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ABSTRACT. For the extremal problem:
E, ,(a):= minfexp(-{x{*)(x" + - N,  @>0,

where L™ (0 < r € o) denotes the usual integral norm over R, and the minimum is
taken over all monic polynomials of degree n, we describe the asymptotic form of
the error E, (&) (as n — 00) as well as the limiting distribution of the zeros of the
corresponding extremal polynomials. The case r = 2 yields new information regard-
ing the polynomials { p,(a; x) = y,(a)x" + - -- } which are orthonormal on R with
respect to exp(-2|x|*). In particular, it is shown that a conjecture of Freud
concerning the leading coefficients v, («) is true in a Cesaro sense. Furthermore a
contracted zero distribution theorem is proved which, unlike a previous result of
Ullman, does not require the truth of the Freud’s conjecture. For r = 00, a > 0 we
also prove that, if deg P,(x) < n, the norm |lexp(—|x|*) P, (x)|| .= is attained on the
finite interval

[- (n/A0)" (/A )"/%], where A, = T(a)/2° T (a/2)}.
Extensions of Nikolskii-type inequalities are also given.

1. Introduction. In this paper, we shall investigate a class of extremal problems
arising in the theory of weighted polynomial approximation on the whole real line.
We shall concentrate on the weight functions exp(—|x|*), « > 0, although some of
our methods apply to a more general class of weight functions. :

Let &, denote the collection of algebraic polynomials of degree at most n. For
a>0r>0put

. 0 1/r

1) B @)= ot (7 ep(orixoiet - g, (01 d)
Gn-1€9-1 \Y-00 .

where, if r = oo, the supremum norm is meant. Our purpose is to study the behavior

of E, ,(a) as well as that of the polynomial 7, ,(a; x) = x" + -+ € 9, for which
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E, ,(a) is attained. Specifically, we shall determine:

(a) the limiting behavior of E; .(a)asn — oo;

(b) the limiting distribution of the zeros of the extremal polynomials 7, ,(a; x) as
n — o0;

(c) the asymptotic behavior of |7, ,(e; z)|, as n and z tend to infinity, z € C.

The cases r == 00 and r = 2 are of particular interest. The case r = oo is analogous
to the study of the class of incomplete polynomials introduced by Lorentz [15] in the
sense that our weight function exp(—|x|*) vanishes at the endpoints (+ ) of the
interval. When the weight is exp(-x) and the interval in question is { 0, ), the
corresponding sup norm extremal problem was investigated in detail by Saff and
Varga [29). Several of their results can be obtained from the theorems of the present
paper by means of elementary transformations.

The study of the case r = 2 is really that of the polynomials

(12)  plasx)=v(a)x"+--- €9, y(a)>0(n=12,..),

which are normal and orthogonal on the real line with respect to the weight
exp(-2x|*), @ > 0. It is known [4] that (apart from the multiplicative factor v,(«))
these are précisely the extremal polynomials T, ,(«; x), that E, ,(a) is the reciprocal
of the leading coefficient y,(a) of p,(a; x) and that the sequence { p,(a; x)} satisfies
the recurrence relations :

(1.3)

Yn Yn-1
Yot 1 pn+l(x) + Yu
(We caution the reader that our notation differs slightly from the standard one used
in the literature on weighted approximation, where p,(a; x) is usually denoted by
Pa(wd; %))

Various quantities associated with these orthonormal polynomials {p,} were
investigated by Freud, Nevai, Ullman and others, especially for the case « > 1. For
example, Nevai [21] proved that if a > 1, then y,_,/Y, and the largest zero X, of p,
are both of the same order of magnitude, namely n'/* Freud, in his investigations [7,
8] of more general weighted polynomial approximation, obtained analogous results
concerning the order of magnitude of X, and

Paa(x) (v =v,(@), p;(x) = p,(a; x)).

Ye -
T,:= max —=!,
lsksn Vg

He also proved in [9] that if a is a positive even integer, then

1/a
—a+l VBRI RPE o (T8 _1_(_1__)
(1.4) 2t Qa) ™ < liminfn /oL < S )
(1.5) —l-(l)va < limsupn"/"‘-———y"'l < (2a)""
‘ 2\, 7 00 Yn ’
where
a 6) T'(a) 2 T(a+1)

“T A T(ay2)) T@/2T(a/2 + 1)
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Freud conjectured |9, 10] that for every a > 0, the sequence

o0
(1.7) {nivede=t }
Yn n=1
actually converges and that the limit is
1( 1)
(1.8) ] ( }:) .

In the well-known case of Hermite polynomials (a« = 2), the sequence (1.7) is
actually a constant sequence where the constant is given by (1.8). Freud [9] proved
that his conjecture is true for a = 4,6.

The validity of Freud’s conjecture has several interesting consequences. Freud [10]
showed how it is related to the asymptotic behavior of X, (the largest zero of p,) and
Nevai [23] utilizes the truth of Freud’s conjecture when a = 4 in obtaining certain
results for the polynomials p,(4; x). Furthermore, Ullman [33, 34] has shown how
the truth of Freud’s conjecture leads to the “asymptotic contracted zero distribution”
for the p,. Specifically, he proved that, assuming the truth of this conjecture, we have
for every function f continuous on [-1,1],

(1.9) Iin:o; ): f("k") = [\ 1)) ax,
where

(110) Xpon = -X, < Xp—tn < 000 <Xy, < X, = X1,n
are the zeros of p,(a; x) (cf. [30, §3.3]) and

(1.11) v(x) =v(a; x):= f

xyy? — x?

In the present paper, we shall, on the one hand, show that the Freud conjecture is
true if convergence is replaced by convergence in a certain Cesaro sense (cf. Theorems
3.4 and 3.5) and, on the other hand, obtain a version of Ullman’s theorem where the
validity of Freud’s conjecture is not assumed (cf. Theorem 3.7).

Two additional facts emerge during our investigation which we feel are of interest
in their own right.

Freud [5] proved that if P, € 9, ¢ > 0 is given and

(1.12) exp(-x?)|P,(x)| < M for|x| < (1 + e)Vn,
then there is a constant c(¢) such that
(1.13) exp(~x2)|P,(x)] < c(e) M for -0 < x < o0.

Freud did not obtain sharp estimates for the constant c(¢) in (1.13), but he did prove
that, in a certain limiting sense, inequality (1.13) is best possible. As a special case of
Theorem 2.7 of this paper, we give a substantial improvement of this result. In
particular, we show that exp(-x2)|P,(x)}, x € R, attains its maximum on the interval
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[~ Vn,Vn]. And, more generally, for each a > 0, exp(—|x|*)|P,(x)| attains its maxi-
mum on [-a,(a), a,(a)], where

n 1/a
(1.14) a,(a)= (X‘) .

a
These results also extend a theorem of Saff and Varga [29] who showed that the
maximum of exp(-x) |P,(x) on [0, o) is actually attained on [0, 2n].

The other interesting feature is a weighted analogue of Nikolskii-type inequalities.
S. M. Nikolskii [24] obtained certain inequalities relating different L’-metrics of
trigonometric polynomials. In {19], Mhaskar obtained analogues of these inequalities
suitable for weighted L"-norms of algebraic polynomials. These inequalities are valid
for a large class of weight functions which includes exp(—|x|*) only if « > 1. Further,
the proofs in [19] are somewhat complicated. In the present paper, we demonstrate
how a very simple proof can be given using methods employed by Nevai in [22]. We
then obtain estimates on the Christoffel function for the weights exp(—|x|*), a > 0,
and use them to extend the Nikolskii-type inequalities to include all of these weights.
These estimates are perhaps not the best possible, but, as far as we know, they are
the first of their kind when 0 < a < 1. For a > 1, we simplify the (unpublished)
method used earlier by Freud in a course which he taught on weighted approxima-
tion. _

It is interesting to note that in the previous applications of these Nikolskii-type
inequalities [17-19], the results were obtained first for L? and then translated to
other norms. However, for our present purpose, it is easier to obtain L®-results first,
and then deduce information about the L2-norm.

The outline of this paper is as follows. In §2, we state our main theorems for the
case of the supremum norm. In §3, we state the theorems for the case of the

-metrics, 0 < r < o0, and discuss their relationship with orthogonal polynomials.
In §§4 and 5, we prove the theorems stated in §§2 and 3, respectively. In §6, we state
and prove the Nikolskii-type inequalities.

We would like to thank Dr. M. Lachance, University of Michigan (Dearborn), and
Mr. Julian Whitekus, University of South Florida, for some of the computations
included in this paper.

2. Statements of results for the sup norm. In this section we deal exclusively with
the supremum norm. For any interval I and function g defined on I, we set

2.1 lgll; = sup{|g(x)}; x € I).
A motivating influence in our investigation is the following fundamental

Question. Leta > 0 and P, € &, with P, not identically zero. Then, if { € (-0, )
satisfies

(2.2) exp(—81°)I P, ()1 = llexp(=1x1) B, (Xl 0,009

how large can |{| be (as a function of « and n)?
In an implicit sense, the answer is provided by the Chebyshev polynomials
associated with the weight function exp(-|x|*) on (-0, o0). To be specific, for a > 0
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andn=1,2,..., set
(2.3) E,(a) = E, ,(a):= inf{lexp(—|x[*)(x" — Gt (XN —amr00ys Gu-1 € Fy_y )

Let
T(a;x)=T, (a;x)=x"4+:-- €9,

satisfy

(24) E, () = llexp(~|x|") T,,(; %Il 0,009

and consider the largest extreme point

(2.5) £,(a)1= max{£ € R; exp(~[{|°)1T, (a; )| = E,(a)),

where R = (-00, 00). Then, from the equioscillation property for the Chebyshev
problem (2.3), we shall easily prove
THEOREM 2.1 If P, € ¥ and x € R, then
T(a;x

(26) an (X)I < ”exp(_ltlu)Pn (t)”(—oo, qo)‘—_—g—)‘ s val = gn(a)'

' En ( a)
Consequently, if P, = 0 and { satisfies (2.2), then
(2.7) 81 < £,(a).

To obtain estimates for £,(a) we next consider the growth of exponentially
weighted polynomials in the complex plane C. For this purpose, we set
(2.8) o(z)=z + (22 - 1)/,
where (z2 — 1)'/? has branch cut [-1, 1] and behaves like z as z tends to infinity. The
function w = ¢(z) maps the exterior of the segment [-1, 1] in the z-plane onto the
exterior of the circle |w| = | in the w-plane. In our results, an essential role is played

by the function
(2.9)

G(a;z)= exp(ka{[: loglz — tjv(a; t) dt + log2 + i— — loglep(z)} — I;—Ia>),

o

(a>0;z€C),

where A, is the constant arising in the Freud conjecture discussed in §1, i.e.

I'(a)
2.10 A=
(2.10) 257U (a/2))

and v(a; t) is the Ullman distribution

(2.11) o(a; 1)i= %jm‘y“-‘/\/yh 2dy, -l<i<l.

Introducing the positive parameter @, we use the maximum principle for sub-
harmonic functions to prove the following.
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THEOREM 2.2. Let a > 0, a > 0, and suppose that P, € 9, satisfies
(2.12) Hlexp(—{x|*} B, (%)~ 4,0 < 1.
Then,

a ARG
@13 exp(-aNP () < {6(os Z)} o ()
where ¢ and G are given, respectively, by (2.8) and (2.9).

n

Vze(,

We pause in our development to mention two basic properties of the function
G(a; 2).

PROPOSITION 2.3. For each a > 0, the function G(a; z) is continuous in the whole
plane, and
(2.14) Gla;x)=1 for-1<x< 1.
We remark that since, also, [¢(x)| =1 for -1 € x <
(2.13) satisfies
(2.15) (G(a; x/a)) " |¢(x/a)" =1 for-a<x<a.

The function G(a;z) has a useful representation in terms of the Gaussian
hypergeometric function [2]
(2.16)

1, then the upper bound in

< (a);(8); ;
Fla,b;c;z) =Y =L
(@biea)= 2 o n
Namely, we shall prove

PROPOSITION 2.4, For each a > 0,

(2.17) G(a; z) = [exp{¥0(a; ¢(2)) = |21} Vze C—[-11],

where

(2.18)

H((a; w):= Hat 1) F(-a/2,1; /2 + 1,-w™2) — [lat+ 1)

22" YT (a/2 + 1)) 2%T(a/2 + 1))*

In the case when « is a positive even integer, say a = 2k (k= 1,2,...), the
hypergeometric function in (2.18) reduces to a polynomial in w~? and we find the
explicit representation

(2.19) G(2k; z) =|exp(z%* = (22 = 1) gy (2) — Iz1*})|  (k=1,2,...),

where

(220) g(z):=z, gy i(2):= 27"+

k—1(ai 2k=-2j-1
(f 1)2——-— (k > 1).

= j 22j-1
In Theorem 2.2, we wish to choose the parameter @ in an optimal fashion. It is
fortuitous that two different approaches to this optimality lead to the same choice

for a. First, on taking P,(x) = T,(a; x)/E,(a) in Theorem 2.2 and letting z — ¢ in
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(2.13), we obtain (cf. (2.17))

an
. E 2 e ,n=12,..).
(2.21) (@) Texp(h.a®/a) (a>0,n=1,2,...)
For fixed n and «, the lower bound in (2.21) is maximized when
(2.22) a=(n/A,)""

Hence, with this choice, (2.21) yields

COROLLARY 2.5, For each a > 0,

1/a
(2.23) n“/"‘[En(a)]l/">—(;71\—) , n=12,.,

N

where A, is given in (2.10). v
To numerically illustrate Corollary 2.5 we have listed in Table 1 the values E,(a)
for a =4, n=1,2,..., 9, together with the corresponding values n~'/*[ E, (4)]'/".
From inequality (2.23) we know that for each n > 1,
1 1\ 172\

-1/4 V2N LN et - .

nVAE,(4)] " = > ( eM) 5 ( 38) = 0.351863;
this is clearly evident from the last column of Table 1. In fact, we shall show in

Theorem 2.9 below that, for each fixed a > 0, the estimate (2.23) is best possible in
the sense that equality holds in the limit as n = oo.

TABLE 1. w(x) = exp(-x*)

n E,4) n"VALE, )"
1 0.550695 0.550695
2 0.277859 0.443256
3 0.163591 0.415566
4 0.102626 0.400221
5 0.068412 0.391097
6 0.047782 0.384893
7 0.034736 0.380422
8 0.026136 0.377037
9 0.020271 0.374382

Returning to the discussion of the parameter g in Theorem 2.2, we now describe
the second optimality approach. Notice that the upper bound in (2.13) decays
exponentially as z — oo. Our interest is in the smallest value for the parameter a
which ensures that this upper bound is less than one whenever x € R and |x| > a.

We prove
THEOREM 2.6. If a > O and a > (n/\ )"/, then

(2.24) {G(“;ﬁ')}aaqb(%)n

Moreover, (n/A,)"/* is the smallest value of a for which (2.24) is valid.

<1 V¥|x|>a,x€R.
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Next, consider the level curve
(2.25) : Q(a)={z € C;[G(e; 2)] M1 (2) = 1},

which is symmetric about the real axis and contains the segment -1 < x < 1 (cf.
(2.14)). Let %)(a) denote the unbounded component of the complement C — Q(a).
Then, on combining Theorems 2.2 and 2.6 (with a = (n/\,)'/*), we obtain

THEOREM 2.7. If a > 0 and P, (# 0) € §,, n > 1, satisfies

(2.26) llexp(=1x1%) P, (X l;- a,caancary < M
where

(2.27) a,(a):= (n/A,)"",

then

(2.28) exp(-z|*)WP,(z2)l <M Vzea,(a)D(a):={z=a,(a)w;we D(a)}.

In particular,

(2.29) exp(-Ix|)|B,(x) < M Vx| > a,(a), x €R.
Consequently, for any P, € 9,
(2'30) ”exp(_l'xla)Pn('x)“[—a,,(a),a,,(a)} = “CXp(-—l)da)Pn(X)”(_w,m).

For example, since A, = 2/7, A, = 1 and A, = 3/2 (cf. (2.10)), then, for P, € @ ,
equation (2.30) gives as special cases:

(2'31) ||exp(—|x|) Pn(x)”[—vrn/2,'lrn/2] = ||exp(-—|x|) Pn(x)”(-oo,oo)’
(2.32) llexp(=x2) B, ()i iy = 1EXP(=%) P (Xl 0,00
(2.33) lexp(~x*) B, (X)llyzm73 531 = IEXP(=%*) P (X Ml - o0,00)

We remark that equation (2.32) considerably improves the result of Freud men-
tioned in (1.12) and (1.13) of the introduction. Moreover, inequality (2.28) (with
a = 2) provides an extension of this result to the complex plane, as illustrated in
Figure 1.

vn D(2)

/1 (2)

-/n

’\
NI

FIGURE 1. exp(—|z|?)|P,(2)] < M,V¥z € Vn D(2)
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Applying Theorem 2.7 to the extremal polynomials 7, (a; x) we obtain
COROLLARY 2.8, The extreme point §,(a) defined in (2.5) satisfies
(2.34) £(a) < (n/A)*=a,(a), n=12,...
Furthermore (cf. (2.13)), foreachn = 1,2,. ..,
(235)  exp(-la,(@)21)T, (a5 a,(a)2)] < B, ()] G(a; 2)" ™ 1o(2)]]",
VzeC,
(2.36) exp(-la, (@) z|*)T,(; a,(a)z)] < E,(a) Vze D(a).

In Theorem 2.12 we shall show that inequality (2.35) is sharp in a certain limiting
sense. To numerically illustrate the inequalities (2.34) we have listed in Table 2 the
values §,(a) fora = 4, n = 1,2,..., 9. From (2.34) we know that {, (a)/a,(a) < 1
for all n; this is clearly confirmed in the last column of Table 2. Moreover, the
numerical results suggest that §,(a)/a,(a«) = 1 as n — oo, which is a fact we shall
prove in Corollary 2.11.

TABLE 2. w(x) = exp(~x*)

n £,(4) a,(4) = (2n/3)"/* £,(4)/a,(4)
1 0.707107 0.903602 0.782543
2 0.927122 © 1.074570 0.862784
3 1.062582 1.189207 0.893521
4 1.165110 1.277886 0.911748
5 1.248090 1.351200 0.923690
6 1.318456 1.414214 0.932289
7 1.379846 1.469778 0.938813
8 1.434514 1.519672 0.943963
9 1.483938 1.565085 0.948152

Using the function G(«; x), we shall show that for each ¢ > 0, it is possible to
construct a sequence of polynomials P, ,(x)=x"+--- € P, n=12,..., for
which

: -1/a L 1/n 1 1 /e £
(237) h;rls(:pn “exp(—'xl )Pn,a(x)“[—a,,(a),a,,(a)] < E(;X:) €.

By (2.30), the norm over [-a,(a), a,(a)] in (2.37) can be replaced by the norm over
(~00, 0). Hence (2.37) together with the lower estimates of Corollary 2.5 give

THEOREM 2.9. For each a > 0,

1/a
(2.38) lim n~V/*[E,(a)]"" = %(e—l—) :

n—w }\
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Theorem 2.9 is useful in establishing certain asymptotic properties of the extremal
polynomials 7, (a; x). Specifically, we note that since §,(a) < a,(a) (cf. (2.34)) and
since 7, (a; x) has n + 1 oscillations in the interval |x| < £,(a) (cf. (4.2)), then the
zeros of T,(a; x) all lie in the interval -a,(a) < x < a,(«). Hence T,(a; a,(a)x)
has all its zeros in -1 < x < 1. Concerning the distribution of these “contracted
zeros”, we prove

THEOREM 2.10. Let a0 > O be fixed. For any interval [c, d] and for eachn = 1,2,...,
let. N, ([c, d]) denote the number of zeros of the normalized polynomial
T,(a;(n/A )"/ *x) which lie in [c, d]. Then

(2.39) lim n“%"([c,d])=fdv(a;t) dr,

where v(a; t) is the Ullman distribution (2.11).

As an immediate consequence of (2.39) we see that the zeros of the sequence
{(T,(a; a,(a)x)}. | are dense in the interval —1 < x < 1, Since the (largest) extreme
point §,(a) is bounded above by a,(a) and bounded below by the largest zero of
T,(«a; x), we therefore obtain

COROLLARY 2.11. For each o > 0, the extreme points &, (&) of (2.5) satisfy
n -1/
(2.40) lim (5\—) £,(a)=1.
n— oo a

As the final result of this section, we state the asymptotic sharpness of inequality
(2.35) of Corollary 2.8.

THEOREM 2.12. The extremal polynomials T,(a; z) satisfy
(2.41)

. (1)
i 7/ oxp(-la, ()21°)T, (ai 0, (/7 = 5[ 3= ] 6l )Mo o)

uniformly for z on every compact subset of C — [-1,1].

We remark that, from the definitions (2.9) and (2.27), the equation (2.41) can be
written in the simpler form

-1/a
(2.42) lim (}\l) |7;,(a; (n/?\u)l/az)p/" = exp(fl loglz — tjo(a; 1) dt).
a -1

n—o0

3. Statements of results for the L'-metrics. In this section, we discuss the extremal
problems in metrics other than the sup norm. For any interval I, » > 0 and a
Lebesgue measurable function g on I, we set

1/r
(3.1) Igll, ;= (j;lg(x)]’dx) , if0<r< oo,

esssup,|g(x), ifr = oc0.

Thus, in this notation, ||g||; of (2.1) becomes ||g]|,, ;. Sometimes, we shall omit the
suffix oo when we do not need to emphasize it. Similarly, if the interval I is



EXTREMAL PROBLEMS FOR POLYNOMIALS 213

(~00, 00), the suffix I will also be omitted. The space L’(I) consists of Lebesgue
measurable functions g on I for which (|g||, , is finite; where two functions are
identified if they are equal almost everywhere. Regarding the various constants
which will appear in the sequel, we adopt the following convention: We shall denote
the constants (depending only on a and the metrics involved) by ¢, c¢,, etc.
However, the same symbol may denote different constants in different formulas.
Constants denoted by capital letters, however, retain their value when referred to in
different formulas.

As mentioned in the introduction, Nikolskii-type inequalities play an important
role in these investigations. We shall state and prove these in a very general form in
§6, but for the convenience of the reader, we summarize them in the following
theorem as they apply to the weight functions exp(-|x|%), a« > 0.

THEOREM 3.1. Suppose 0 <p <r < oo, « >0, n > 2 is an integer and P, € 9.
Then

(\/p—1/r
(3.2) I, ,ll, < ey(nQogn)®) "™ w B,
where ' '
(3.3) wy(x):= exp(-|x|*), x€R,
1, fo<a<l,
(3.4) p= {1 - 1/a, ifaxl,

_ [0, fO0<a<loraz2,
(3.5) 5"{1, ADRDS
In the opposite direction,
(3.6) el < € (n/) 77O, Pl
In particular, for arbitrary p, r with0 < p,r < 0,

<
(37) “waPn”p < clnczllwaPnllr <

c3nC4”waPn“p'
In (2.30) of Theorem 2.7, we have seen that if P, € &,
”waPn”r, [-a,(a),a,(«)] = ”WaPn”r9
where 7 = o0 and a,(«) is of the order of magnitude n'/® Clearly, this statement
cannot be true if r < oo; but it is natural to expect that |[w,P,||, is at least

substantially attained on an interval of length proportional to n'/% The following
proposition makes this idea more precise.

PROPOSITION 3.2. Suppose a > 0, 0 < r < 00, n > 2 is an integer and P, € F,.
Then there are positive constants ¢,, ¢, and D depending only on r and « such that
(3'8) “waPn”r < (1 + cle_Czn)”WrxPn”r,[—DnV",DnV"]‘

For a > 1 and r = 2, inequality (3.8) was proved by Nevai [21] and Freud [8]. The

proposition is easy to obtain using their ideas. In §6, we shall give an equally simple
proof using the results in §2.
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Next, we turn to Theorem 2.9, Recall from §1 that
(39) Eoo(@)i= inf w(x)(x" = g ()
1

n—-1{ n—
(310)  Iwe()T, (o XM, = Ey (@), Ty (ox)=x"+ - €8,
An immediate consequence of Theorem 3.1 and Theorem 2.9 is the following.

THEOREM 3.3. For eacha > QO andr > 0,

' 1/ 1/n 1 1 1/a
(3.11) nan:on [E,,.(a)] =E(e}\n) .

Moreover, for each 0 < p < o0,

. » ' n 1 1 1/a
(3.12) Jlim 7/ [wa(x)T, , (o5 ), ] _E(e}\a) '

This theorem has interesting consequences in the theory of orthogonal polynomi-
als, which we shall now discuss. As we mentioned in the introduction, if

(3.13) p(e; x)= vy, (a)x"+--- €%, vy, (a)>0,
are orthonormal polynomials with respect to w2, then

(3.14) E,,(a) = ;—(‘—) T, (e x) = —Y—({Jp,,(a; x).

Theorem 3.3 applied to r = 2 thus gives information about the asymptotic behavior
of y,(«). In order to study the implications of this theorem related to the Freud
conjecture, we shall reformulate the latter as follows.

Set

(3.15) C,=C,(a):= w, A, = A, ()= n"C,(a),

Ya(@)
(3.16) B, = B,(a):= log 4,(a),

RN
(3.17) d, = 5(}\—“) .
Then the Freud conjecture states that
1 1 1/a
(3.18) lim B, = log{ = | +— = logd,.
n— oo n 2 Au

As a consequen;:e of Theorem 3.3 (with r = 2), (3.14) and Stirling’s formula, we
obtain

THEOREM 3.4, For each a > 0,

n
(3.19) lim % Y B, =logd,,
k=1

H—r 0

where B, and d,, are defined, respectively, in (3.16) and (3.17).
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REMARK. Theorem 3.4 implies that if the sequence {B,)2., converges, then the
limit must be log d,. When « is a positive even integer, this is apparent from (1.4)
and (1.5); for other values of a, this assertion is new.

Theorem 3.4 also suggests that it might be possible to use tauberian theorems to
settle the Freud conjecture. While we are not yet able to do this, we can prove the
following result which comes close!

THEOREM 3.5. () If @ > 1, the sequence { B,} converges in the Cesdro sense (C, €)
for every e > 0.

(d) If « > O and if, for all n large,
(320) Cn+l > Cn’
where C, is defined in (3.15), then the sequence {B,} converges to log d,,.

Numerical evidence suggests that the sequence {C,} is eventually increasing. If,
indeed, this is true, then part (b) of Theorem 3.5 would imply the truth of Freud’s

conjecture.
The contracted zero distribution for the orthonormal polynomials { p,(«; x)} is
obtained from the following general result which is analogous to Fekete’s theorem

(cf. {3]) for finite intervals.

THEOREM 3.6. Let K > 1 be fixed and consider a triangular array of (not necessarily
distinct) points in [-K, K]:

21,1
212 232
(3.21)
zl,n zZ,n e Zn,n

With this array, associate the sequence of polynomials

(3.22) Q,(x):= Icllll(x~zk,n), n=1,2,...,
=1

and the sequence of measures (v, |, where for each Borel set B C [-K, K],
—_ Kk' Zk,n € %}I

(3.23) b (B): - n=1,2,....
1f
1/n
. —n|x|* 1 1
(3.24) hﬂsol:p{ eXP(—“Aa )Qn(x) wl_m]} < 2exp(—m),

then, for every interval [¢, d] C [-K, K],
(3.25) lim fddvn(t) =fd15(a; t) dr,
n—0Ye 4

where v(a; t) is the Ullman distribution defined in (2.11).
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Notice that although the array (3.21) may have points outside {1, 1], the inequal-
ity (3.24) involves the sup norm only on [-1, 1]. If (3.24) holds, then as a conse-
quence of (3.25), the proportion of knots in the nth row of (3.21) which lie outside
[-1,1] tends to zero as n — oco. This feature of Theorem 3.6 is important in
describing the contracted zero distribution of the orthonormal polynomials
{p,(a; x)}. If X, = X (a) denotes the largest positive zero of p,(«&; x), a > 0, it is
known [21] that :

(3.26) e/ < X, < cpn'/* n=1,2,....

Hence the zeros of the normalized polynomials p,(a; (n/X,)"/*x), n = 1,2,..., all
lie in a fixed interval

(3.27) -K,<x<K, K,=1

From (3.12) (with p = o0, r = 2), (3.14) and Theorem 3.6, we therefore obtain

THEOREM 3.7. For the polynomials p,(a; x) = v,I1{_(x — x; ), n=12,...,
which are orthonormal with respect to exp(~2|x|*) on R, set

(3.28) Vi = (/A *x s k=1,2,,mn=12,...

For any interval [c, d] and for each n = 1,2,..., let %n,Z([ ¢, d) denote the number of
the y, , which lie in the interval [c, d]. Then

(3.29) lim 279, 5 ([c, d]) = [“v(a; 1) at,
n— o0 (4
where v(a; t) is the Ullman distribution (2.11).

To deduce the zero distribution for the extremal polynomials 7, ,(a; x), where
r = 2, oo, we utilize

PROPOSITION 3.8. Suppose r > Q0 and a > 0.

() For eachn = 1,2,..., the polynomial T, ,(a; X) has n real zeros.?

(b) For each & > 0, let m,(8) denote the number of zeros of the normalized
polynomials T, (a; (n/X)Y%x) which lie outside the interval [-1 — 8,1 + 8). Then

(3.30) tim M2(8) _
n- o0 n
Although we have not shown that the contracted zeros of 7, ,(a; x) satisfy the
conditions of Theorem 3.6, we can, by Proposition 3.8, ignore the proportion of
these zeros which lie outside of, say, -2, 2]. Then, with a little manipulation, we can
prove that (3.25) persists and gives

THEOREM 3.9. Let r > 0 and o > 0 be fixed. For any interval [c, d] and for each

n=12,..., let N, (¢, d)) denote the number of zeros of the normalized polynomials
T, (a;(n/A )/ *x) which lie in {c, d]. Then
(3.31) lim 7', ,([c, d]) =fdv(a; 1) dr.

H-—* o0 4

YWe make no assumptions here and throughout the paper concerning the unigueness of the T, (a; x).
If r < 1, such uniqueness is not clear; however, our results hold for any choice of 7, ,(a; x) satisfying
(3.10).
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Corresponding to Theorem 2.12, we have the following asymptotic formula for the
extremal polynomials 7, .(«a; z).

THEOREM 3.10. Let r > 0, a > 0. Then the polynomials T, .(a; z) satisfy
(3.32) lim (n/?\a)"/"lTn,,(a; (n/}\a)‘/“z)ﬂ/" = exp(fl loglz — tjv(a; 1) dt),
n— o -1

uniformly for z on every compact subset of C — R. Moreover, if r = 2, the convergence
in (3.32) is uniform on compact subsets of C — [-K, K], where K, is as in (3.27).

4. Proofs of the results stated in §2.
PROOF OF THEOREM 2.1. It is easily seen that the functions {exp(—|x|*)x* Y=} form
a Haar system on (- o0, o). Hence (cf. [31]) there exist n + 1 points

(4.1) EO <tV < <gM=£,(a)  (EP =t0(a))
such that
42)  exp(-EPI) T (@ 60) = (-1)"“E (@), k=0,1,...,n.

Because of the symmetry of the weight function, we can take {0 = ¢ (a).
Since inequality (2.6) is trivially true when P, = 0, assume that P, € @, and
P, = 0. Then, for any constant y satisfying

(4.3) Iyl < E,(a) /llexp(=1x[*) P, (X )l (-0 00>
the polynomial
q(x)= T,(a; x) = yP,(x) € F,

has alternating signs in the points £, k = 0, 1,..., n. Hence g(x) has no zeros for
Ix| = §,(a). As g(£,(a)) > 0, then necessarily t
(4.9) T.(a; x) —yP,(x) >0 forx > ¢,(a).

On letting |y| tend to the right-hand side of (4.3), inequality (4.4) yields (2.6) for
x 2 §,(a). The case when x < —§,(a) is treated similarly. O
The proof of Theorem 2.2 requires a few preliminary results. The first lemma

appears in [14, p. 69].
LEMMA 4.1. Let p be a finite ( positive) measure on the Borel subsets of [-1, 1] and
set

(4.5) A(dp; 2)= [ loglz = tldu(1), zeC.

-1
If A(dp; x) is a continuous function of a real variable on [-1,1], then A(du; z) is a
continuous function of a complex variable on the whole plane C.

In computing the logarithmic potential of the Ullman distribution (2.11) we make
use of the following identity.

LemMa 4.2, Forallz € C,
(4.6) %f‘ loglz — tjdt/V1 — t* = log
-1

where ¢(z) is defined in (2.8).

k4

#(z)
2
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PROOF. Write
z=4(w+wl), w1
Then, with the change of variable ¢ = cos 6, we obtain

(4.7) -l—fl loglz — t|dt/V1 — 2 = lfwlog|z — cos 0] d6
mJ_ T Jy

17 1 (w=e®)(w~e")

= log

1 1 o7 i8
2w‘+ Wj:ﬂlogu we'®| dé.
If jw| < 1, then by the mean value property for harmonic functions [1}], the last
integral in (4.7) is zero. The same is true if |w| = 1 as is shown in [16, §35, equation
(8.10)]. Hence, for all z € C,
2(2)|
2

0

1 M dt 1
;]:]log|z— t|‘/1___tE = log\2 ‘ log| ——
For the logarithmic potential of the unit measure v(«; ) df on [-1, 1], we can now
prove

LEMMA 4.3. Fora > O and z € C, set
(4.8) e 2)i= [ logiz — tlo(es 1) b,
-1

where v(a; t) is defined by (2.11). Then £(a; 2) is a continuous function of z in the

whole plane C. Furthermore, for x € [-1,1],
ey = X _1
(4.9) £(a; x) v log2 - —,

where A, is defined in (2.10).

We remark that for a a positive even integer, formula (4.9) was proved by Ullman
[33].

PROOF OF LEMMA 4.3. Once we prove (4.9), the continuity assertion follows from
Lemma 4.1,

To establish (4.9), first observe that, by (2.11),

(4.10) £ (a; x) = fft'L"—"g_"‘—‘—\d .

For x € [-1, 1], we apply Tonelli’s theorem (cf. [27}) to the integral

a—1 _ —
log2 — £(a; x) =— f fly (log2 — loglx tDa’ dt,
1]

oo

and deduce that

(4.11) £ (a; x) = f[yﬁ‘—“’—g‘i'—‘—ldtdy

- y___t2
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In view of the identity (4.6), we therefore have

(4.12) L(a; x) = afly""log X(P(—;/y—)’dy
0
=-log2 +1I, + I,
where
- Il a—1
(413) 1= o[y loglys (x/y)l dy,
1
(4.14) 1= afl 'y"“logly(#(X/y)l dy.

We first compute ,. Notice that, from definition (2.8), we have, for [x| < y < 1,

log|y¢(x/y)| = log|y| = log y.
Hence,

(4.15) I, = afllly"‘"'logydy = [x*/a — 1/a — |x|*loglx].
p

Next, a simple change of variable in (4.13) yields
(4.16) 1, = ajx|* [ 'u= ogxup (1/u)| du
0
= |x|*loglx| + |x|%/,
where

(4.17) Ji= a/lu““'log|u¢(1/u)| du = o[ 'uNog(1+ VI = u?) du
0 0

Integrating the last integral by parts gives
u

1 u
J: . du,
fo L+V1—u? V1-4?
and putting s = V1 — u? yields

(4.18) J=f‘(1 Ifzmd —f (1-s)271 - 5) ds

=f (1 — s2)@D g —-f s(1 —s2) P gs
0 0

N2 111
I‘(a) o }\a a’
Thus, from (4.16), we obtain
(4.19) I, = |x|%log|x| + |x|*/A, — |x|*/a.

Equation (4.9) now follows from (4.12), (4.15) and (4.19). O
PrROOF OF THEOREM 2.2, The hypothesis (2.12) can be expressed as

(4.20) f(x):=logP,(ax)] —a®x|*< 0 Vxe[-1,1].
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We shall show that for all z € C,
(4.21) F(z):= logP,(az)| — nlog¢(z)| — a*G(z) < 0,
where ¢(z) is defined in (2.8) and

(4.22) G(2):= )\a{flloglz — tlo(a; t)dt +log2 + 1/a — log|¢(z)|}.
-1

For this purpose, notice that G(z) is harmonic in C — [-1, 1]. Also, since v(a; t) dt
is a unit measure and ¢(z) behaves like 2z as z — oo, the function G(z) is harmonic
at z = o0. Furthermore, Lemma 4.3 implies that

(4.23) G(z) > |x|* asz-xe[-1,1], zeC-[-1,1],
and so \
(4.24) F(z) > f(x) asz—-xe[-1,1], zeC-[-1,1].

Finally, observe that F(z) is subharmonic in C — [-1,1], and because P, is a
polynomial of degree at most n, F(z) is also subharmonic at infinity. Consequently,
by the maximum modulus principle for subharmonic functions [16], the inequality
(4.20) implies (4.21) which is equivalent to (2.13). 0O
PRrOOF OF PROPOSITION 2.3. With definition (2.9), the proposition is an immediate
consequence of Lemma 4.3. O
PROOF OF PROPOSITION 2.4. Consider the analytic function 4 ,(w), a > 0, defined
by the Poisson integral
o0
%9 + Y bwk.
k=1

1+ ew
1 —ew

(4.25) hy(w):= -zl—ﬂf_:lcos 0|ﬂ( ) df =

Then A (w) is analytic in |w| < 1 and the real part of s (w) is continuous in the
closed disk |w| < 1 and satisfies

(4.26) Re{h (w)} = |cos8|®, w=1¢"0<6<27.
The coefficients b, in (4.25) are given by

1 7 R 1 ar
(427) b, = ;/_Jcos 0]%*® 4 = ;Lﬂ]cos f)%cos(k8) db, k=0,1,....

It is easy to see, from (4.27), that
(4.28) byji1 =0, j=0,1,...,
and, by the known integral formula [2, equation (30), p. 12],

(429) by, [lat 1)

- . j=0,1,...
I a2+ ) a2 -+ 1) 7

Using the identity [2, equation (6), p. 3] for complementary arguments of the
Gamma function, we have

1 _ (=11 - ar2)
Ma/2-j+1) T(-a/2)T(as2+1)°
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and hence formula (4.29) can be written as
T(a+ D)(-1)'T(j - a,2)
27 T (~a/2)T(a/2 + DT (a2 +j + 1)
- (_I)j r(a+ 1)(_a/2)j _
2" KT (a/2 + DY (a2 + 1);
Thus, from (4.25), (4.28) and (4.30), we have
I'{a+
(431) ha(w)= (a 1) ZF(_E,lag
2" YT (a/2 + 1)) 2

. F(a+1)

24T (a/2 + 1))

Next, note that the function Re{%,(1/¢(z))} is continuous in C*:= C U {0},
harmonic in C* — [-1, 1] and, by (4.26), satisfies

Re{h,(1/9(x))} = |x|* Vx e [-1,1].

Since, by Lemma 4.3, the same is true for the function G(z) of (4.22), then
(4.32) Re{h, (1/¢(z))} = G(z) Vz e C*
Equation (2.17) now follows from (4.31) and (4.32). O

PROOF OF THEOREM 2.6. For @ > 0 and a > 0, put
(4.33) g.(x):= a"log G(a; x) + nlogle(x)]

= a"A{L(a; x) +log2 + 1/a — [x|*/A,)
+(n—a'A)logé(x), x€ER,

where £(a; x) is defined in (4.8). Notice that, by Proposition 2.3, the function g,(x)
is continuous on R and satisfies
(4.34) g,(x)=0, vxe[-1,1].
Our goal is to find the smallest value of the parameter & for which g,(x) < 0 for all
|x] > 1, x € R. For this purpose we first compute the derivative of £ (a; x).

Let x > 1 and observe that, from the proof of Lemma 4.3 (cf. (4.12), (4.14), and
(4.19)), we have

(4.35) (a;x)=-log2 + I, + I,
= -log2 + x*log x + x*/A, — x*/a

—af] v~ log(ye(x/y)) dy.
Since ¢'(u)/¢(u) = 1/ Vu® — 1 for u > 1, it follows that

a—1

(4.36) —dd;ﬂ(a; x)=ax*"'logx + w)c\ - a| x* 'og x +f
Vx -y

o

(4.30) b, =

+ 1;—w2) ,

x> 1.

x yu—'l 4
=
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From (4.33) and (4.36), we get
(n—a*A,)

(437)  Lg(x)= e ) of m

Consequently, if a > (n/A,)"/*, then g/(x) < 0 for x > 1. With (4.34), this implies
that, fora > (n/A)"*,

(4.38) g.(x)<0 Vx>1,

and, moreover, (n/A,)'/* is the smallest value of a for which (4.38) holds for all
x > 1. A similar computation shows that the last assertion is true with “x > 17
replaced by “x < —1”. This completes the proof of Theorem 2.6. O

As stated in §2, Theorem 2.7 and Corollary 2.8 are immediate consequences of the
preceding results in that section. To prove Theorem 2.9 we first establish

x>1.

LEMMA 4.4. Let p be a unit ( positive) measure on the Borel sets of [-K, K and put

(4.39) A(dp; x):.= fK10g|x —t{dp(t), =x€ER.
-K

If A(dp; x) is a continuous function on R, then for each ¢ > 0, there exists an integer
N = N(e) and a sequence of monic polynomials P,(x)=x"+--- €@, n=N,
N + 1,..., such that

(4.40) 1o, (x)| < ¢ + A(dy; x) Vxe[-K Kln>N

The essential feature of Lemma 4.4 is the uniformity in x of (4.40). If only
pointwise estimates were required, the result would be a simple consequence of the
constructive methods used by Polya and Szegé [26] and the lower envelope theorem
of potential theory (cf. [32, Lemma 4.3]).

PROOF OF LEMMA 4.4. First we assume that du is of the form du(r) = f(¢) dt,
where f(¢) is a nonnegative continuous function on [-K, K] with

K
f_Kf(t) dt =

For each R > 0, define
(4.41) log z|x| := max(log|x|,—R).
Note that, for x € [-K, K],

UKlogpc — 1 f(¢) dt — leongc -1 f(1) dt’ < 2Mfe—R|log uldu < o0,
-K -K 0

where M = max{f(x): x € [-K, K]}. Given ¢ > 0, we can therefore find an R =
R(&) > 0 such that for every x € [-K, K]},
(4.42) fxlogR|x~ 1f(1) de < 5+ A(dps x).
Next, for each n > 1, select points { y; ,}7~o such that
-K = Yoou <Viw <" <yn,n=K’
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and

(4.43) [ =S =00 L,

Yin
In view of (4.43) and the fact that
,logR"x - tl - logR]'x - ){/‘,n” S eRlyj'f-l,n - yj,n' Vt € [yj,n’ yj+],n]: X & [_K’ K],

it is easy to verify that

K 1 n--1 2
(4.44) | [“logalx — 1 f (1) dr = — F logglx =yl <
-K . ’

Select N = N(e) such that for n > N, 2Ke®/n < ¢/3, where R = R(¢). Then, by
(4.42) and (4.44), we have

2e 1'¢
(445) S+ A(dpx) >4 ¥ logelx = Yl
Jj=0
1" 1 )
-’; Z og]x—~yj,n] Vxe[-K,K],n> N.

This proves Lemma 4.4 when du(¢) = f(¢) dt with f(¢) continuous on [-K, K].
For the general case, set

<1

V(1) {exp(tz/(t - 1))/0, for0<|
[z,

<
forl <

(4.46)

where the constant ¢ is chosen so that
’ 1

(4.47) f y(t)dt =
-1

Next, for 6 > 0, let

(4.48) fo(x):= 5/ \P( > du(s).

Then f; is clearly a nonnegative continuous function with support in [-K — 8, K + 8]
and

(4.49) [ fx)ax =1,

For a given ¢ > 0, the uniform continuity of A(dp; x) on the interval [-K — 1,
K + 1] implies that there exists a §,, with 0 < §, < 1, such that for all x € [-K, K]

and forally € [-4,, 4.},

(4.50) }f_’;loggx — s — yldu(s) —f_l;loglx —sjdu(s)| < £



224 H. N. MHASKAR AND E. B. SAFF

Furthermore, by using Tonelli’s theorem, we can write

(4.51) f_’::iloglx —t)fs(t) dt = %j:iiif_’;logu - th( ) du(s) dt
= %f_’;f“*”@logx — 1 ( ) dtdp(s)
=% _’:{f_iloglx—s—yl (% dy dp(s)

f f logjx — 5 — yl\l/(% du(s) dy.

Hence, for 6 = §, and x € [-K, K], (4.49)-(4.51) imply

(4.52) f’:i loglx — t|£; (¢) dt — A(dp; x)

<[ L2s(F ) Lo =5 - e st v

ef1 6 [y _E
< 3(8€)f_3€‘!’(8£) =3
Finally, by the first part of the proof, there exists an integer N and a sequence of
polynomials {P,(x))¥- y such that

log|P (x)|<—+f K% 10 g|x-t|f6(t)dt Vxe[-K, K),n>

and so, from (4.52), we get
%logan(x)| <e+ A(dp; x) Vxe[-K,K],n>N. O

PROOF OF THEOREM 2.9. In view of Lemma 4.3, the distribution v(a«; t) df and its
potential £(a; x) satisfy the hypotheses of Lemma 4.4. Combining (4.9) and (4.40),
we see that for every e > 0, there exists an N = N(e) and sequence of monic
polynomials P,(x) = x"+ -+ € P ,n= N,N + 1,..., satisfying

(4.53) %log|Pn(x)|<e+‘—;\ﬂ——log2~i-, vxe[-1,1},n>N

With a change of variable, (4.53) can be written as
(4.54) 1 loglexp(—4x|*)Q,(x) < ¢ + 1 log(xn—) —log2 — —1~,
n « " a
for all x € [-(n/A )% (n/A)"*], n = N, where
0,(x)=x"+--€9%.
Hence, by (2.30) of Theorem 2.7, we have

1 n 1/a
Iexp(41) (MLt oy < 5 (5] €5 >,

a
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and consequently

1/ 1% 1( 1\
: /el E n < =|— e
hrrlrls::pn [E, ()] < 2(6}\“) e

Letting ¢ — 0 in the last inequality and using Corollary 2.5, we obtain (2.38). O

The proofs of Theorems 2.10 and 2.12 are postponed to §5 where they follow from
a more general argument (see the proofs of Theorems 3.6, 3.9 and 3.10).

5. Proofs of the results stated in §3. In this section we adopt the same notation and
conventions concerning constants as in §3. The proofs of Theorem 3.1 and Proposi-
tion 3.2 will be postponed to §6 where they are derived from more general results.

ProOF OF THEOREM 3.3. In view of (3.10) and Theorem 3.1, we have for arbitrary
p,r, with0 < p,r < o0,

(5.1) By <Iwal N7 < e/ w1 = e e

Together with Theorem 2.9, this implies (3.11) and then also (3.12). O

PrOOF OF THEOREM 3.4. As mentioned in §3, this is a straightforward consequence
of Theorem 3.3 and Stirling’s formula. O

To prove Theorem 3.5 we require

ProposITION. 5.1 [13, pp. 121, 127]. ‘

(a) Suppose {s,)>-, is bounded (C, k\) and convergent (C, k,), where k, > k; > ~1.
Then, for each k > k|, the sequence (s, )., is convergent (C, k).

(b) Suppose {s,)>_, is convergent (C, k) for some k, and there exists a constant H

such that
(5.2) n(s,0 = 8,) > -H,
for all n large. Then (s}, is convergent.
PrROOF OF THEOREM 3.5. It is shown in [21] that, for each a > 1,
(5.3) 0<c <A,<¢, n=12,...,

where A, is defined in (3.15). Hence the sequence { B, }7-, is bounded (C, 0) and, by
Theorem 3.4, is convergent (C, 1). Assertion (a) of Theorem 3.5 now follows from
Proposition 5.1(a). :

To prove part (b) of Theorem 3.5, write

- R — A1\ _ G n A\
(5.4) B, .\ B,,—log( A )—log{ C (n+1) }
The assumption (3.20) implies

n n 1 " 1
(55) ”(Bn+l_Bn)>Elog(n+ 1)——'&'10g(}+;) >_E’

for all n large. Thus, by Proposition 5.1(b) and Theorem 3.4, the second part of

Theorem 3.5 follows. O
PrROOF OF THEOREM 3.6. The argument is similar to one used by Saff, Ullman, and

Varga [28]. For the polynomials 0, of (3.22), we first show that
. 1
(5.6) lim — loglQ,(2)] = £(a; 2),
n— oo
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uniformly for z on every compact subset of C — [-K, K], where
(5.7) L(a; z):= fllog|z—t|v(a;t)dt.

-1

For this purpose, let ¢ > 0 be given and note that, by (3.24), there exists an integer
ny = ny(e) such that

—n|x|* 1 1
(5.8) exp(T'al—)Qn(x) 2nexp{ (e—;)} Vn > ng.
Now, Theorem 2.2 (with a = (n/A,)!/*) implies that, for all z € C, n > n,,

69 oo Lo, < grewp(n[e = 1)} 6ai ) oo

Thus, on taking the logarithm and recalling definition (2.9), we obtain

o [-1,1]

(5.10) u,(z)—L(a;z)<e YzeC,n>ny,
where
(5.11) u,(z)= logIQ (2)L.
Notice that, for each n, the function
(5.12) h,(z):= u,(z) —L(a; z)

is harmonic in C* — [-K, K], where C*:= C U {0). Furthermore, /,(c0) =10
From (5.10), it follows that the sequence {(4,,) forms a normal family in C* — [-K, K}.
Let h be an arbitrary limit function of the #,. Then, by (5.10) and the arbitrariness
of e, we have

(5.13) n(z)<0 VzeC* - [-K, K]

But 4 is harmonic and A(o0) = 0, so by the maximum principle, #(z) = 0. Since this
is true for every limit 4(z), we have k,(z) — 0 uniformly on every compact subset of
C — [-K, K]. This proves (5.6).

Notice that, for the measures », of (3.23), we have

10,(2) _ rx dn(t) _
(5.14) " o ) fK - vzeC-[-K K],
and consequently, from (5.6),
. kK dv,(t) 1 o(a;t)dr B
(5.15) lim f_K—Z—;—t——f_‘ = vzeC-[-KK].

Since »{[-K, K]} =1 for all n, it follows from Helly’s theorem (cf. [4]), that there
exists a subsequence », and a measure »* such that », — »* weakly. For this
subsequence,

(5.16) lim [

i— o0 -K Z_t

dv, (t *
K n,()=de_z”_(Lt) vze C-[-K,K],
-K -

and therefore, from (5.15),
* .
(5.17) /—K dv*(t) ___fk vla; 1) dt vzeC - [-K, K],

_KZ'—I -K z—1
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where v(a; t) = 0 for ¢ & [-1,1]. By the uniqueness of the Cauchy transform (cf.
[12]), we have »* = », where dv(t):= v(a; 1) dt. As this is true for every weak limit
v*, then y, —» » weakly. Equation (3.25) now follows from the fact that » is
absolutely continuous with respect to Lebesgue measure. O

PROOF OF PROPOSITION 3.8. Part (a) is an easy consequence of the extremal
property (3.10) and the fact thatif z € C, z ¢ R, then

|x —z)" > |x — Re(z)]” V¥x €R.

To prove part (b), let {1, ,}; -, denote the (real) zeros of 7, (a;(n/A,)"/*x) and,
for fixed § > 0, set
(5.18) Jip={kity ,>1+8), J,={kity,<-1-8),
(5.19) My = ab my,i=\0,L my=m , +m,,,

620)  a(i= TG 1) = () Tolos (02 5).

Let & > 0 be given and note that, from (3.12) of Theorem 3.3 (with p = cc), we have,
for eachn > ny = ny(e),
t/n

p( AL g,

ll

1 1
(5.21) 5 exp(e - :x_) >
Puts, =1+ (8/2),t,:= -1 — (8/2) and define the monic polynomial

62 =TT (7)1 ()

l »n

o0 [-1,1]

Notice that, for x € [-1, 1],

(5.23)
I—I x—tl x_lz (4+6)M|"(4+8)m2"=(4+8)m"
kEJ[" x_'tk’” ;‘EJZ,H x_tk,n 4+26 4+26 4+28 o
Thus, from (5.22) and (5.23),
(5.24)
—njx( v 5\
exo B g, (10 ) Lo 2 o
Ao )T Moy 4+38 o f-1,1]

Next, from (2.30) of Theorem 2.7 and Corollary 2.5, we have

i/n

(5.25) M_H]Z(Xn_)—v [E,(a)]"" > lexP( 1).‘

o

exp( iz )qn(x)

Hence, by (5.21), (5.24) and (5.25),

teole=2)o oy desl 2] oo
5 exple — ~ Y 2cxp—m), nzng.
As & > 0 is arbitrary, the last inequality implies m,/n > Oasn - o0. 0O

PROOF OF THEOREM 3.9. In the proof of Proposition 3.8(b), let & = 1 so that the
polynomials §,(x) defined in (5.22) have all their zeros in [-2, 2). Since m,/n -0
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as n — oo, we see from (5.21) and (5.24) that the 4,(x) satisfy the hypothesis (3.24)
of Theorem 3.6. Thus (3.31) is a consequence of (3.25) and Proposition 3.8(b). 1O

Proor OF THEOREM 3.10. Continuing with the polynomials §, of the preceding
proof, it follows from (5.6) that

(5.26) lim |§,(z)|"" = ex l loglz — tjv(a; 1) dt |,
etk Y B

uniformly on every compact subset of C — [-2,2]. By Proposition 3.8, equation
(5.26) holds with §, replaced by g, (cf. (5.20)) provided z & R. This proves equation
(3.32). When r = oo, all the zeros of T, ,(a;(n/A,)/*x) lie in [-1,1] and the
uniform convergence in (3.32) is valid on compact subsets of C — [-1, 1]. For r = 2,
the last assertion of Theorem 3.10 likewise follows from the remarks preceding
327). 0

6. Weighted analogues of Nikolskii-type inequalities. In this section, we derive
inequalities relating different weighted L’™-metrics of algebraic polynomials not
exceeding a fixed degree. Since the class of all such polynomials is a finite-dimen-
sional vector space, the metrics are all equivalent. The objectives of these inequalities
is to estimate the constants involved in this equivalence in terms of the degree of the
polynomials in question. Similar inequalities for trigonometric polynomials and
entire functions of finite exponential type were obtained by S. M. Nikolskii (cf. [31,
§4.9.2; 25, §3.3)). Inequalities relating weighted L"-norms of algebraic polynomials
were obtained by Mhaskar [19] in connection with his investigations on the smooth-
ness of Fourier transforms. In this section, we shall extend these inequalities to all
L™metrics, r > 0, give simpler proofs and sharper constants,

For suitable weight functions w on R, we let

{p.(Wix)=vyx"+ - €F,v,>0)

be the sequence of polynomials orthonormal with respect to w? on R, i.e.

(6.1) j:wpn(wz;x)pm(wz;x)wz(x) dx =8, .
Foreachn = 0,1,..., define

(62) Ki(wixoii= T g 0p (o),
(6.3) M, (w):= “wz(x)K,,(w;x,x)”w,

where the sup norm in (6.3) is taken over R. We shall write p,(x) instead of
p,(w? x) when the weight function is clear from the context; the same convention
applies to other quantities related to w.

THEOREM 6.1. Suppose that |w||, > 0 and x"w(x) € L(R), n = 0,1,..., for every
gwith0 < g < o0. Let0 <p <r< wandm, €9, Then

I/p—1/r
(6.4) wall, < (M, (w*)} "

where k is any integer such that 2k > p.

Wl s
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PrOOF. Fix an integer k with 2k > p. There are constants by, b,,. .., b;, such that
the polynomial {7, (x)}* € ¥, can be expressed as

kn
(6.5) [7,(x)]* = gobjpj(wN‘; x)

and

x~

(6.6) b= [ [m,(x)w(x)]* dx.

Jj=0 -

Applying the Cauchy-Schwarz inequality in (6.5) and using (6.6), we get

n o0
%

kn

(6.7) w128 < || 2o p7 (w5 x)w (x)| [jwa,||35.
j=0 w

Thus

(68) “qun“oo < LL/Zk”w'”nHZk’

where

(6.9) L,:= M, (w").

Now,

[e o]
2k — 2k—
w135 = [ w(e)m, ()P iw(x ) m, (x)|? dx
-0
< w5 Pllwa 12 < L,/ 2K \wa, 1352 llw, |12,

where the last inequality follows from (6.8). Hence,
(6.10) Wi < L/~ ¥ wa ||,
Using (6.10) in (6.8), we see that

(6.11) : Wl < L/ Pl

which ‘establishes (6.4) for the case r = 0. Now, let 0 < r < co. Then on using
6.11)

00
(6.12) wliy = [ w(x)m, () w(x)m, (x)17 di
-0
< Iwm i Iwm iz < L2~ w157 lw 12,

which yields (6.4). O

In the case when the weight function w is supported on a finite interval and
0 < p < r < oo, Holder’s inequality can be used to obtain an upper bound for the
L?-norm in terms of the L'-norm. For an arbitrary weight function supported on an
infinite interval, such an estimation seems to be much harder. In what follows we
shall show that, under certain technical conditions on the weight function, we can
reduce this problem to the simpler one of estimating the norms on finite intervals.
All the conditions which we impose will be satisfied, in particular, by exp(—|x]®),

a> 0.
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DEFINITION 6.2. We say that a weight function w is in the class Z if the following
three conditions hold.

@) |iwl|l, > 0 and x"w(x) € LYR) forall0 < g < o0, n=0,1,...;

(ii) foreach k = 1,2

(6.13) limsup{Mk,,(w")}l/" =:u(w, k) =p < o0;

n—>

(iii) there exists a nondecreasing sequence {§,). | of positive numbers such that

(614) “wpnlloo,[—fn,{,,] = HWPn“oo,R VPn € @n’ n= 1’2""’
and
(6.15) limsup¢l/" =:B(w) = B < o0.

n—oo

LEMMA 6.3. Suppose w € E and 0 < p < 0. Then there exist positive constants c,,
¢y, A, depending only on p and w, such that for every P, € 9,

(6.16) |IwP,|I2 < (1+cle"‘2")f w(x)P,(x)?dx, n=12,...,

2n+l

where I'= 1 + [1/p] and {§,} satisfies condition (iii) of Definition 6.2.
Proor. For P, € ¥,,n > 1,and / = 1 + [1/p], property (6.14) implies that

(6.17) |x"*P (x)w(x) < &7 IwP,)l,, ae. onR,
and hence

g-]+(1//n)
(6.18) |w(x)P,,(x)|<( Z’I';I ) p |[|| wP,|., ae.onR.
From (6.15) we see that there is a positive constant ¢; = ¢;(w, p) such that
(6.19) lw(x)P,(x)| < (ﬁ%'llﬂ) Ix l/{IWP l, a.c.onR:

We can estimate ||wPF, ||, from above in terms of ||wP, ||, by using Theorem 6.1 with

k =1+ [p/2]. Then, in view of (6.13), there exists a positive constant ¢, = ¢,(w, p)
such that

(6.20) w(x)P,(x)| < (ﬁ%r“) DBl we.onR.

1 2 Vip-1)
A= max{2c4,§—(~lp—_—T) },
1

we have from (6.20) and the fact that Ip > 1

Hence, with

(6.21) f w(x) By(x)|7 dx < 27w, 12 [ x|~ dx
Ix1> A2 4 [%1> AL 44
<SR[ [xITP dx < 27" |wP 2.

1x|= A£,
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Finally, on writing

ATE fl

x| €A 2p4s

W) P (NP de+ [ w(x)P,(x)|” dx
x> A2+
and using (6.21), the inequality (6.16) follows. O
An application of the Holder inequality and Lemma 6.3 gives the following.

THEOREM 6.4. Suppose w € E, 0 < p <r < oo, and P, € 9. Then there exists a
constant ¢, depending only on w, p, r such that

(6.22) WP, < 882 /DlwP, |,

where {§,} satisfies condition (iii) of Definition 6.2 and [ is any integer such that
I>1+11/p]l

Our next task is to show that the weights w,(x) = exp(-|x|*) are in class = if
a > 0. It is obvious that x"w,(x) € LY(R) for every 0 < g < oo, so that condition (i)
of Definition 6.2 is satisfied. By (2.30) of Theorem 2.7, the condition (iii) is also
satisfied by w,; namely, we can choose {, = a,(a) which is a constant multiple of
n'/®. Thus it remains to estimate the Christoffel functions in order to verify the
condition (ii). Because of the homogeneity

(623) Mkn(woi() = kl/aMkn(Wa)9

it suffices to estimate M,(w,). Such estimates were obtained by Freud for a very
general class of weight functions. The class for which his results are published [8]
includes w, if @ > 2. Freud generalized these results to include w, for & > 1 during a
course taught at Ohio State University. The case of the weight w, appears in [11].
Using the preceding results of this section and the known result for w,, we can give a
simple generalization of these estimates which applies to the class of all weights w,,
a > 0. This is done in*

_THEOREM 6.5. Let w,(x) = exp(—|x|*), a > 0.
@) If0 <a <1, then

(6.24) M,(w)<en, n=12,...
®) Ifa > 1, then

(6.25) M (w,) < cn'"V*logn, n=2.3,....
(©) If a = 2, then (6.25) can be replaced by

(6.26) M, (w)<cn' VY n=12,...

Here c, is a constant depending only on a.

To prove Theorem 6.5 we first recall the following estimate which appears in [11}.

LEMMA 6.6. For every x € Randn = 2,3,...,

(6.27) wi{x) Y pP(wh x) < cllog( n1+ elxl).
=0 + x|
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REMARKS. (1) In the previous sections, pj(wlz; x) was denoted by p;(1; x).

(ii) In [11, Theorem 2.1], the estimate (6.27) is formally stated only for |x| < ¢,n.
Howeyver, it is remarked in [11] that (6.27) holds for all x € R. This extension from
the finite interval |x| < ¢,n to the whole real line is also an easy consequence of
(2.31) (cf. [8)).

Since the right-hand side of (6.27) is a decreasing function of |x|, we deduce

COROLLARY 6.7. Forn = 2,3,...,
(6.28) M, (w,) < ¢,log n.

We can now give the
PROOF OF THEOREM 6.5. (a) Let 0 < a < 1. Since the function ¢* ~ (¢ — x)* is
decreasing in ¢ if 1 > x > 0, we see that ‘

(6.29) 1t < |x|* + |t — x|* Vi, x €R.
Now, for x € R (cf. [4, §1.4)),
(6.30)

n -1 o0
2(w?; = i -2 2(¢ ~21t1¢) dt
(EOPJ(WW‘)) inf @7 2(x) [ _m()exp(-211%)

> cxp(~2|x|“) inf wn‘z(x)foo 72 (t)exp(~2jt — x|*) dt

2|/a a(x) lnf Ty Z(O)f Z(I)exp( 2|t| )dt

2(x) mf 7 2(0)_[ m2(t) dt

21/a

()

n

the last inequality follows from well-known representations for the constant terms of
normalized Legendre polynomials (cf. [30, §4.7]). This proves (6.24).

(b) If & = 1, then (6.25) coincides with (6.28). Thus we need to consider only the
case when a > 1. In view of (6.28), we have w, € E. Hence, by Lemma 6.3 (with
$, =mn/2, p=2), there is a constant D, > 1 such that if P, € ¥ and n is
sufficiently large, then

©3) [ R g [ ()R ()R d.

|x]< Dyn
By (2.30) of Theorem 2.7, we may also assume D, to be so large that, for every

P2n € G‘PZn’

(6.32) max g (x) P, ()] = [1wg (%) Py (%)l

\x|< Dyn'/®
Note that if |¢], |x| < 2D,n'/%, then since & > 1 we have

(6.33) {]® < |x|* + aD,n' Vo — x|, Dyi= (2D,)*".
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Therefore, if |x| < D,n"/%,
(6.34)

(£ 7020 = ing w7 [“mom)

> inf w‘z(x)f m2(¢)exp(-2)¢|*) dt
|t—x|< Dyn'/®

€9,
> mf T, Z(x)f m2(¢)exp(-2/x|* — 2aDyn' /%t ~ x|) dr
lt—x{<Dn'/
¢
= 2(x) mf m, 2(0)f oo a2(u)wi(u) du,

where ¢ is a positive constant. Since DI > 1 and a > 1, the inequalities (6.34), (6.31)
and (6.27) imply that, for all n large,

n

(6.35) (Z ( ))- > — p 1~]/a 2(x) 1nf I, 2(0)[ Z(u)wlz(u) du

e (x)
n'"Veogn
The desired inequality (6.25) now follows from (6.35) and (6.32).

(c)Sec[8]. O

We are now able to prove Theorem 3.1 and Proposition 3.2.

ProOOF OF THEOREM 3.1. Inequality (3.2) is a consequence of Theorem 6.1, the
estimates for the Christoffel functions given in Theorem 6.5, and (6.23). Since
w, € E,a > 0, with {, = a,(a) = (n/A,)"/* inequality (3.6) follows from Theorem
64. 0O

PROOF OF PROPOSITION 3.2. Inequality (3.8) is an immediate consequence of
Lemma 6.3, where again we use the fact thatw, € X, @ > 0, with {, = a,(a). O

ADDED IN PROOF. The authors have recently become aware of the independent
work of E. A. Rakhmanov [Math. USSR Sb. 47 (1984), 155-193] which deals with
the asymptotic properties of the polynomials p,(«; x) orthonormal with respect to
the weight exp(-2|x|*). Rakhmanov considers only a > 1, but he proves that
(n/A)7"°X,(a) > 1 as n - oo, where X, (a) is the largest zero of p,(a; x).
Apparently, Rakhmanov, in turn, was unaware of the earlier works of Freud, Nevai
and Ullman. Concerning Freud’s conjecture, Al. Magnus has recently shown that it
is true for a an even integer.

', iflx] <D nl/e.
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