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INCOMPLETE AND ORTHOGONAL POLYNOMIALS
E. B. Saff

The purpose of this survey is to reveal interrelation-
ships among certain results on incomplete polynomials, the
-convergence of "ray seguences" of Pade approximants and the
behavior of polynomials orthogonal on the whole real line
R . No attempt is made to be comprehensive in the discussion
of these topics. But we shall highlight some recent theorems
and emphasize techniques which form the common threads. We
begin by posing three questions which have received separate

attention in the literature.

1. Three Related (?) Problems.

(I) Incomplete Polynomials. In 1976, G. G. Lorentz [13]

presented some basic results and raised several interesting

questions concerning approximation by polynomials of the form

n
X
(1.1) P(x)=k2=:sakx , s>0 ,

which he calls incomplete polynomials. A survey of this topic

appears in [14]. For our purposes, we shall measure "incom-

pPleteness" in.the following relative sense.
DEFINITION 1.l1. The polynomial P(x) of (1.1) is said to be

incomplete of type 6 (0 < 8 < 1) if s/n > 8 . The collec-

tion of all incomplete polynomials of type © is denoted by

Ie .

For example, if Th denotes the collection of all poly-
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nomials of degree at most m , then

I {xmqm(X) tq € ", m> 1 arbitrary}

1/2 * m

For each 6 , the collection Ie contains polynomials of
arbitrarily large degree and, while Ie is not a linear
space, it is closed under ordinary multiplication of polyno-

mials.

Now, for each P& I8 (0 < 8 < 1) with P # 0 , consider

the sup norm ||P]] of P on the interval {0,1] , and
fo,1]

let

(1.2) £(p) :=min{g € [0,1] : |p(&)| = ||P]| }

(o.1]

\

Since P(0) = 0 and since P # 0 , then 0 < &(P) <1 . A
basic question one can ask is this: how close can E(P) be

L
to zero (as a function of 6 ) , that is

Problem I. Find inf{g(P) :P € Ig, P #£ 0 }.

The solution to Problem I, which is related to the works
of Lorentz [13], v. Golitschek [57] and Saff and varga [22],

[24], is described in §2.

(II1) Padé Approximants. The subject of Padé approximants

is a classical branch of the theories of continued fractions
and rational interpolation that has significant applications
to the analysis of numerical methods and to the study of

critical point phenomena (cf. [19], [1],[2]). To define
these approximants (relative to the point z = 0) , consider

a formal power series
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(1.3) fz) = Z .akzk .
k=0 °

For each fixed pair of nonnegative integers (m,n) , we
determine Pm,n € "y and Qm,n S with Qm,n Z 0 such

that

«©

. ) X
(1.4) om,n(z)f(z) .— Pm,n(Z) = kZ=;n+n+1 )2

Notice that (1.4) represents m+n+1 homogeneous linear

equations in m+n+ 2 unknowns (the coefficients of -
’

Q. n) . Hence (1.4) has nontrivial solutions (necessarily
with Qm,n # 0 ). Although the polynomials Pm,n ~and Qm,n

satisfying (1.4) are not unique, the ratio Pm,n/Qm,n (in

lowest terms) does, however, yield a unique rational function.

DEFINITION 1.2. The padé approximant (PA) of type (m,n)

for the power series (1.3) is the rational function

[(m/n] (z) :=P (z)/Q (z}

m,n m,n

where P S LI and Qm’n(f 0) € T satisfy (1.4).

The PAs for (1.3) are typicélly displayed in a doubly

infinite array known as the Padé table:

rE/o] (1/0] (270 . . .
[o/1] (/1] [2/1] . . .
[0/2] (1/2] [272] . . .
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Here the first row of the table consists of the [m/0] -
approximants which are simply the polynomial sections of £

The convergence question for PAs can be stated as

follows. Given the power series (1.3), what can be said
about the convergence of sequences extracted from its Padé
table such as rows, columns, diagonals, etc.?

In its full generality, the issue of convergence is a
difficult matter. Indeed, there are "nice" functions £f(z)
for which the spurious poles of the PAs misbehave and
destroy convergence (cf. [20]). There are, however, conver-
gence theorems which apply to special classes of functions

£(z) . One such class consists of the Stieltjes functions

1

(1.5) fz) = [ 8L
0

where p is a finite positive measure with supp(dp) = [0,1].

-1/2 are easily seen

For example, z_llog(l +z) and (1 +2z)
to be of the form (1.5). From a classical result of Markoff
[15], it is known that the diagonal sequences of PAs
(n+3/n](z) , J > -1 fixed, n=1,2,..., of (1.5) (which .
have all their poles on the interval (-, -1)) converge
to £(z) in the slit plane € - (-«, -1] .

Our concern is with the behavior of "ray sequences" from

the Padé table of Stieltjes functions, that is, sequences of

the form [mi/nij(z) , where

(1.6) rni-+ni + and mi/ni + A(>1)
We pose
Problem II. Describe the regions of uniform convergence (in

the complex plane) for sequences Dmi/ni](z) of Pas of
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the Stieltjes function (1.5), where the pairs (mi,ni) satis~
£y (1.6).

Problem II was investigated in the dissertation of
H. Stahl [26] and more recently by P. R. Graves-Morris [7].

These works are discussed in §3.

(11I) - Orthogonal Polynomials. .In comparison to the theory

of polynomials orthogonal on a finite interval, the behavior
of polynomials orthogonal on the whole line R 1is less well
understood. To be specific, for o > 0 fixed, consider the

exponential weight function

(1.7) w(x) = exp (-|x|%)
and let
(1.8) pnm;m =YX +...Enn (Yn—YDM)>0), n=0,1,...,

" denote the polynomials which are normal and orthogonal on R

with respect to wi , that is

@™

(1.9) fwi(x)pj(u;x)pk(a;x)dx = 8y -

- o

For these polynomials we pose

Problem III. Determine the asymptotic behavior of the leading

coefficients Yn and the limiting distribution of the zeros

of the polynomials (pn(a:x)}n=1 .
In the special case @« = 2 , the pn(u;x)v are the clas-

sical Hermite polynomials and the answers to Problem III are
well-known (cf. [27]). For arbitrary o > 0 , G. Freud

conjectured [ 3] that
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(1.10) lim n~

n+w

/¢ Yn-1 - 1/1 1/
Yn 2 )‘Ct !

where

(1.11) A I (o)
o]

-2 o, 4 2
2 {F(f)}
He verified that (1.10) holds for o = 2,4,6
Based on the work of Nevai and Dehesa [18], Ullman
[28], [29] has shown how the truth of Freud's conjecture leads

to the "asymptotic contracted zero distribution” for the

pn(a;x) . Bpecifically, he proved that, assuming the truth

of this conjecture, we have for every f €& C[~l,1] R

n 1
X
(1.12) lim L > f(—‘;—ﬂ) = /f(x)v(x)dx ,
n+en k=1 n [%
-1
where
(1.13) Xy TXpon S Xy, S e X o Xy = X,
are the zeros of pn(a;x) and
1
" a-1

(1.14) vix) = vie;x) = 2 X gy .

Although Freud's conjecture is, at this writing, still
unresolved, the recent work of Mhaskar and Saff [16] provides
answers to Problem III., This investigation is discussed in

54,
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2. Results on Incomplete Polynomials

In describing the solution to Problem I of §1 we shall
not take the most direct route. Rather, we shall do some
sightseeing for the purpose of highlighting certain fundamen-
tal theorems concerning incomplete polynomials. We begin with
Lorentz's original result [13] on "enforced convergence to

zero."

THEOREM 2.1. With the notation of Definition 1.1, let

6 (0 <8 < 1) be fixed. 1If {Pn} is a seguence of polyno-

mials in I such that deg P_ » = and [[P_|| <M Vn,
—_— [Z} e n — n [O,lj
then
. 2
{2.1) lim P (x) =0 VxE€ (0,6

n -+ o

To see how this theorem is related to Problem I, let

P(#0) € 1, and consider a point £ € [0,1] for which

(P(g)] = “PH[O,I:]

Now define the seguence

2 n
(2.2) q_(x) := __fiﬁil__

" el

fo,1]

geg q = and |lg -1 ¥n

Then {qn} C Ie ,

I
" fo.1]
Since {qn} satisfies the hypotheses of Theorem 2.1, we have
9,{x}) ~ 0 in [0,62) . But an(€)] =1 Vn , and hence

€ > 52 . This proves
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COROLLARY 2.2. If P €I, , then [[P]| = [[p|]
= O (PN [0%,1]

Moreover,

2

(2.3) inf {g(P) :P E I, , P # 0} > 8" ,
where E£(P) 1is defined in (1.2).
In general, li-HK denotes the sup norm over the set K .

To obtain an upper estimaté for the left~hand side of
(2.3) we appeal to the "Weierstrass approximation property"
of incémplete polynomials of type 8 . The following result
was obtained independently by Saff and Varga [24] and’

v. Golitschek [5] .

THEOREM 2.3. Let F €c[0,1] with F @I, . Then F is the

uniform limit on [0,1] of Ie~polynomials (6 fixed) if

and only if F(x) =0 for 0 <x<8° .

If, in Theorem 2.3, we let F be the "spike function"

of Figure 2.1, where 0 < g < 1- 62 , then it follows

y = F (x)

Figure 2.1

from Theorem 2.3 that there are incomplete polynomials of type
8 which attain their maximum absolute value on [0,1] at
points arbitrarily close to 62 . Combining this fact with

(2.3) of Corollary 2.2 we arrive at the solution to Problem I.
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THEOREM 2.4. For each 0 < 6 < 1 ,
(2.4) inf{g(pP) : P € I, P2 0} = e2 .

Remark. If gq(2 0) is a lacunary polynomial of the form

k
v,
i .
(2.5) g(x) = 2;% bix (0 < Vg € V1 < e < vy integers) ,

then, since g €I ‘ , iﬁequality (2.3)'imp1ies
) v/ Vx

2
(2.6) £(qQ) > (vy/vy) (Vi > vy + k)
However, a much stronger result holds which we now describe.

DEFINITION 2.5. The polynomial gq({x) of (2.5) is said to be

a lacunary incomplete polynomial of type 6 (0 < 8 < 1) if

vo/(v0-+k) > 8. The collection of all such polynomials is

denoted by LIe

Since IgC LIy, the following result of Saff and Varga

[25] provides an extension of Theorem 2.4.

THECREM 2.6. For each 0 < 68 < 1 .

(2.7) inflE(q) :q € LI, , q#0) = 82 .

The proof of this theorem is a straightforward conse-

quence of Theorem 2.4 and the following lemma which appears

in [25].

LEMMA 2.7. Suppose the weight function w(x) € c[0,1]

satisfies w{(0) = 0 and w({x) > 0 for x € (O,lj . For

esach k > 1, let
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*

k-1
| ek -
(2.8) S opp(x) = B (wix) = x f\;o eix

be the unigque extremal polynomial for the Chebyshev problem

k-1
(2.9) inf{|jw(x) (xk— Z cix.l)ll 2 (Cgre-eiCy ) € R¥) p
i=0 [0,1]
and set
* * *
(2.10) £y :=min{x e (0,1] : Iw(x)Pk(x)l = ”"’Pk” }
[0,1]

If p(x) is any real lacunary polynomial of the form

k "
(2.11) plx) = 2 bx * o,
i=0
then
[lwpll
[0,1] -
(2.12) lp0)| & —s——" [P )] VO <x <€y
llwe, |
[o,1]
Consequently, if £ € (0,1] satisfies [w(E)p(£)] =||lwpll ,

[0, 1]

where p 2 0 1is of the form (2.11), then

. *
(2.13) £ < €

To deduce Theorem 2.6, suppose the polynomial gq of

v
(2.5) is real and belongs to LI9 . With w(x) = x 0

in Lemma 2.7, inegualities (2.13) and (2.3) imply
* Vo \? 2
£(q) > E’k 2 <m) > 8
Thus E(q) > 62 for all real q €& LIe and hence, by symmetry,

for arbitrary gq € LIg . Theorem 2.6 now follows from
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Theorem 2.4 and the fact that Ie C LIé .

Since the heart of the solution to Problem I is Theorem
2.1, we now describe an extension of this result which will
also be useful in our discussion of Problem II. It is
natural to suspect, in Theorem 2.1, that the convergence to
zero in (2.1) takes place in some region of the complex plane
cohtaining the interval [0,92)'. This is true, and can be
described as follows. For fixed 6 (0 < 6 < 1) , let
w = ¢{z) map the exterior of the interval [Bz,l] in the
z—pléne conformally onto the exterior of the unit circle
|w] = 1 so that ¢(») = « . The inverse of this mapping is

simply a modified Joukowski transformation, namely

- 2 -1
® l(w) - 1-;0 + Wwtw

2

: 2
(l-}e ) , ]Wl > 1

(2.14) z

Next, set

6
(L-8)¢(2) + (1+8) 2

o) | |5 eys =8| - 2€¢-[e7.1],

i

(2.15) G(z;8):
1, zE[ez,l] .

Then G(z;8) , so defined, is continuous on € and
G{0;6) = 0 . Let A(B) denote the level curve

)
(2.16) . A(8) :={z € C : G(z;8) =1} ,

and A°(e) denote its interior:

(2.17) , £%(8) :={z€ T : G(z;0) < 1}
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As illustrated in Figure 2.2, the interval [0,82) is

k//”"~“ A({)

Figure 2.2

[e]

contained in A~ (8) and A(B)‘ has the'shape of a tennis
racket with handle the segment [92,1] . The importance of

this curve is revealed in

THEOREM 2.8. For any fixed 8 (0 < 8 < 1) , let {Pn} be a

sequence of polynomials in Ig such that dn := deg Pn -+

and
I nl/d“
(2.18) lim sup [|P <1 .
n + @ n [0,1] [N
Then
(2.19) lim P (z) =0 Vz€ £°(8)

n-+ o

More precisely, if 'K C A°(8) is closed, then

1/4
(2.20) lim sup|anH n < max G(z;8) < 1

n+e K zZEK

Furthermore, AO(G) i1s the largest open set for which (2.19),

in general, holds.

The first portion of Theorem 2.8 was proved, using dif-
ferent techniques, by Kemperman and Lorentz [9] and Saff and
Varga [22]. In the former work, the maximum principle is used

to show that if p(x) = xsqk(x) ¢ 9 € Ty 4, 5>0, n:=s+k,
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then

(2.21) lp(z)] < |ipll [G(z;s/m)]" , YVzecc ,

I

from which (2.20) of Theorem 2.8 easily follows. ' On the other
hand, the results of [22], which include the sharpness asser-
tion of Theorem 2.8, are derived from a study of the\asymptotic
behavior of certain Jacobi polynomials pn(“'sn)(x) ’ wheré .
Bn/n -+ écnsﬁ. An analysis of these polynomials also leads to
the solution of the following electrostatics problem which,

in turn, gives a physical interpretation of the Lorentz

tennis racket A(8) .

Suppose that on the interval [0,1] , a fixed charge of

amount 6 (0 < 6 < 1) 1is placed at x = 0 , and a continuous

charge of amount 1-6 is placed on [0,1] allowing it to

reach eqguilibrium, the onlzﬁconsﬁraint being that the charges

remain confined to the interval [0,1] . For the logarithmic

potential and its corresponding force field, the problem is to

describe the distribution of the continuous charge.

As shown by Saff, Ullman and Varga [21] and also by
Stahl [26] (cf; §3), the continuous charge of amount 1-6

lies entirely in the interval [Sz,l] and has point density
h)

(2.22) avgx) = = /2% ax

Moreover, the tennis racket A(8) is a level curve of the

Potential

1
(2.23) Polz) := 0 log |z| +-/~log]z-x]dve(x) ;
g2
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: 1+8 1-96
(2.24) A(B)={z€E C : Pe(z) - lc‘g[(l+e) él—e) ]‘

The constant
+ -
(2.25) se) =+t ia-etT %,
which appears in (2.24), is the capacity (transfinite diameter)

of the compact set

(2.26) A(8) :=A(B) U A°(8) = {z € € : G(z;8) < 1}

It plays the same role in the theory of approximation by
incomplete polynomials of type 8 on the segment [0,1] as it
does in the theory of ordinary (unconstrained) polynomial
approximation on the set H#(8) . To be more precise, for each

pair (s,k) of nonnegative integers, consider the Chebyshev
T
extremal problem

: s,k
(2.27) E_ ,:=inf{|[x7(x" - q _y (x))]| . 2 q €1} a =0,

ok [0, 1]

*
and let Q

0 = x5 (X - qp_{(x)) tist
s,k x) = x (x =4y satisfy

(2.28) By = HQs,kH[O 1]

* *
The constrained Chebyshev polynomials Ts,k :-—Qslk/ES,k were

studied in [23] where the next two theorems are established.

THEOREM 2.9. Let (si’ki) be a sequence of nonnegative

integer pairs such that

(2.?9) n, := s + ki + o and si/ni + 8 (0 < 8 < 1)

Then, with the notation of (2.25) and (2.27),
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l/ni
(2.30) lim @s.,k'] = 5(8) .
1 1

i+

THEOREM 2.10. Let the pairs (si,ki) satisfy (2.29) and

let {pi} be a sequence of polynomials of the form

. ‘ Siki
(2.31) . p.(x) = x n x-x. .) ,
1 s 1,3
. j=1
where the points x, 5 1 <3< ki s i=1,2,..., all lie
’ = |

in some fixed finite interval [a,b] containing [62,1] . If

1/n,

. i ' : _
(2.32) 1§T+ifp HpiH[O, < b(8) (n; :=s; + k),
then
l/ni
(2.33) 1lim |p, (2)] = 4(8)G(z;8) , Vz€ ¢ - [a,b] ,

j + @

the convergence being uniform on any compact subset of

¢ - [a,p]) .

In. [23, Prop. 9] , the last theorem is established for
sequences of extremal polynomials Q;i’ki (cf. (2.28)}):
however, a similar argument utilizing inequality (2.21) gives
the more general statement-%f Theorem 2.10.

It is important to note that Theorems 2.9 and 2.10 yield

the sharpness assertion of Theorem 2.8. Indeed, let

* *
P =T =0 /E (n, :=s, + k.) ,
n; s.,ki si,ki si’ki i i i
where s./n. e‘. Then {P, .} C I , P =1 Vi
i i ‘ni 8 ” nl”[O,l]
and all the nontrivial zeros of P, 1lie on [BZ,I] Hence,

1
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from (2.30) and (2.33), we have

(2.34)  1lim |pn.(z)11/ni = G(z;8) > 1 Vz€Ea- K(8) ,
ire i
which shows that the Pni actually diverge exterior to A(8)
We conclude our discussion of incomplete polynomials by
referencing some related Qorks. For polynémiais in z having
a zero on the unit circle, anaiogs of Ehe theorems on incom-

plete polynomials were obtained by Lachance, Saff and Varga

[12]. They study extremal problems of the form

}

en

. k
inf (|| (z-1)%z" -q, _, (2))l k-1

1 oq
lz|<1 K71

Results for real polynomials vanishing at both endpoints of an
interval are derived by these same authors in [11]. More
recently, v. Golitschek and Lorentz [6] and Lachance and
saff [10] investigated extensions of the theory to polynomials
having a proportion of zeros lying on an interval rather than
concentrated at a single point. For example, in [6] appears

the following elegant result.

THEOREM 2.11. Let {Tn} be a sequence of trigonometric poly-

nomials of respective degrees < n which converges uniformly

on the unit circle U to the function £ . If Nn is the

n

number of zeros of T on U, then

N
(2.35) m{t: £(t) = 0} > 2 lim sup —
- n -+ w n
where m denotes the Lebesgue measure on U. The constant

2 in (2.35) is best possible.
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A sample of the results in [10] is

THEOREM 2.12. Let 8 (0 < 8 < 1) be fixed and let ~r(8)

denote the unigue point where the level curve A(8) intersects

the negative real axis (cf. Figure 2.2). 1If PLE T, has (at

least) On zeros in the interval [0,a] , where

r(8)

(2.36) 0 <a < x(9) ;= 17(6)
then
(2.37) e 1l =ip_ll

: n fo,1] nle?,1]

More precisely, if 128 £ 0,

(2.38) ]pn(x)l<”pn”[0 , ¥V-r(8) +a(l+r(8)) <x<o .

1]

The result is best possible in the sense that if

a > A(8) , then (2.37), in general, does not hold.

3. Ray Sequences of Padé Approximants

for Stieltjes Functions

In [7], P. R. Graves-Morris investigated the convergence
of certain ray sequences of PAs for Stieltjes functions of
the form

1
da(t)
(3.1) £(z) =fl+zt » zZEC - (-=,-1]
0
where the distribution function a:[0,1] =R is nondecreasing

and has infinitely many points of increase. His main result is

stated as
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'THEOREM 3.1. Let f(z) be a function of the form (3.1) and

let (mi,ni) be a sequence of nonnegative integer pairs

satisfying

(3.2) m, + n, » « and mi/ni + 2(>1) as i1+ e

Then, the sequence [m,/n;](z) of PAs to f(z) converges

to f(z) inside the pierced heart-shaped domain HX (see

Figure 3.1) defined by

(3.3) Hy={zec: 2 Tz -z 2] < [eT-a M eter) 2] T D2

’

where

s _2+1+2+/0 -3z +1)2% + 4z +1)
Az

Figure 3.1

In the limiting case when X = +® , the region HA
reduces to the unit disk J|z| < 1 which is the familiar
region of convergence for the sections of the power series of
£ , i.e. the PAs [m/0](z) . As A = 1%, H, tends to the
slit plane € - (- m,—l] which, as mentioned in §1, is the

region of convergence for the diagonal approximants

[n*-J/n](z) , J2> -1 fixed , n=1,2,...
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In his proof of Theorém 3.1, Graves-Morris studies the
.asymptotic behavior of the Jacobi polynomials Pn(o’Yn)(z)
(Y > 0 fixed) , a subject already mentioned in our discussion
of incomplete polynomiéls (cf. t22]). Thus it is not sur-
prising that there is a connection between the regions HA
and A°(e) . In fact, we shall see that, via a simple trans-

formation, "the heart of Graves-Morris is the tennis racket

of Lorentz." This is made precise in

THEOREM 3.2. Let f£f(z) be a Stieltjes function of the form

(3.1), where supp(da) = [0,1] and

(3.4) — 1 logere tlfo,1) .
Yx (1 - x}

For each 6 (0 < 8 < 1) , let
* — *
(3.5) H(8) :={ze¢C : -1/z € ¢ - A(B)} , € := cuU{=} ,

(3.6) H®(e) :={z€C : -1/z € A°(8)} ,

where AO(S) and A (@) are defined, respectively, in (2.17)

and (2.26) (see Figure 3.2). 1If (mi,ni) is a sequence of

nonnegative integer pairs satisfying (3.2), then

A-1
(3.7) [mi/ni](z)—v—f(z) ., Yz€E H()\+l> ’

, efr-1 e 2,4 42
(3.8) [m;/n;](z)~= V z€EH <Hl> - (me, O+ 00-1F)

The convergence in (3.7) is uniform and geometric on every

compact set in H((A -1)/()X +1))
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Figufe 3.2 '

To sketch the proof of Theorem 3.2, we first observe

that from the equations (1.4), the Padé denominator Q (z)

m,n
for a power series
fl{z) = Z akzk
k=0

can be represented as the determinant (cf. [17])

®m-n+1 m-n+2  ° 0 Zmtl
(3.9) Qm,n(z) = const. a. . . . P
m m+1 T m+n
2" 7L . 1

where a, := 0 if k < O This is reminiscent of the repre-

sentation (cf. [27]) for polynomials

Pn which are orthogonal
with respect to a distribution

du(t) on [0,1] :

€y ¢y . <,
(3.10) pn(z) = const. . . ,
“n-1 n €2n-1
1 z 2"
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where the .ci are the moments

1
(3.11) c; :=/ thau(t) .
: 0
If
1 ® 1
(3.12)  f(2) =/ dolt) - ). (ft"da(t)) (-2)%
k=0 - . .
0 0

then, on replacing z by -1/z in (3.9) and multiplying by
2" , we obtain for m = n-1 a determinant which is identi-~

. n L]
cal to (3.10). Hence the polynomials {z Qn_l,n(—l/z)}n=l

. are orthogonal with respect to da(t) on [0,1] . By
shifting the subscript, it likewise follows that

{ann n(—l/z)}:=O are orthogonal with respect to tda(t) and,

in general, {ZnQn+J n(—l/z)}::0 are orthogonal with
respect to tJ+ldu(t) on [O,l] . For each J = -1,0,1,...,
n=1,2.., we can therefore write
(3.13) z%0 (-1/z) = p (z)

. n+J,n n,J+1 !
where P, g+1 denotes the polynomial of degree n which is

9 qa(t) on [0,17 .

normal and orthogonal with respect to
We remark that since all the zeros of pn,J+l(z) lie on
{(0,1) , then, from (3.13), all the poles of the PA

[h + 3/n)(2z) for (3.12) lie on (-« ,~1) for J > -1,

n= 1,2,... .

Next, we appeal to the error formula (cf.[2,Part IT, p.129))

1
(3.14) %gé%% - [w/n](z) =

0 1
2 J+1
(=gymFntl [ P g4 (B2 Tdalt)
p)

n 1
{(-2z) pn,J+l(~ E” 0 1+¢tz
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where J:=m-n > ~1 . For simplicity, suppose m = An-1
with A > 1 . (We assume here and below that, whenever
necessary, parameters are integer-valued.) Because of the

normalization
1
(3.15) /pi s aa) =1,

. 0
the behavior of the error (3.14) is determined by the

behavior of the expression

(_Z)m+n+l (—z)(A +1l)n
(3.16) n 1772 ° n 1 2
{(~2) pn,J+1(—E)} {(-2) pn,(A—l)n('E”
A+l
) (—1)( +1)n
- l1,,2
{qn(—;)}
where
. (A-1)n/s2
(3.17) qn(z) 1= 2 Ph, () - l)n(z) .

Observe that the q, are incomplete polynomials of type

- (A-1)n/2 A=l
[a-1)n/2] +n x+1

Moreover, from (3.15), we have

1

fqi(t)du(t) =1 .

0
Now, the assumption of (3.4) implies (cf.[l7, p.157]) that
the L2—norm and the L -norm of the polynomials q, are

asymptotically eguivalent in the sense that
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174,
(3.18)  1lim |lq |l

= , d_:=deg gq_ = (A+1)n/2
n+e [0,1]

Hence, by Theorem 2.8, we have

(3.19) g (2)~0 VzEA°(6)=A°(;:i> ,

and so, from (3.14) and (3.16), we deduce (3.8).
To prove (3.7), we can use the method of [7] or appeal

to Theorem 2.10 and the fact that for the polynomials

_ o n g
pn,(A-—l)n(x) = Vx4 . (Yn > 0) , we have
1/48
(3.20)  lim (-1—) n 2(8) = A(lLl) (cf. (2.25))
: z Y+ 1 : : .
n-+« Y
n
where dn = (A+1)n/2 . Either technique yields
(3.21) g, (z) = = Vzecc - A(ey |,

from which (3.7) follows. o

What has previously gone unrecognized in the literature
concerning incomplete polynomials is the important (unpub-
lished) work of H. Stahl. His dissertation [26] in ‘1976 (the
same year Lorentz introduced the study of incomplete poly-
nomials) concerns the convergence of ray seguences of PAs

(a2bout z = «) for functions of the form

{3.22) f(z) :/%-‘_.(_;_)_ ,

wvhere y is any finite positive measure with compact sugport

E . Stahl's method, which is similar to Frostman's "minimum
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energy” approach [8], can be described as follows.
Let EC R be compact with cap{E}) > 0 and consider
the collection W(E) of positive unit measures on E . For

fixed 6 (0 < 6 < 1) and uy € W(E} , set
-1 -1
(3.23) Pg(ziu) := 0 log [z] ~ + (1-6)/1og|z—x|, du (x)
Then, for the energy integral
2 -1
(3.24) Iglu) = (1-8) fflog|x-y| du (x)du (y)

+ 2(1—8)8flog|xl-ldu(x) ,

Stahl shows that there exists a unigue measure ¥g € W(E)

such that
(3.25) Iglug) = inf{Ie(u) : € WEY |,

and an associated constant dg satisfying

A
Q

(3.26) Pg(xikg) < 0g V x € supp(dug)

v
Q

(3.27) pe(x;ue) > o4 VxE€E~-K , cap(kK) = 0

If ©6 =0, then duo is the classical equilibrium

distribution and g, is the Robin's constant V(E) satisfying

exp (-V(E}) = cap(E)

In the special case when E = [0,1] and 8 (0 < 6 < 1) is
arbitrary, an analysis of the electrostatics problem described
in §2 shows that dpe(x) is the distribution (2.22),

(dug = dvg/(1-8)) , suppldug) = [6%,1] and oy =-1log 8(8).
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For an arbitrary compact set E , the interior of the

"generalized tennis racket" is the set

(3.28) £%(8) :={ze ¢ : pe(z;ue) 7S

which plays an essential role in Stahl's convergence theorems.
Because of their detailed and comppehen;ive nature, we shall

mention only the following sample of his results.

THEOREM 3.3. Let f{(z) be a function of the form (3.22),

where E :=supp(duy) C R is compact, E has no isolated

points and cap(E) > 0 . Let I denote the smallest closed

interval containing E . If (mi,ni) is a sequence of non-

negative integer pairs satisfying

(3.29) m. + n, + « and mi/ni + A<=}

then the sequence of PAs D“i/ni]m(z) about 2z = ®» for

f(z) converges to f(z) in the region

(3.30) ¢ - (RU () , o= l;;il

Furthermore, if E C [O,+-w) or E C (—“,OJ , then conver-

gence holds on the larger set

A-1
A+l

(3.31) ¢t - (1Tu a2 , o=

Stahl's work also includes divergence results which, in
effect, generalize Theorem 2.8. For example, with y and E

as above, set

(3.32) a(é) :=inf{u([x-6, x+38]) : x € E} (6 > 0) ,
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and assume that a finite constant 1T exists such that

(3.33) lim inf 2881 5 ¢ |
§+0 &

If, -in Theorem 3.3, EC [0,+=) and A > 1, then Stahl
shows that_

o A-1
(3.34) [mi/nJ (2) = Vzenr (o), ©=357

4, Polynomials with Exponential Weights on R

In [16], Mhaskar and Saff study extremal problems of the

following form. For o > 0 and = > 1r > 0 , set

= ; _ a n_
(4.1) E_ (a):= dnf o flexp(={x| )07 gy Gl
-1 € Tpo T

where, as usual,

= 1/r
|'|lL 1= (-/.l'lr) , |I-HL ;= sup norm on R

r
-
We let Tn r(a;x) =x"+... € L be an extremal polynomial
4 e}
for (4.1):
= - 0 .
(4.2) En,r(a) lexp (-] x] )Tn’r(a,X) ”Lr '

-and pose

Problem III'. For fixed o and r , determine the asymp-

totic behavior (as n =+ o) of En r(a) and the limiting

distribution of the zeros of the polynomials {Tn r(a;x)):_l
, =
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Notice that Problem III of §1 is a special case of

Problem III' since, for r = 2 , we have

ix) = L . N
(4.3) Tn,z(“'x) Yn(a) pn(u,X) , En,2(°) = T;(ET .
where, as in (1.8), the polynomials pn(u:x) =Yn(u)xn+ ...Efnn

are orthonormal with respect to exp(—le]u) on R ..

A starting point for solving Problem III' is the observa-
tion that expressions of the form exp(—lx[u)Pn(x) p Pn € L
a > 0, are analogous to incomplete polynomials in the sense
that they vanish at the "endpoints" + = of the interval R

Thus we embark on a parallel course of study by seeking an

answer to the following L_-problem.

Problem I'. If Pn(z 0) € T and £ € R satisfies

(4.4) exp_(—l&[a)an(E)I'—' nexp(—lx]“)pn(x) I (¢ > 0) ,
then how large can J£]| be (as a function of o and n )?
For the special case a = 2 , G. Freud [4] established

a related result which we state as

THEOREM 4.1. If P_& L, > 0 and

n
{4.5) e lpn(x)! <M vV ix] < (L+e)/n
then
(4.6) e " [P (x)] < Mcle) VxER ,

where c (&) is some positive constant (independent of n ).
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Freud's result, which suggests that the L_-norm of

2
e P (x) lives on the interval E—/H,/ﬁ] , is derived

from properties of the Hermite polynomials. A better analysis,
similar to the proof of ineguality (2.21) for incomplete
polynomials, proceeds as follows.

Introduce a parameter a(>0) and assume that

(4.7) e * lp (x)] <M Vx e [-a,a] ,

or, equivalently,

2.2
(4.8) e™® ¥ [p tax)| ¢ m Vxe [-1,1]

Qur goal is to find a "smallest choice" foer a so that

ineqguality (4.8) implies

2.2
(4.9) e X [P (ax)| < M Vx€R

For this purpose, let

(4.10) w = ¥(z) = 2z + V2" -1

denote the mapping of the segment [~1,1] in the z-plane
onto the exterior of the unit circle |w| = 1 . Then, since

Pn & T the function

exp(—azzz)P (az)
(4.11) F(z) := n ,

exp(—azz/zz- 1) vz )"

is analytic in € - [¥1,l] , even at z = o (the essential
singularities as well as the poles cancel). Moreover, as

z -~ [-1,1] , we have
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(4.12) lexp(-a22/2% - 1)|—~1 and |y(z)| —~1 .

Thus, from (4.8),

lim sup_ |F(z)}] < M ,
z+ [—1,1]

and so, by the maximum principle,
(4.13) [Flz)| < M Vzec .

In particular, this gives

2.2
(4.14) e 2 X |Pn(ax)| < Mg, (x) VxeR ,
where
(4.15) g (0 := expl-afx/xP - ) [l |7

Thus, for (4.9) to hold, we seek choices for the parameter

a which ensure that

(4.16) ga(x) <1 Vxeg(-=,-1) U(l,+=) .

[-1,1] (cf. (4.12)), this will be

m

Since ga(x) =1 V x
true if gé(x) >0 Vx < -1 and g (x) <0 Vxxo>1 .

Now, for x > 1 , eguations (4.10) and (4.15) yield

' 2 gé"‘)_ 2 2
(4.17) : % -1 a;-(?i—n—a (2x°-1) .

As x —17 , .the right-hand side of (4.17) approaches
n- az . Thus, ga(x) decreases at x = 1 only when

n-a“ <0 or a> v/n . In fact, it can be readily verified



248 E.B.SAFF

that the choice a = vn  yields (4.16) which, in turn,
implies (4.9). We thus arrive at the following improvement

of Theorem 4.1.

THEOREM 4.2. If P_€ 7 and

2

(4.18) e P ()] <M Vx| <v/n
then

(4.19) e |Pn(x)| <M ¥V x €ER

More generally,

2 n
(4.20) e‘lz| [p_(z)| < M[G(2; 297 Vzec ,
n /n
where
(4.21) G(2;z) := Iw(z)exp(z2 —|z|2 -2/ - 1) |

For arbitrary a« > 0 , we can give a similar argument

based on the properties of the potential

1
(4.22) L{a;z) := u/ﬂloglz - t]vle;t)de
-1

where wvi{a;t) 1s the Ullman distribution defined in (1.14).

As shown in [16], L{a;z) is continuous on ¢ and satisfies

[

(4.23) La;x) = —y— - log2~- 3 Vx e [-1,1] ,
a

=

where X is the constant of (1.11) arising in the Freud

conjecture. The generalization of Theorem 4.2 is
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THEOREM 4.3 If P_€ 7 and
— n n -
a 1/a
(4.24) exp(-|x| ) [P ()| <M, V [x] < (n/2)) (a > 0) ,
then
(4.25) exp(—|x[°‘)lpn(x)| <M V x € R

More generally,

n
a . z ;
(4f26) exp(-|z] )]pn(z)| < M[G(a; n—7—l a):l , Vzec ,
where

(4.27) Gla;sz) :=exp{L(a;)\i/°‘z) tlog2+ 2 - ]z]%) .

If, in Theorem 4.3, we take Pn(z) = ’I’n olaiz) with
1

M= En m(a) then, on letting z + « in (4.26), we obtain

the lower estimates

1/n 1/c
..l/a 1 1 —
(4.28) n EEn,m(a)] > E(EX;) , n=1,2,...

As shown in [16], these estimates are sharp in a limiting

sense:

THEOREM 4.4. For each fixed o > 0 ,

1/n 1/a
(4.29) lim n'l/“[En ola)] = %<~l~—)
! a

n-+ o

Returning to Theorem 4.3, let Q(a) denote the level

Curve
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(4.30) Qla) :={z€ € : Gla;z) = 1}

and let 0%{0) be its exterior:

(4.31) 0%(a) i={z€ € : G(asz) < 1}
As sketched in Figure 4.1, the curve Q(a) 1is symmetric
about the real axis and contains the segment [—A;l/c, A;l/u]

(o)

_A—l/u . ‘ A—l/u

Figure 4.1

It plays the role of an "exponential tennis racket" as

revealed in the following analog of Theorem 2.8.

THEOREM 4.5. For fixed o > 0 , let {B }

be a
nin=1 sequence

of functions of the form

a
(4.32) B (z) = exp(-n|z] yp, (z) PLE T,
such that

~1/n
(4.33) lim sup ||B || <1
now AL

-3

Then
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(4.34) lim B (z) = 0 Vz e %)

n-+ o«

Furthermore, ﬂe(a) is the largest open set for which (4.34),

in general, holds.

. We remark that, from Theorem 4.3, the norm in (4.33)
can be replaced by the sup norm over the interval

-1/a -1/a
27770 2y J
To further dramatize the analogy with incomplete poly-

nomials, we give

DEFINITION 4.6. A function of the form (4.32), where

p,E€ET, +» n> 0 , 1is called an exponentially weighted

polynomial of type a . The collection of all such functions

{with n > 0 arbitrary) is denoted by EP .

If B(@E 0) € EPu , we set

(4.35) n(B) := mex{|n} : n&er, [BM] =B} } .

Then the following theorem of [16] furnishes a mate to the

"82-result” of Theorem 2.4.

THEOREM 4.7. For each a > 0 ,

(4.36) sup{n(B) : B €EP , B F O] = A;l/a !
where AQ is defined in (1.11).

The proof of Theorem 4.7 given in [16] utilizes a result

(see Theorem 4.9 below) on the distribution of the zeros of
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the extremal polynomials T (aix) . Unlike the proof of

!
Theorem 2.4 presented in §2, no appeal is made to the
"Weierstrass approximation property” of exponentially weighteg

polynomials. 1In fact, there remains the following

Open Problem. Suppose F € C(R) and o > 0 is fixed. 1s
it true that F 1is the uniform limit on R of EPOl fune--
l/a

tions if F(x) = 0 V|x| > A, ?

Thus far, our discussion has focused on the L -norm.
inequalities of [16] which show that, in an n-th root sense,
the L_ and L _-norms for exponentially weighted polynomials

are asymptotically equivalent. Thus, as a conseguence of

Theorem 4.4, we obtain

THEOREM 4.8. For each fixed o > 0 and r > 0 ,

1/a
) -1/a i/n 1/
(4.37) lim n [En,r(u)] = 5(%) .

n-+ w

For the special case r = 2 , it fellows from (4.3)
and (4.37) that
n-l/a l( 1 )l/u
sl ’

(4.38) lim —75 "

’

P v, (0]

which implies that Freud's conjecture of (1.10) is true in

a Cesdro summability sense.

We conclude our discussion with a theorem on the distri-

bution of the (necessarily real) zeros of the extremal poly-
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following result is established in [16].

THEOREM 4.9. Let a > 0 and r > 0 be fixed. For any

interval [c,d] and for each n = 1,2,... , let Nn,r([c’d])

denote the number of zeros of the normalized polynomials

Tn,r(u; (n/Au)l/ux) which lie in [c,d] .  Then
. . a
(4.39) liﬂnn Nn,r([c’dj) i/rv(a;t)dt ’
n . &
where wv(o;t) is the unit measure with support [—l,l]

defined-in (1.14).

It is important to note that, in the special case when
r =2, the eguations (4.3) and (4.39) yield the "contracted
zero distribution” for the orthonormal polynomials pn(a;x)

of (1.8). Namely, (independent of the validity of Freud's

conjecture) the result (1.12) of Ullman holds with Xn
/a '

replaced by (n/A,)7
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