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1l Introduction.

Given a (formal) power series f(z) ==Eanzn , the classical Pade” approxim-
ant of typerr[n/v]' is<a rational function Pn;v/Qn,v’Where Pn,v’Qn,v(io) are poly-
nomials of respective degrees at most n and Vv, and such that the power series of
Qn,vf_Pn,v starts with terms of degree > ntv+l. When qualitative properties of
f(z) are known (such as the existence and number of poles, branch points, etc.), a
fundamental question in the study of Pade” approximants is whether the poles of these
approximants tend to the singularities of £(z). Some classical results in this
direction include the theorem of Montessus de Ballore on meromorphic functions [9](cf.
[13]) and results for Stieltjes series [11], [7].

Much less is known, however, concerning the inverse problem. Here the es-

sential question is the following. Suppose that f(z) 1is a formal power series
and that the poles of some sequence of its Pade” approximants converge to a set L.
Does it follow that f (or some continuation of f) is singular on L? A related
problem is whether the function £ is actually analytic off L.

The purpose of this paper is to survey known results concerning the inverse
problem and to present some proofs of theorems previously announced [6] by the au-
thors.‘In sections 2 and 3 we consider rational‘interpolants with fixed denominator
degree. For the special case of Pade” approximants of type [n/l1] our result in
§2 concerns the validity of what physicists call the Domb-Sykes method [3]. In §3
we study rational interpolation in more general triangular schemes, and in §4 we

discuss diagonal sequences of Pade” approximants.

2. Pade’ Approximants with Fixed Denominator Degree

The earliest result in the inverse direction is the following theorem due

to Fabry [2, p. 377], which can be regarded as a refinement of the ratio test.

Theorem 2.1. {Fabry) Suppose that £f(z) = %anzn is a (formal) power series for
which
- lim an = 0o .
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Then f(z) is analytic in the disk lz|<]a[ and o 1is a singularity of f(z).

Of course the conclusion regarding the radius of convergence is evident,
so the significant part is that o is actually a singularity of £f(z). Now it is
easy to see, directly from the definition, that an/an+l is the pole of the Pade’
approximant of type [n/1] to f(z). Thus Fabry's theorem can be reformulated as
a result concerning the second row of the Pade’ table: 1§ the poles of the [n/1]
Pade” approximants fon £ converge to a, then o A8 a singularnity of — f.

A substantial generalization of Theorem 2.1 to other rows of the Pade’ table

was recently proved by Vavilov, Lopez, and Prohorov [12]. They established

Theorem 2.2. Suppose that f 1is analytic at the origin, and that the denominators

Qp,y (suitably normalized) of the Pade” approximants of type [n/v] , v >0 fixed,
n=0,1,2,..., converge to a polynomial Q of degree v. If Q has a single zero

o of largest modulus and this zero is simple, then f is meromorphic with precise-

ly v-1 poles (at the smaller zeros of Q) in the disk lzl<|u[. Furthermore, f

has a singularity at oo

If in Fabry's theorem (or Theorem 2.2), additional information is given

regarding the degree of convergence of the poles of Pade’ approximants, can we then
g g oL

describe the precise nature of the singularity at o? A fundamental theorem in this

regard was obtained by Kovaleva [ 8] who studied the case of geometric convergence

of the poles. She proved the following result which is the converse of the Montessus

de Ballore theorem:

Theorem 2.3. Suppose f 1is analytic at the origin and there exists a polynomial

Q of degree v, with Q(0) # 0, such that the denominators Qn,v (suitably nor-

malized) of the Pade approximants of type [n/v] , n=0,1,..., satisfy

IIQH v‘QH = O(R™™), R>1, where Il represents any of the equivalent norms on
s where on

the (v+l)-dimensional space of polynomial coefficients. Then £ 1is meromorphic

with precisely V poles (at the zeros of Q) in the disk Iz]<R1av[, where Iuv[

is the maximum modulus of the zeros of Q.

Note that, unlike Theorem 2.2, no restriction is made here on the number
of limiting poles of largest modulus. We also remark that by generalizing the
Hadamard theory, Kovaceva extended Theorem 2.3 to the case of Newton series. In
§3 we shall return to this result and deduce a similar theorem for even more general
interpolation schemes.

Regarding slower than geometric convergence, there is a technique related
to algebraic singularities which is known as the Domb-Sykes method [3]. This meth-

od is based on the observation (letting the singular point a=1 for convenience)

that if f(z) = 3, anzn is of the form
o
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A
(2.1) £(z) = c(1-2)" + h(z), réN, or £(z) = C(1-2)log(1-z) + h(z), rel,T
where h(z) 1is analytic on [zliR, R>1, then

(2.2) /a_ =1 - (1+A)/(a+l) + oRrR™ .

a
n+1

Graphically, (2.2) implies that when the successive ratios (the reciprocals of the
poles of the Pade” approximants of type [n/l1]) are plotted against 1/(n+l), then
they asymptotically lie on a straight line. 1In the inverse direction, we can easi-
1y prove that 4§ (2.2) hofds for a function £, then £ must be of the form (2.7),
where h(z) 4«8 analytic Ain |z|<R. This is a special case of our

Theorem 2.4. Suppose that f dis analytic at the origin and v>0 1is fixed. Let

{a(k) v denote the zeros of the denominator Q of the Pade’ approximant of
n,v k=1 —_ n,y —— ==

type [n/v] for £, where

1689 < o) < e < [0
n,v' — n,v n,v

Suppose there exist v nonzero complex numbers {a(k)};=1 such that
(2.3) ucv_l)/a(v) < 1/R, R>1 ,
(2.4) Lin ol =0, k=12, e,
and
-2 OL(i) - u(xl» [1 ) Ili%] +O®™) , 28 e
n,Vv

Then, if A¢N, the function f must be of the form

A
f(Z) = C\()-Z_Ioc(\))) + h(Z)
I1 (z—a(k))z
k=1

(2.6)

b

+N denotes the set of nonnegative integers.

-
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where h is analytic in |z]| < R[a(v)| and h(a(k>) = —C(a(k)—a(v))x

., v-1. If AeN, then

,» for k=1,

b

£(z) = C(z—a(v))xlog(z—u(v)) + h(z)
v-1

0 (z-a )2

k=1

(2.7)

where h 1is analytic in [zl < Rla(v>l and h(a(k)) = —C(a(k)—u(v)) log(a(k)—a(v)),

for k=1, ..., v-1.7T
We remark that when A=-1, the convergence in (2.5) is geometric, and Theo-
rem 2.4 reduces to a special case of Theorem 2.3. 1In fact, if A 1is any negative
integer, then The§rem 2.4 states that f is meromorphic in ]z] < Rla(v)|, with
(k
a

poles at the , k=1, ..., v, and this more general situation is not covered

by Theorem 2.3.

Proof of Theorem 2.4. Normalizing the Qn v(z) so that they are monic, it follows

from (2.4) and (2.5) that

n o @ = N @a®™)zew@ , ¥

Further, from (2.3), the polynomial Q has a single zero of largest modulus, name-

)

ly at o , and this zero is simple. Hence Theorem 2,2 implies that in the disk

lz| < [a(v)|, the function f is meromorphic with precisely wv-1 poles (at the

’

a(k), k=1, ..., v-1). Now set

~ v-1 . v-1
Qn,v(z) = 1 (z—ui%&), Q(z) = T (z—a(k)),
k=1 k=1

From the Pade’ conditions, we have

4 A A _ n+v+l
(2o "0, (DADE-A@P () =0E ), as z0,
and since Qf is analytic in Izl < Ia(v)l, Hermite's formula implies that for any
0 <o < |a(v)[
. M A - oA 1/n v
(2.8) lim sup | max (z an,v)Qn,va QPn,v < O/Ia |.

n-—>o lzlig

tMore precisely, for any A the conditions on h are meant to indicate that f
has poles in a(l),...,a V= with corresponding multiplicity (not twice the

multiplicity).

i
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Since (Qf) (a ))#0 and (QPn.vXa(k))=0 for k<v, 1t easily follows from (2.8)

and (2.3) that, on any compact set K C ¢,

(2.9) I;g; IQH’V(Z) - Qz)| =O0@®™), as now.

Next, for notational convenience, if g is analytic at z = 0, we let
. n . . .
In(g) be the coefficient of =z in the Maclaurin expansion for g. Further, we

set aEa(v). Then from the Pade’ conditions and the fact that the degree of QPn
b

is at most ntv-1, we have

z ~2 _
In+\) [(a - > Q f] - In+-\) [
Using (2.5), this last equation can be written in the form

w0 ({5 )] -t [ ) ] - oo, 0]

A+ A AP (1) n2
(V) In+~\) [Z<én,v—Q)Qf} + (n+v)a In+-\) [ZQ f} y

Now the first, second, and third terms on the right-hand side of (2.10) are each

) G oo

n,v

O(p—n) for every l<p<RwaI . Hence on multiplying (2.10) by zn+v and summing,
we find that
z
_ 22
F(z) = Q (t)f(t)dt

0
satisfies the following differential equation
(2.11) (z=a)F' (2) = (LHA)F(z) + G(2) ,
where G is analytic in |z| < R |a|. Solving (2.11) by the usual method gives

Z

F(z) = (z - a)' ™ / —99:—)—‘2% .
(t-a)
0

Thus F dis analytic in [zl < Rlul except for a branch cut emanating from «a,



and 50 the saive is true for -

~2
(Q ) (2
. (t~u)2+A

I
g
N
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~
N
i
R
~
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+
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G(t)dt ]

k
Next, let G(z) = ck(z~a) be the Taylor expansion for G about o (which con-

O M8

verges for iz—a[ < (R—l)[a[) and select a point 2y SO that [zol < lal and
lzo—al < (R—J)Ia!. Then, on consistently choosing the same branch of the logarithm

(say with a radial cut from o to infinity) we can integrate term-by-term to ob-

tain, for 2z off the cut and |z-a| < (R-1)]a] ,

2
é%—[cl(z—a)l+A + (el j[ JGES ]
(t-a)
“0

n

%6 (2)

li

. . z
Cz(z—a)A + éi [(z—q)l+A ;Z%ck }{ (t—a)k"k—zdtJ .
= 2,

If 2 ¢N, this gives

= k '
~2 _ A4 (z=a) " _ N1
(Q7£) (2) C2(2 o)+ 1z [ A Ck(k-k—l) C3(z o) ]
k=0
A
= C(z~-2) + h(z),
where h 1is analytic in lz—al < (R—l)]a[ , and hence in ]z] < R]al. If JdelN,
then the integration gives rise to the logarithmic term of (2.7). Thus f must

be of the form (2.6) or (2.7).pD
We remark that Theorem 2.4 has a converse (a direct theorem) which is

fairly straightforward to prove.

3. Generalized Taylor Series.

In this section we consider rational interpolation in general triangular
schemes and deduce sn inverse result related to Theorem 2.3. As in the setting
of the second author's generalization [10} of the theorem of Montessus de Ballore,
we let E Dbe a closed bounded point set in the z-plane whose complement K
(with respect to extended plane) is connected and regular in the sense that K
possesses a Green's function G(z) with pole at infinity. For o>1 , we let EO

denote generically the level curve
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I G(z) = log o,

and we denote by EO the interior of Iy«

Next, we consider a triangular scheme of interpolation points

(0)
By

(1) (1)
BO s Bl

(3.1) . .
(n) (n)
BO s Bl s eeey B

. . . . . . . -

(not necessarily distinct in any row) which lie on E.+ Setting

(3.2) w2z 1 ™)

k=0

, n=20,1,2,...,

we assume that

(3.3) 1im Iwn(z)|l/n = Aexp G(z) ,

n >

uniformly in 2z on each closed bounded subset of K, where A 1is the trans-
finite diameter [14, §4.4] of E. We remark that condition (3.3) is equivalent to

(3.4) lim sup [max [wn(z)] : zs:E]l/rl <

n-o

A (cf. [14,87.4]).

While the assumption of (3.3) is sufficient for proving a generalization of the
(direct) theorem of Montessus de Ballore, the study of the inverse problem for ra-
tional interpolation in the points (3.1) requires much more refined properties,
which we now state.

For functions f analytic in the points (3.1), we let In denote the

divided difference operator in the points Bén),8£n>,... ,Bén), that is
- (n) (n), _ 1 f(z) B
(3.5) L (f) = £IB) 75 «vns B V=5 Wn(z) dz , n=20, 1, ...,
C

tWith slight modifications in the subsequent discussion, it suffices to assume,
more generally, that no limit points of (3.1) lie exterior to E.

.
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where the contour C is suitably chosen so as to enclose all the points (Bin)}izo

We remark that if Ln(z) is the unique polynomial of degree at most n which in-
n

. (n
terpolates f din the points {Bk )}k=0 N

then In(f) is simply the coefficient

of 2" in the expansion of Ln(z) .

Now for each n =0, 1, ..., it is easy to see that there exists a unique

monic polynomial Pn(z) of degree n, such that

= § for all j =0, 1, ... .
(3.6) Ij (Pn) . > J .

J,n

We shall refer to these polynomials Pn(z) as basis polynomials for the scheme

(3.1). They can be generated via the recurrence formula
n ol n
P (2) =z - g;o 1, (zMP, (2) , Po(z) =1 .

The divided difference operators together with the associated basis polynomials

give rise to a Ceneralized Tavlor Series (GTS) for f, namely

(3.7) fz)~ 3 1_(D)P_(2)

n=0

A discussion of the algebraic properties of GTS can bs found in Gelfond [h] . For

our purposes we require that these series represent 7 on E as described in

Definition 3.1. The scheme (3.1) is said to have the Walsh-Hadamard property with

respect to E if condition (2.3) holds and if, for every function f analytic on

E , the series (3.7) converges to f uniformly on E .

The essentisl feature of such schemes is given in

Lemma 3.2. If (3.1) has the Walsh-Hadamard property with respect to E and f is

any function analyﬁic on E , then

1/n

(3.8) lim sup lIn(f)] = 1/Ap(f) ,

<o

where

p(f) = sup {c: f is analytic in EU % .

Moreover, the GIS for f converges to T uniformly on compact subsets of Eo

()




Proof. We first show that the basis polynomials Pn(z) satisfy

(3.9) ' lim IPn(z)Il/n = pexp G(z) ,

n-o
uniformly on each closed bounded subset of X . For this purpose, let p>1l and
select a point t on Pu . Then for the function g(z) = 1/(t-z) , it is easy
to verify that

I(g)=1/w (t) , for all n>0 .
n n -

Hence, from the Walsh-Hadamard property,‘the series
Eo:Pn(z)/wn(t)

converges uniformly for z on E . BSince the terms of this series are uniformly

bounded on E , condition (3.3) implies that

lim sup [max [Pn(z)[ : st]l/njhlim ‘wn(t)ll/n = Ay .
n->« n-¥o .

On letting u +tend to 1 in the last inequality, we have

E]

lim sup [max an(z)l =Z€E]l/n§_A
n-><o

from which (3.9) follows.

Now let f(z) be analytic on E. Then it follows immediately from (3.3)

and (3.5) that

1/n

(3.10) lim sup lIn(f)I < 1/bp(f) .

n-+o
Assume, to the contréry, that strict inequality holds in (3.10). Then it is easy
to verify, from (3.9), that the GIS of .f converges uniformly on compact subsets
of Ey for some A > p(f). Since this series gives an analytic continuation of
f(z) , we reach a contradiction to the definition of the number p(f). o
We now consider rational interpolation in the scheme (3.1). For f ana-
lytic in these points and (n,v) a given pair of nonnegative integers, we let

o be the unique rational function of the form
n

r =p Jq , deg Po,y S0 deg Gy S V> @ 0,

such that
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L, (o) (n+v) (ntv)
z = BO s Sl s B

(3.11) qn,v(z)f(z) - pn,v(z) = 0 for cees B

(In case of repeated points £, equation (3.11) is to be interpreted in the Hermite

(derivative) sense.) Our main result is

Theorem 3.3. Suppose f 1is analytic on E and the scheme (3.1) satisfies the
Walsh~Hadamard property with respect to E. Let v>0 be fixed and suppose there

exists a polynomial q of the form

N
(3.12) q(z) = 11 (z=o.), o ¢E for 1<k<v
k=1 k

such that the (denominator) polynomials gq . (suitably normalized)of (3.11) sat~

o,
isfy
-n
(3.13) llqn’v ~-qll=0®"Y, R1, a=0,1, ...,
where ||+|| represents any of the equivalent norms on the (v+l)-dimensional

space of polynomial coefficients. Then, either

(L) £ 4is meromorphic with at most V-1 poles in the whole plane, with the poles

of f din zeros of ¢, or

({L) £ is meromorphic with precisely V poles in ERO*, where

v
(3.14) o* Z max {ok : akeF o,
k=1 k

and these v poles of f are the zeros, s of q.

Proof. Suppose first that £ 1is not meromorphic with at most v-1 poles in the

whole plane. With the notation of Definition 3.1, we then need to show that

%
(3.15) p(qf) z_Roc s

and that f actually has poles in the v zeros of q (with corresponding multi-
plicities).
Let §(z) be the monic polynomial whose zeros are the poles of f in

Ep(qf) (if no such poles exist, we set ¢(z) = 1). Then § divides q, and

(3.16) p(af) = p(gf) = p(gqqf)
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Wa claim that §(z) = q(z). Suppose this is not the case. Then deg § < v-1 , and
the interpolation conditions (3.11) imply that In+x(ﬁq Vf) = 0. Hence we have
) n R g

(3.17) Inﬂ(qqf) = In+\)[(q~qn’v)qf] , n=20,1, ... .

Next, select any point zer and write
S @),k
A n
a(z)-q, (=) = kgo b (22 ).

From (3.13) we have Ibén)l = O(R_n) as n= «, and furthermore; by Lemma 3.2,

lim sup lIn+V[(z—zo) qfl| = lim sup lIn+v(qf)| > 0, k=0,...,v |,

n - n->e

where the positivity assertion follows from our assuwption that £ is not mero-
morphic with at most v-1 poles in the whole plane. ' Therefore, from (3.17), there

holds

ll/n 1/n

. - I o i/n . -
(3.18) lim sup lln+v(qqf) § § lim sup |In+v(qf)! < lim sup ]In+v(qf)[

3

and so p(qdf) > p(qf), which contradicts (3.16). Thus, as claimed, q(z) = q(z),
which means that all the zeros of q lie in Ep(qf) and that f has actual poles
in these v =zeros. To-establish (3.15), we simply repeat the above argument with
§ 7replaced by q , where a is the monic polynomial whose zeros are the poles
of f in Eo* (compare (3.18)). ‘

Finally, if f is meromorphic with at most V-1 poles in the whole plane,
then as is easily seen from the proof of the Montessus de Ballcre theorem, these
poles must be limit points Qf zeros of the qn §, and hence must lie in the Zeros

3

of q. 0O

We now mention some examples of schemes (3.1) which satisfy the Walsh-

Hadamard (WH) property.

Example 1. Let E be the disk lzl <1, >0, and let all the Bén) be zero.

Then I (f) = f(n)(O)/n! s Pn(z) = 2! , and the GTIS is simply the Maclaurin series
for f.n Hence, for a function f analytic at =z=0, Theorem 3.3 applies to the
Pade approximants of f. Notice, however, that Theorem 2.3 is somewhat stronger

in this case since for possibility (£) it implies that f is rational with at

most v-1 poles.

Example 2. Suppose that the scheme (3.1) is independent of n, that is, Bin) = Bk

for all n . Then we have

AR

R




n-1
m P (z) =w ,(2) = k£% (z-8)

and the GTS is just the Newton series for f. Hence, if condition (3.3) holds, the
Newton scheme has the WH property. 1In this case, as in the first example, the re-
sult of Kovateva [8] 4is somewhat stronger than Theorem 3.3. However, her results

do not apply to the examples which follow.

Example 3. Let E be the unit disk izl <1, and let the scheme (3.1) consist of

the roots of unity, i.e., w (z) = zn+l— 1, n=0,1, ... . 1If f£f(z) ==§:a.zk is
n S k

analytic on E, then it is easy to verify that

n
1 i i _
L® =58 12::0 Ml EOner) T A B tagp YAt
where An+l is a primitive (ntl)st root of unity. As shown by Ching and Chui
[1] , the basis polynomials Pn(z) are given by 7

Pn(Z) = Z u(n/k)zk’ n=0,1, ..., A

k|n IR

where k|n means k 1is a factor of n, and u 1is the Mobius function defined by

. i, 1if 3 =1
. k . . s .
v(G) = (1), dif j =1 (k distinct primes)
o , 1if pz‘j for some p>1

It is readily shown (cf. [ 1 ]) that the GTS gives maximal convergence to £, so

this interpolation scheme has the WH property.

Example 4. Suppose the points 8 are the same in each fixed row of (3.1), that is,

n .
w (z) = r[(z—B(n)) , n=0, 1, ... . 1In this case, In(f) = f(n)(B(n)yn! , and
n k=0
the basis polynomials Pn(z) are the Gontcharoff polynomials (cf. [ 4 ]). As dis-

cussed in the next example, if E : |zl < 1, t1>0, and the points B(n) tend to

zero sufficiently fast, then these points have the WH property.

Ekample 5. For the scheme (3.1), suppose that the points Bén) tend to zero as

n—~+ (0<k<n). Let An be the smallest convex polygon containing the points

CRCIY ’

(n) (n)
BO ] Sn‘

and let d be the diameter of the smallest circle which encloses
n

.



v

the polygons An—l and An. If Edn < «, then,as shown by Gelfond [4 , p. 47],

the scheme (3.1) has the WH property with respect to any disk E : 12\ < T, 1>0 .

4. Inverse Theorems for Diagonal Approximants.

With the notation of the previous section, we shall prove

Theorem 4.1, Let E be a compact point set (not a single point) whose comple-

ment K 1is simply connected, and suppose the interpolation scheme (3.1) satisfies

the WH property with respect to E. Let £ Dbe analytic on E and for n=l1,2,...,

and ¢ denote, respectively, the denominator polynomials (defined

let ¢ non

n,n-1

in (3.11)) for the rational interpolants r, .7 and r, ,. If all the zeros of

these polynomials tend to infinity with n, i.e.,

4.1 min {lcl P n_1(c) =0 or qa, n(@) = 0} > as n—-e,

- then £ must be entire.

Proof. Since £ dis analytic on the closed set E, there exists a A>1 such that

f dis analytic on Ei. Thus for zf—:I‘0 s i<o<A , Hermite's formula gives
Paa(® g [ W (Dfn)a
(4.2) F@ -Gy T ot [ v, (94 (@ (2
n,n 2n n,n
FA
Now note that (4.1) implies
1/n <1,

lim sup [max{lqn n(t)/qn n(z)l 3 tely, zeFO}]
n—-® s s

and so, on estimating the integral in (4.2) and using (3.3), we obtain

1/n
P o (%) G 2
(4.3) lim sup | max [f(z) - ——=< <(=) <1, 1<o<A .
—~ q_ _(z) — A
n-—>o zeFO n,n

Next, let LG(z) be the unique polynomial of degree <2n which inter-~

. . (2n) 2n )
polates £(z) in the points {Bk }k=0 , and let LG_l(z) be the polynomial
. . . . (2n) \2n-1
of degree <2n-1 which interpolates f(z) din the points {Bk }k=0 . Let p>l1.

Then, for n sufficiently large and 1<t<p , we have
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e

(4.4) Pn,n®) _Lf ") Pan® g r
' q Voo (O @ () = 0 oo

Set

= mi : r =
R min{o : ze ; and qn,n(C) 0},

so that, from (4.1), R »* as n=+®, Since, from (4.3), the sequence p /q
n n,n’ ‘n,n

ig uniformly bounded on E, it follows from a lemma of Walsh [14, p. 250] that

for R >p
n
P n(t) Rnp—l
———’——E—)—' < A R _p s for all tel' ,
9,0 n e

where A 1is a constant independent of n. Using this estimate in (4.4) we obtain

for =zel
T
P, ,(2) 1/n 2 2
(4.5) lim sup —*4—?23- - LG(z) 'i(-z)p = —
n > qn,n P e
Estimating the difference pn,n/qn,n - L2n—l in a similar way gives
1
Py n(z) /o T2
(4.6) lim sup | ——F—= L, (2) < =, zel
0 - o qn,n(z) 2n~1 ) T
Thus, on combining (4.5) and (4.6), we have
1/n
, 1/n _ . LZn(Z) B LZn—l(z) TZ 1
lim sup IZn(f) = lim sup -~ < 5 = 7 s
n-—- o« n—-w WZD(Z) p(AT) pA

A - (2n) . - .
where wzn(z) = wzn(z)/(z—B2n ). On letting p -+, we therefore obtain

(4.7) 1im lIzn(f)‘l/zn =0 .

n >«

Finally, if the above argument is repeated for the sequence

we also get

pn,n—l/qn,n—l ?

1/(2n-1)
(4.8) lim lIZn_l(f)l =0,

n- %«



R

and so, by the WH property, f must be entire. O

Remark 1. With the conditions of Theorem 4.1, it follows immediately from inequal-
ity (4.3)(with A=) that the sequence of rational interpolants {rn n} converges
b

faster than geometrically to f on any compact set in the plane; the same being

true for the sequence {r I
n,n-1

Remark 2. Theorem 4.1 remains valid if the hypothesis concerning the two sequences

{qn n—l}’ {qn n} is replaced by the same assumption for any two diagonal sequences
b 3

q }, where k and j have opposite parity.

tq n,n+j"’

n,n+k}’ ¢
Remark 3. There are several instances when it suffices to know the behavior of only

one diagonal sequence in Theorem 4.1. This is especially the case when there is a #
relationship between the even and odd numbered rows of the scheme (3.1). For exam-

ple, a slight modification in the proof of Theorem 4.1 shows that 4§ won-1(2)

divides wy,(z) for all n Large, then the assumpiion that the zeros of the se-

quence {qn’n} tend to Anginity implies that £ As entine. This is certainly

the case if the scheme (3.1) is Newton and, in particular, if the interpolants are
Pade’approximants. In the Pade’case, even more can be said concerning the inverse

roblem. In this regard, we mention a recent result of Gonlar and Lungu [5]:
P g

Theorem 4.2. Let f be analytic at infinity and, for =n=0,1,..., let an n be

~ the denominator of the [n/n] Pade’ approximant to f (interpolating at infinity),

where 6n,n is assumed to be monic of degree n. Let L be the set of limit points

of the zeros of the an n’ and suppose that L is regular in the sense that its
- - ’

complement has a Green's function with pole at infinity. If

lim [max lan n(z)l ; zeL]l/n = A(L) , i

n->®

where A(L) is the transfinite diameter of L, then f 1is analytic off L.
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