the case of simultaneous Padé approxlmatjon in

the following main result. -

Theorem 1 Suppose that each of the d functions fl(z),fz(z),...,fd(z)
is analytic in the disc'D = {z |7| < R}, except for possible poles
at the M (not necessarily dlstlnct) points Zq s Bgs e Zy in D which are

dlfferent from the origin. (If 2y is repeated exactly p tlmes, then

each T (z) is permitted to have a pole of order at most p at Zk‘)" &92,

1,p2,.;.,pd be non- negatlve Lntegers such that .
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(2.4) M P

it
I~ L

i

and such that the functions fi(z) are polewise independent in-Dp with

respect to the p.'s in the sehse of Definition 1. Then, for each

integer N sufficiently large, there exist polynomials QN(Z), -

d .
{PN,i(Z)}i=1 with

(2.5) 3{Qy(z)} = M, : -

(2.6) B{PN’i(z)} £ N-p.,» ‘1=1lz,. ,d o, _ _
such that , | B ) j —

2.7 £5(2) . By 1 (2)/0y(2) = 0N hy, i=1,2,.00 0

The denominator polyhomials (suitably normalised) satisffL

, M 5 -
(2.8) lim QN(Z) = Q(z) := TN (z-z.), Yz ¢ €
Nooo i=1 J “ - . -
J - ,
: - M L ) ) - , ' -
Let DR: = ?R - Uj=1{Zj}' Then, for 1il,2,...,d, ) .
(2.9) §i2 Py i (2/Qy(2) = £5(2), V2 eDp,

- the convergence being uniform on compact subsets of D&. More precisely,

__if K is any compact subset of the plane, - - )

Mo
(2.10) lim sup IIQN—QU*i/N < % max {|z;]) <1, E
- 00 . jA: ]_ J

and if E‘is.any compact subset of Di ,

C(2.11) Limosup [[£5-Py /Qyll Nz R <1

N~

for i=1,2,...,d. )
In (2.10) and (2.11), the norm is taken to be the sup norm over

_the indicated set.

Remafk 2 By the assumptions of Theorem 1, each fi(z) has poles iﬁ,DR-
of "total multiplicity at most M. Furthermore, if’zk is repeated
exactly p times, then at least one fi(z) has a pole of order p at z,.
The latter assertion is a consequence of the assumption of polewise

independence, as is revealed in the following preliminary lemma.
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Lemma 1 With the assumptions of Theorem 1, write the 1ist ZsZose s

A

M

in the form {ck}zzl, where the z,'s are distinct dand each ¢y is_of
multiplicity my, So that -

. M v mk v
(2.12) Q(z) = il (z—zj) = M (z-5y ) 7, ) m = M.
j=1 k=1 k=1
Then for eaéh k=1,2, ,v and each s=1,2,...,mk; there exists é
function By < (2) of the form - ' -
- d ~ ) N ’
(2.13) B () = I omile) £, o

i=1 - _ .

- whéere the ﬂl'S satisfy (2.2), which is analytic in DR’ excepgrfor a

pole of order s at the point Gyt -
Naturally, the polynomlals T - (z) in (2 13) w111 in general,

depend on k and s.

Proof Consider the linear prbblem of fin&ing‘d ponnomials ni(z)j

satisfying (2.2), such that for each i=1,2,...,v, J#k,s

- [ a - - : —
(2.14) f (z-c )% T w2 £, (2)|dz = 0, £=0,1,...,m -1,
RIE I CE - j
and - _ -
- B - d7 ' N )
{2.15) - J (e | L w2 |dz = 0, 20,1, me-l,
]Z—ck|= £ ii=1 * 1 o#s-1, ’
- S —_1 N .

where € (>O) is sufficiently small. The sysfém (2.14) and (2.15) has
M unknowns (the coefficients of the L 's) and consists of M-1 homo-
geneous equatlons. Hence it has -a non-trivial solution. For such a

solﬁtion, the funcfion defined by

(2.16) " Fy ¢

d , ,
(z) := 121 ﬂi(Z)fi(Z)

is either analytic throughout DR or is analytic in Pn eXcépt for a pole -

of precise order s at the point g, . The former possibility is excluded
by the hypothesis of polewise independence. Thus Fk (z) is the

desired function. 0
Hav1ng established the prellmlnary lemma, wWe NOW glve the

Proof of Theorem 1 It is well known [6 5,1,41 that, for each integer
N (2M), polynomials qN(z) and {pN l(z)} exist which satisfy . -
a{qN(z)}<M a{pN . (2)}sN-p, for i=1, 2, d, and h




" and hence, from (2.22), (z Qk)pN (z) is the unique polynomial of
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N+1
)

>

(2'17) ;q'N(Z){l*(Z) - ?N,.l(z) -= 0f(z
with qN(Z)¢0T We normalise qN(z) by setting |

—_ = J v ) - 7
(2+18a) ay(2) jZO by,i% L o- -

M
(2.18b) - — 1 by 4o=1, N=M,M+1,...>
j=o. 7 -

and then the qN(Z) areﬁuniformly bounded on each compact subset of the

plane._ _
We flrst show that, for k=1,2,-+5Y>

(2.19) Lin sup \qﬁ”(zk)\”N Clogl/R . B0 LMt -
where ’ ) i

T - ;- - .
(2.20) 'qlg”(z) i= adz} ay(®) - o —

To establlsh -(2.19), fix k ‘and consider Fk l(z) of the lemma which

is analytic in D except for a simple pole at GLy- Write

- - gk 1(2) - oL N I
(2.*21) A_Fk,l(z) = ————’-———‘—‘Z Qk s - - -

where gk 1(2) is analytxc in D and g, 1(ck)#0 By using the poly-
nomlals T (z) defined by (2. 13) when s= 1, we deduce from (2.17) that

2.12) o Tl By 1 () = 00" Ny

Y

. . ) a :
_(2'23) : PN,l(Z) B 'Elﬂi(Z) PN 1(2) . -
_ . i= ?

From (2.2) and the fact that 3{py i(z)}sN—pi, it follows that
i . , _ :

(2.24) a(f:N 1 (20} < N-1,

degree at most N which interpolates qN(Z)gk ](z) to order N-
(1nc1u51ve1y) at the origim. Thus, since qN(z)gk 1(z) is analytic.in

- Dgs we use Hermite's formula to show that
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L. 1 Nl aqu(tg (1)
(.2-25) CIN(Z) gk,llz) —ﬁ (Z‘Ck)pN’l(Z) = m f tN+1 t—z’ dt > A
- h o & -
-for all |z|<R', where |§k|<R'<R»—and CR,:’ltI = R'._ On taking z =1,

in (2.25), we obtain by straightiorward estimation ol the integral

and—then by letting R'-R ,

. . 1/N ’
lim s (z.) (¢ < |z, |/R .
N up IqN k gk,l k) | | kl

As 8y l(gk)#o, this implies that

. 1N : o :
(2.26) llg%soup |ay (5, ) | N lg, I/R - B

- Proceeding by induct;on,'we take 7s,§ my and assume that =

(2.27) - 111;11 sup lql\(,j)(ﬁkﬂ

g

/R, §=0,1,c..,s-2_,

1/N

and we must show that (2.27) holds for j=s-1. Utilizing the function

Fk S(z) of the lemma, we obtain as above, 5

(2.28)  ay(@F (@) - By @ = 0C"D
- where a{EN Skk)} & N-1. Express

& ,S(Z)
(2.29) Fy S(Z]‘ = —,;S
-k g -

—— where gy (2z) is analytic in Dy and gy (£, )70, By (2.28), the polyno-
. ’ - . T 7 ~ s-1 -

mial (z—gk)pN,S(z) 1nterp91ate§ qNQz)gk’S(g)/(z—ck) 7 to_order N _

g inclusively at the origin. For any given compact set K, where KCZDR,

we may choose R'(<R) and €(>0), so that, for all z €K ,

) ) 8y S(Z) . - -
(2.30) Qulz) == - (25 dpy g(2) = Iy(z) - I(2) s
- (Z"Qk) ’
@here
) i - N+l qgu(t)g, (B
1- VA N k,s
{2.31) I.(z) := —«—J L. - dt ,
N 772"1 o N (g ) ) 7 -
i N+l q,(t)g (t) .

(2.32) T Jy(e) = e J Z N ks at.

N (g5 (e-2)
!t"Ck‘=E _‘
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The result (2130) is established using the Hermite formula and the

residue theorem. To estimate J (z) for_zeK, express’

M qfl\(,”(ck) o = o

ag(ty = b X (- y?
HN J j:o J! ) k
Then B
, B ) (J) ) )
(2.33) a2 =1 e [ i ZN+1 ( ksglf j’( ' ae.
J=0 |t_€k|=€ t "%-(_t'ck) i (,t—Z)

By straightforward estimation of the;integréi in (2.33) and using the

inductive hypothesis (2.27), we .obtain

R ) Tzl ol dzlg -
(Z.34) ~ lim lim sup HJ (z)”l/N < S S K
¢+ Nowo Izl R R
Similarly, _ ' _
(2.35)2- lim- lim sup “INiz)Hl/N Izl /R . . -

R"+R_ N—*00

Hence, from (2.30), (2. 34) and (2. 35), we find that fdr_compactrKCng,'

(2.36) 11;3 sup inN(Z)gl\ S(;) -~ (z- ck) pN S(ZQlll/N Fzl /R - -

But since the function ' )

. B e o
z) = Z - (z) - (z- z

2(2) := ayl )gk S(2) - 2%y g0 s B )

which appears in the le ft-hand 51de of (2.36) is analytic throughout

DR’ then (2.36) also holds for any KCZD By using Cauchy's contour—

integral formula for -t the function (d/dz)S 1¢(z), and (2.30), we find

that -

(2.37) tlim sup[[j%}s_l[éN(z)gkis(z)] Wl/N

N+

, 2=hy 4 R_
Using leibniz's formula for diﬁferentiéting the product (2.37), andAFhe
inductive hypothesis (2.27), we get o )

(2.38) lim sup ng S(Ck) q(s l)(Ck)|l/N SW|Ck|/R
N oo

Y
|
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As gy s(gk)%o, it follows from (2.38) that (2.27) hpolds also(for
j=s—l: which completes the induction. This proves the elaim (2.19).

Next, consider a basis of polynomials

B =—{Bk;s(z), k=1;2,...,v,—s=O,1,LL.,mk—1}

such that both
(2.39) "B{Bk S(z)} < M-1 for all k,s
H

. —and the polynomials interpolate at the points T according to

v ; _
(2.40) [[a‘—}] Bk’s(z):I = 6ypebygs  lsiev, Ogjem-l .
, -, Y

Then we can write (see (2.12), (2.18a) and (2.395)
- m, ~1° . -
V k (S)'
Tl ay ) B ((2) + by Q(z)
k=1 s=0 - S ’

(2.41) "~ qy(2)
By {2.18b);-we have |bN M| < 1. More importantly, however,
, -

H2.42) lim inf |b | >.0 ;
, Nowo - Py, - =

indeed, if this were not the case, (2.19) shows that some subsE&quence _

of indices {Ni} exists for which

- im dy (z) = 0, — for all zeC ,
_ {00 i e - v _

‘contradiéting (%ﬁls)‘ Thus, for N sufficiently large, we define-
(2'43) QN(Z) = qN(Z)(bN,hi

»(2;44) pN,i(Z) :;'pN,i(z)/bN’M, iiE’2’~-',d ,

and_the assertions (2.5)-(2.8) all follow.- Assertion (2.10) follows

from {2.19) and (2.41). - ~
?inally, to establish (2.11), (and hence (2.9)), let E be a
compact subset of Di, Then, for zef and i=1,2,...,d, : '

. - Y
(2.45) Q) E5 () = By yl2) = Ly (@) = LIy g (e
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where - _ ~
N+l Q(t) £, (t) N
. _ 1 Z1 N i _
,(Z‘Aé) IN,‘i(Z) = 70T VJC N1 dt ., .
R t t-z
. N Q) (t)
- 1 z N 1
(2.47) Ju - L (2) 1= oo f : t, k=1,2,...,v.
N,i,k 2l vlt'Ck|=€ N1 -z ‘ s L s

Since the inequalities (2.19) also hold for the polynomials QN(t), the
integrals of (2.46) and (2.47) can be estimated in the same manner as

used in the inductive portion of the proof. This gives

Vi sup [ay(2)f;(2) - By IEN < Jal /R, 512,000,

The inequalities (2.11) now follow from (2.8). 0 -

Carollary 1 (Uniqueness);__Undér the assumptidns of Theorem 1, there

exist, for each sufficienti& large integer N, a unique set of

0t d . -
ziglona}s,{RN,i(z)}i=l of the form —

RN,i(z) = ﬁN,i(z)/QNgz) -

§uch'}hat .-

a{QN(z)} <M, BEPN i(z)} < N-p7

and .

C(2aa8) - f(2) - Ry () =0

),  i=1,2,...,d . .

Proof Assume, to the contrary, that, for some.subsequence ¥ of

integers N, another set of rationals {ﬁN i(Z)}g=1 exists of the form
- >

Ry j(2) = By (/G0

a{T0(2)} s M, 3{By ;(2)} < N-p; , -

(2.49) £.(z) - ﬁN'i(z) = o(zN+l) ,o i=1;2,...5d ,
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but_such that R (Z)%R J(z) for some j. Then, necessérily, QN(Z) is
not a constant multlple of QV(Z) The-proof of Théorem-1 shows that,
for Ne# and N suff1c1ently large, both QN(Z) and QV(Z) must be of -
precise degree M, and so, without loss of generality, we assume that
both are monic and of gegree M. _From (2.48) and (2.49), we have

(Qytz) - GN(Z)}fi(z) —-{PN,i(Z) _ IN)N,i(Z)} - O(zNﬂ) ’

for i=1,2,...,d. The proof of Theorem 1 now implies that

- (2.50) ﬁim cyly(2) - Qy(z)} = Q2)

for NeWN, zeC and a suitable choice of norméliiing constants—=Cy. But
" Q(z) is of degree M, whereas the polynomlals {QN(Z) QN(Z)} are of
degree M-1 at most, making (2.50) absurd. 0 -

_ Remark 3 Consider the special case of Theorem 1, in which each fi(z)
has poles of total multiplicity pre01sely equal to oy in Dp- Further,
_ assume that the pole sets of each fi (within Dp) are mutually disjoint
sets. -Then it is clear that the f 's are polewise 1ndependent with
- " respect to the s 's, and so the conclu51ons of Theorem 1 and its
" corollary are valld In_this special cade, if we further assume that
all thé poles involved are s1mple, then Theorem 1 ylelds the result
(Theorem VIII) in the dissertation of Mall [6]. - -

__Theorem 2 (for<Directea Vector Padé Approximants) Let each of the
- d functlonS'f (Z), £, (2) 5 e s d(‘) be analytic in the disc Op except
for possible poles in the M (not necessarily distinct). points %l’ 29
.y in D, which are different from the origin. Given % ‘constant d- -
e R M 2 T cor £ by
dimensional vectors w' -’ ,W yre oW , define a column vector £ by

g £ = (fl(z),f%(z),...,fd(i))T S
B and set —
S asy Fj(2) - §T.E(5), 521,200 50, I )
wh;re T denotes transpose. Iet ki ky.o k -be p051t1ve integers £or
which. 2%_1 kj = M and. such that the functlons F (z) are polewise™

- independent with respect to the k.'s in DR fhen for each N large -
enough, there exist polynomlals QN(Z), {PN 1(2)}1 1{ for which
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(2.52)  alQy(2)} = M, 3lPy .(2)} < N, i=1,2,...,d, (

(2.53)  f£.(2) - Py (2)/Qu(2) = 0Ny, 512,00, _

—(2.54) . a{gg.E(J)} s'N—kj,‘—’ i=1,2,...,2,
where B; 1= (PN 1(z) PN 2(2),.. N d(z)) Furthermore, the‘conclu—

sions (2.8)-(2. 11) of Theorem 1 hold

" Remark 4 The assumption of polewise independence implies that the

e @ ,®

vectors E(l),y are linearly independent, and consequently

©ofsd.

Proof _In the case that 2<d, the definitions'neédrto be extende&fby
taking i

(2.55)  k; :=.0, j=£+1,g+2,...,d . y —

By suitably defining vectors w(£ 1) (£+2) ...,y(d) such that

_( ) (2) .T.,w(d) are linearly 1ndependept, we define a non-singular

matrlx W whose columns are the vectors E(J), i.e.

Wy - wid i,=1,2,...,d . °-

In this way, we may extend (2.51) so that it becomes

, e T .
(2.56)  Fj(2) = 121 witl £ = (£, 3e1,2,..0,0

Furthermofg {FJ(Z)} _i remain polewise independent in DR with respect-
by (2-2b) and (2. 55) * We now _infer from‘Theorem 1 that
polynomlals QN(Z) and {P ) (Z)} exist for which

(2.57) 3{Qu(z2)} = M ) -

N-k, i=1,2,...,d ,

IA

(2.58) a{ﬁN’i(})}

(2.59)  F;(z) - Py ;1 (2)/04(2) = 0N i=1,2,...,d ,

and the correspondlng equivalents of (2 8)- (2 11) hold too.
From (2.56), we have
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! d
. = T = 2Ty 1 = —1
R L P

and so we are led to define

ji Py j(2),  di=1,2,...,d

d

Py i(a) = ] w
With this definition (2.52) and (2.53) follow immediately;_(z 54)
follows from (2.58), and the other equivalent properties of Theorem 1-
follow similarly by linearity. 0.

Theorems 1 and 2 can immediately be-— ektended to include more
general cases of Lagrange and Hermite rational 1nterpolat10n These
extensions are _analogues of the. theorem of Saff [8] for equillbrium
3dlstr1but10ns of the 1nterpolat1ng points and its generallsation by
Warner [9] for the case of regular 1nterpolation schemes. Padé -
approximation problems are-associated with osculatory interpolation at
the origin, and we next consider the generalisation of Theorems 1 -and
2 to Lagrange and Hermite interpolation on points which belong to a
compact set S . - B

For each positive integer N, we consider an_interpOIatiﬂg point
set

Sy i= By 5s i=0,1,...,N : By ;€S) _
) . H -

N

-where the BN .'s need not necessarily be distinct, so that partially
confiuent cases of Hermite interpolation are included. —~Following
Warner [9], we assume that the p01nts {{BN 1}§ O}§ 1 have an associated ~

sequence of elementary measures My which 1§~regular in the sense that
My 7K This ensures that the logarithmic potentials

wzouy) e <[ Toglenlan ey, ne1z,
have the property that

lim u(z,uN) =u(z,u), V zeC\S , o

N -

where

u(z,p) := —f log|z-¢|du(c) o ‘ .
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The convergence theorems are_based on a nested set of regions Dy,

defined for each A > 0 by C —

! . —u(z.n)W v s B -
D)\:{Z e LAy ¢ < X} .

~ With these preliminaries and the obvious extension of Definition 1

to the region D, , we state
Theorem 3. Let each of the functions f (z), fz(z),... (z) be
analytic on S and also in the 1arger reglon Dp» except for UOSSJble
poles at the points Zl’ IR M_1n Dp- Define
- ) v - . ) ~
_ DR :=,DR bad ._L_J:{Zi}’_ i -

i=1 -~ - - : -
and let F by any compact- subset of D Given d non-negative integers
P1rPgser 1Py atlsleng M Zi 1 Py assume that the-f, (z) are polewise
independent with -respect to the oy 's in Dy Then, foE each N large
enough, there exist polynomials QV(Z), {PN l(z)} 10 with —

B{QN(Z)} = M, a{PN,i(Z)} g N-p3, i=1,2,...,4d, -

such that P (z)/QN(Z) 1nterpolates as

B PN,l(*Z)/QN(Z) = fl(Z)‘_ A4 Z€SN > i=l,2,~:..,d, N . -

in the Hermite sense. The denominator polzhoﬁials obey

M i

lim- QN(Z) = Qfz) := NI ~(z-z.), V zeC.
R - R 1 _
N=o0 i=1 _
Furthermore, B
1im PN’i(z)/QN(z) = £,(2), v z:Pi , i=1,2,...,d, -

N>

the convergence being uniform on £, which is an arbitrary compact

subset of D _ -
Doflne r to be the smallest number for which it is true that

M
U 4z, ¢ Dy vV r'>r ,
i=1"

and define grto be the smallest number for which it is true that-
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E c D ¥V o'>o . -

Then the rates of convergence-of the interpolaﬁ{s”afe given by -

1/N

¥ S T/R, -

Lin sup |Qy-Cl

N-

where X is any compact subset of €, and 7 .

lim sup |£;(2) - pN’i(z)/QN(z)uE{/N < O/R, i=1,2,...,d

N

TA uniqueness assetrtion and the generalisation to directed vector

valued rational interpolants atso hold for Theorem 3. -

Egmark 5 Accordinggio the hypotheses of the theorem, each fi(z) is

analytic in Dﬁ. A possible configuration-is shown in Fig.l.

Fig. 1 The poles {z;}, the point sequence {BN’i}(:S,vand the
boundaries of the domains DO”Dr and DR are shown schematically.
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postscript After this paper and the paper [w] by Hans Wallin had been -
presented at the Conference, we SaW that we had adopted

quite similar approaches to estimation of~the rate of convergence of

the denominator polynomials and relqted,quantities, .
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