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A NOTE ON THE SHARPNESS
OF J. L. WALSH’S THEOREM AND ITS EXTENSIONS
FOR INTERPOLATION IN THE ROOTS OF UNITY

E. B. SAFF! (Tampa) and R. S. VARGA? (Kent)

§ 1. Introduction and statements of new results

Let 4, denote the collection of functions analytic in |z|<g and having a singu-
larity on the circle |z]=g, where it is assumed that 1< =< . Next, for each positive
integer n, let p,_,(z; f) denote the Lagrange polynomial interpolant, of degree at
most n—1, of f(z)€4, in the n-th roots of unity, i.e.,

(11) pn-l(w; f) = f(w)
where  is any n-th root of unity, and let

n—1

(1.2) Pz f) = 2 @z

be the (n—1)-st partial sum of f(z)= > a,z*. Letting
k=0

(L.3) D, = {z¢C: |z] <1},
then a beautiful result of J. L. Walsh [2, p. 153] can be stated as

THEOREM A. For each f(z)cA,, the interpolating polynomials of (1.1) and (1.2)
satisfy
(1.4) 5im {p,1(z; f)=Paoa(z; N} =0, for all z€D.

Moreover, the result of (1.4) is best possible in the sense that there is some f (24,
and some % with |5|=g% for which the sequence {p,_(Z; f)—P,_1(%; F,
does not tend to zero as n—oo. ,

Note that in Theorem A, no sharpness assertions are made for arbitrary functions
f(2)€4,; in particular, no statement is made on the behavior of the sequence

(15) {pn—l(Z; f)—Pn-l(Z; f)}r?:l

in |z} =02 One of the aims of this note is to in fact address this behavior in |z|= 2
As a special case of Theorem 1 below, we prove that, for any f(z)€4,, the sequence
in (1.5) can be bounded in at most ore point in |z]>g?. This fact is of special interest
in the case when f(z) in 4, is also continuous in the disk |z|=g¢; for such functions,
it has been shown in [1, Thm. 2] that (1.4) is valid for all |z|= 2
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For our own purposes below, we need a recent extension of Theorem A. For

additional notation, set
n—1

a6 Py (@5 f) = 3 apds =010

Then, the following result of Cavaretta, Sharma, and Varga {1, Thm. 1], which gives
Theorem A as the special case /=1, can be stated as

THEOREM B. For each f(2)€A,, and for each positive integer 1, there holds
1-1
(]7) hm {pu—l(Z; f)_' 2 Pn—l,j(z; f)}:()’ for (1” ZEDL'“H
o> oo =0
the convergence being uniform and geometric on any closed subset of Dg 1. Moreover,

the result of (1.7) is best possible in the sense that there is some f(z)€A, and some Z
with |2|=9'™" for which the sequence

(1.9 s = 3 P st )

with z=% and f=f, does not tend to zero as n— oo.

oo
n=1

Our first new result is

THEOREM 1. For each f(2)€A,, and for each positive integer |, the sequence
(1.8) can be bounded in at most I distinct points in |z|=> @' ™. This result is sharp, in
the sense thar, given any | distinct points {n Y-, in the annulus ¢'*'<|z|<g'*?,
there is an f(2)€A, for which

1-1

(19) 3!?;10 {pn—l(nk; f)— 2{; Pn—l,j(nk; f)} = 0: k = ]7 2a e l
j=

There is an extension of Theorem 1 which we can also state. Note, of course,
that Theorem A involves only the Lagrange interpolation of f in the n-th roots of
unity. For 7 a fixed positive integer, Theorem B can be extended using Hermite inter-
polation. For notation, let h,,_,(z; f) denote the Hermite polynomial interpolant,
of degree at most rn—1, to f,f*, ..., f“~1) in the n-th roots of unity, i.e.,

(1'10) hg}’;)—l(a); f) = f(j)(w)a j = 0, -1, sees V—],,

where again  is any n-th root of unity. If f(z) = > a;z/, we set
=0

rn—1
(111) }Irn—l,o(z; f) = 2 akzk’
k=0
and we set
n—1
(112) Hm—-l,j(z; f) = ﬁj(zn) Z ak+n(r+j-1)zk’ J = 13 23 seey
k=0
where
p i1 .
(1.13) Bi(2): = k;('] ( fc ](z—l)", j=12,...
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Then, the following result of Cavaretta; Sharma, and Varga [1, Thm. 3], which gives
Theorem B as the special case r=1, can be stated as

Tueorem C. For each f(z)€A,, and for each pair of positive integers v and I,
there holds

(1.14) &i»m{ 125 f)— 2 m—1,7(Z; f)} =0, for all zE€Dg:am,

the convergence being umform and geometric for any closed subset of Deisam.
Moreover, the result of (1.14) is best possible in the sense that there is some f (z)€A4,
and some % with |28|= 7" for which the sequence

(1.15) {h,,,_l(Z; f)——f;—(; Hy, -1, (z; f)}il,

with z=% and f=f, does not tend to zero as n-oo.

Our second new result, which sharpens Theorem C and gives Theorem 1 as the
special case r=1, can be stated as

THEOREM 2. For each f(z)€ Aa, and for each pair of positive integers rand I,
the sequence (1.15) can be bounded in at most r+1—1 distinct points in |z| >Ql+(’/')
This result is sharp, in the sense that, given any r+I1—1 distinct points {n }iZi~t in

1
the annulus o+ <lz|<min {Ql+2; QH r~1}, there is an f(z)€A, for which

I--1

(1’16) 'y’n‘l {hrn—l(rlk; f)"' Z{) Hrn—l,j(nk; f)} = 0’ k= ]‘a 2, st l‘—]—l-—l.
i=

Since the proof of Theorem 2 is completely analogous to the proof of Theorem 1,
we shall give only the proof of Theorem 1.
§ 2. Proof of Theorem 1
To establish the first part of Theorem 1, consider any {(fixed f€A4,, consider

any fixed positive integer /, and suppose that there are (/+1) distinct points
{7ty in |z|=0'** for which

-1
@D o = Z a0 Nl =M, =1, YISk 141

If f(z): = 2 a;zJ, then the hypothesis that f is analytic in |z|<g with a singu-

larity on |zl—0 gives us that

2.2) Iim [a,*" = -é

- co
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Thus, for any ¢=>0 with 1<g—e¢ and with

(2.3) (e—e)f** =o',
there is an ny(e) for which
249 la,| = W, Vn = ng(e).

Next, since all the points {y}it} lie in |z]=¢'*, then

t+1 P 1 = E—3
(2.5 ¢t <oi= min |y|= max |p|=: o,

and we choose the least positive integer m for which
(2.6) gy < o™t (where | < m).

Applying Theorem B (with / chosen as m), we have that the sequence
m—1

oo
n=

{p,,_l(z; - 2 Py, (2 f)} | converges to zero for all z€Dgm+1. In particular,
Jj=0

as the points {;:,(}’1+1 alllie in Dym+: from (2.5) and (2.6), then there exists a constant
M, such that

'
m—1

2.7 pn-l(yk;f)—Z0 Py i =My, Yozl Vi=k=I1+1
=

Using the hypothesis of (2.1), this in turn implies that

(2.8)

m~1
AZ[' Pn—l,j(yk;f)l §M29 Vnil, V] é/(§l+1
i=

Recalling from (1.6) the definition of P,_, ;(z;f), then it follows from (2.4)
that

= N S~
an—l,j(Z, f)l :"kg(; (@_8)k+jn - (Q'—S)j" 2 {Q—'E

k=0
Thus,

i nIZ[u
(2.9) [Py, (25 ) = Te—a)d i

]k, Va = ny(e).

Vi =ny(e), Vizl = Vi=1t.

This can be used as follows. From (2.9), we see that, if /+1=m—1, then

m-t (m—1—-1)n|z|*

(2.10) jleHP,,_l,,-(Z; 5 EW—’ Vn=ne(e), Viz| >e.

Hence, from (2.8) and (2.10),
2.11)

[Pyor, (s ) = M+ (m—I-Dnly "

T (e =giFm Vn=ny(e), V1=k=I+1
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Now, because of (2.11), it further follows that

M n n
@12 AP 1)~ Pacs s 1] = Mk o

for all n=mny(e), all 1=k=I/+1. Next, because of the definition of P,_; ;(z; 1),
it can be verified that
l+n

I-1
(213) Zan,l(Z; f)'_Pn—l,l(Z; f) = Z aln*-jzj" Z(; aln+jzj'
j=n J=

Obviously, the last term in (2.13) is bounded, independent of , in the points {y,}it},
whence from (2.12) and (2.13),

I+n

j 1”4”|yk|n
a -y
jZ:; In+]yk

] (Q_B)(l+2)n ‘

On dividing through by |y /" in (2.14), we obtain

(2.14)

= M;+

! . M Myn
2.15 a Vil = — 2 ,
( ) j;(') n(l+1)+1yk lyk!" (Q—S)(l+2)"
and so, from the definition of ¢, in (2.5), there follows

! ) M Myn
(2.16) j;; Augrny+j Vi = _0’17+T978)2(’72—)7’
for all n=ny(e), all 1=k=I+1. If, for convenience, we set

1 1
2.17 - {_- L
@1 i (@—e)“z}
then it follows from (2.3) and (2.5) that
1

(2.18) T << —Q‘m .

Next, we write a system of (/+1) linear equations in the “unknowns”
Aatym+js 1.

I
(2.19) Zyia(,+1),,+jztﬁ(,n, k = 1, 2, veey l+1
=0
where, from (2.16) and (2.17),
(2.20) | fi,nl = Mgnt", Yn=ny(e), Vi=k=I+1.
In matrix notation, we can write the system of equations (2.19) as
Ly, .. ) A+ Jin
(2.21) ] Y2 o .. yé . a(1+.1)n+1 — f%,n
L pray oo Y A+ 1yn+1 a1 w
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The coefficient matrix, 4, in (2.21) is a Vandermonde matrix, and, as the points
{y )it} are distinct by hypothesis, then 4 is nonsingular. Using Cramer’s rule, it is
easy to see from (2.20) and the fact that the {y,}i*? are fixed distinct points, that

(2.22) [dgenms ] = Mant", Yn=ng(e), VO=j=1
However, (2.22) implies that
(2.23) T [a, [ = 70 < %,

the last inequality coming from (2.18). As this contradicts (2.2), then there can be at
most / distinct points {n}i-y in |z|>g'** for which the sequence (1.8) is bounded,
completing thefirst part of the proof.

To establish the second part of Theorem 1, let w;(z) be any monic polynomial of
degree ! with precisely / distinct zeros in the annulus o'*1<|z]<@'*2, i,

1 !
(2.24) w,(2) = k[]1 (z—n) =: .Z(’] B; 2,
- f=
where
(2.25) o't <= |l < o't for k=1,2,..,1L

Consider then the particular function

(2.26) f@: = ?TV:’%)TE

Clearly, f€A4,, and f has I+ poles on |z|=p. We now show that with these defini-
tions, (1.9) of Theorem 1 is satisfied. From Theorem B, we know that

1
(2.27) '!Ln;lo {pu-l(Z; f)'— Z; P,,_lyj(z; f)} = 0, VZEDQH~2.
=
We claim that
(2.28) lim P,y (s J)=0, Vi=ks=l

To establish (2.28), write f(z):= 3 4,z*. Tt follows from (2.24) and (2.26) that
k=0

(229) d,,,(,+1)+j = F’?/i{all_)’ V0= ] = I, Vm =
Next, by definition,

n—1
(230 Po_y,.(z; f) = kZJ) ﬁlt:+kzk’

and we consider the case when # is a multiple of (/4 1), i.e., n=(/+1)s. On regroup-
ing terms in (2.30) for such n, P,_; ;(z: f) can be expressed as

s~1 1

(2.31) Pysn-1,02; ) = kz(') 24+ ) Od(l+l)[sl+k]+jzj'
it J
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But, the inner sum of (2.31) can be seen from (2.29) and (2.24) to be

]
- : w;(2)
(2.32) jé; Qs+ j 2 = o+ DIT+EFTT *

Since w,(n,)=0 by definition, it follows from (2.31) that
(2.33) Pygr1y-1,1(; f)=0 vi=k=l Vs=1

Having just considered the case when # is a multiple of (/+1), we now supposé that
n=s(/+1)+t, where 1=¢=/. On similarly regrouping the terms in (2.30) and using
the fact that w;(s,)=0, it can be shown that

t—1
(2.34) Ps(t+1)+r—1,z(’7k; )= Z:} G +1)+ 1+ M-
=

Since the {n;};~; are fixed, and ¢ does not exceed /, then, as |4, >0 as n—< from
(2.29), we have from (2.33) and (2.34) that

@39 lim P,y (s /) =0, Vi=k=1,

as claimed in (2.28). Thus, with (2.27) and the first part of Theorem 1, the sequence

-1 o
(2.36) {p,.-l(z; f)—j=20 P, ;(z; f)} .

is convergent (to zero), only in the points {n,};., and unbounded for all other points
in {zeC: |z|=¢'*}.

Added in proof. (April 14, 1983) The second part of Theorem 1 remains valid if any / distinct
points {.}-, are arbitrarily chosen in |z|>¢'*!, with a similar improvement holding for Theo-
rem 2. This has been shown by the author and, more generally by T. Hermann, ”Some remarks
on an extension of a Theorem of Walsh”, J. Approx. Th. (to appear).
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