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§ 9. PROOFS OF NEW RESULTS

Because it is fundamental in deriving Theorem 3.1 of this paper, we state for
completeness the following result of Saff and Varga [15]. (Note that y,(z; a} of
this present article (cf. (2.1)) corresponds to Y~ 2(—z) of [15].)

THEOREM 9.1. Let {p(2)}{ _, be a sequence of polynomials of respective
degrees k which satisfy the three-ierm recurrence relation

©.1) pk(z)=<—z— ) () - = paoa@) h=1,2,..m),
by J Ci

where the bi’s and c.’s are positive real numbers for all k, | <k <n, and where
P12 =0, po(z):=po#0. Ser

9.2y = min {be(} = bi 1cf ) k=1,2,...,n}, bo:=0.
Then, if >0, the parabolic region
(9.3) Jer={z=x+rivel: yF=Edaxv+a) x> —al
contains no zeros of p{z), pA L pa(Z)
To give the reader mote insight in the connection between the GBP and

Theorem 9.1, it first can be verificd from the definition of 8.(2; @) in (2.4) that,
for n+a—1>0, the sequence



» 5

( Mn+a-1) <z )}
9.4y =22 g (Zinva-k)lp.
O | Tara-11m 2 O nra=k)fim

satisfies the recurrence relation (9.1) with

li=n+a-2+k, k=12,...,n;0=1,

(n+a-2+k¥n+a-3+k)
k=1

Thus, it follows in this case from (9.2) that a=n+a—1>0, so that the poly-
nomials in (9.4) have no zeros in % .,-1. With the transformation z—2/z, we
see from (2.4) that all zeros of the GBP ya(z; a) lie inside the cardioidal region
(3.1), as proved in [15].

Before proceeding to the proofs of our new results, we first establish a slight
generalization of a lemma in [14}].

k= ,k=23,...,n.

LEMMA 9.2 Let the sequences {pi(z)}i-o be as in Theorem 9.1 with po=1,
and let the real numbers Ag: =1, A\, 22, ..., An SQUSfY

(9.5) O0<Ae<lfork=12...,n-1;,0<l,<l.
Then, pa(z2) is different from zero at any point z which satisfies the n inequa-
lities

e

Re z {bk(ZCA/h--]"bk—l)}> bibi -1 k=12,
|z] 2ck Ak - 1(1 = Ai) 2ckdi-1(1 = Ax)

PROOF. This follows by imitating the argument in the proof of Lemma 3.1
of [14] which uses special values of by, ck (viz., those for certain Padé approxi-
mants to e%). In the proof, one needs the fact that p,(z) and p.-(z) have no
zeros in common, which follows, on assuming the contrary, from using the
recurrence relation backwards to establish the contradiction that po(z)=0. 0

(9.6) lz] +

We now apply Lemma 9.2 to the polynomials given in (9.4) to reach the inter-
mediate results of

COROLLARY 9.3. The polynomial 6,(2/2; a) has, for n+a-1>0, no non-
real zeros in
2n+a-1) }

©.7 y:=zz=re”’e¢?:r>2(2n+a—2)—-
1-cos 8

PROOF. Putting Ax:=(1+cos 8)/2 for k=1,2,...,n, then the inequalities
(9.6) show that any non-real point z=re e C satisfying (9.7) is not a zero of

6n(z/2; a). O

With the preceding result, we then come to the



PROOF OF THEOREM 4.1(i). As the sector S(n, a) of (4.1) is invariant under
the transformation z—2/z, it suffices to prove the assertion for the polynomial
0.(z/2; -a), instead of for the polynomial y(z; a). First consider the following

set of points

Gi:= {z=re"’e¢3: r>2n+a-2,0< 6| scos"(————_—g———».
2n+a-2

One easily verifies from (9.7) that G, C &, which establishes that 6.(z/2; a) is
zero-free in Gi1. From (9.4) and Theorem 9.1, it follows that 8.(z2/2; a) is also
zero-free in %, ., . Rewriting %, .,,-1, we obtain that

F+o-1D0C2 = Ez=re”’e C:r<2n+a-2,0<|8| scos“’(———_-—q——ﬂ.
2n+a~2
Combining these results, we see that 8,(z/2; a) is zero-free in G1UG, or,
equivalently, all zeros of 6,(z/2; a} lie in C\(G VU G2) = S(n, a).
The second assertion of Theorem 4.1(i) follows from the fact that (4.2)
implies (1 -o)/(1 +0)=(~a)/(2n+a-2), and hence, S(n,a)CS, for those
values of n and @ which satisfy (4.2), as wellas n+a~1>0and n=z2. 0O

The proof of the sharpness result in Theorem 4.1(ii), along with the proof of
Theorem 3.3, will be given after the other theorems of Section 4 have been

established. Now, we give the

PROOF OF THEOREM 4.3. As the open left half-plane is itself a sector,
namely the sector S, from (4.3), we shall prove the result for 8,(z/2; a), since,
after the transformation z—2/z, this will imply the assertion for y.(z; ).

As in [14, p. 9], we apply Lemma 9.2 to the polynomials of (9.4). For theV
choice Ax =4, k=1,2,...,n~1, A, =0, the inequalities (9.6) imply that, for n=3,
the polynomial 8,(z/2; a) is zero-free on '

Bi:={zeC: Rez=0, {z|>2n~2)}.

Again invoking the result of Theorem 9.1, we also find that 6.(z/2; a) is zero-
free on

B::=1{;eC: Rez=z0, lz]=2(n+a-1)}.

Thus, for a= -1, we find that all the zeros of 6,(z/2; a) belong to
C\(ByUB2) = §.

For n=2, one directly verifies that y2(z; a) has all its zeros in the open left
half-plane iff = — 1. (It should be remarked that the case ¢ = — 1 is degenerate,

with y2(g; — D=1.) For a< — 1, one similarly verifies that y2(z; a) has a zero in

M

the right half-plane.

By vet another choice for the A¢’s in Lemma 9.2 and by treating particular
cases by the Wall criterion for stability, we can give the



PROOF OF THEOREM 4.4. For n=7, a= -2, we use a method of proof,
similar to that of [14, p. 10], by choosing, in Lemma 9.2,

n-1
— An=0.
3n-5

n-—

Ak=%1 /\'=l,2,...,’1—‘2; /ln~l =

This time, Lemma 9.2 implies that the 8,(z/2; a) are zero-free in the closed right
half-plane, outside a disk with radius 2(n—3). Using a= —2 in combination
with the zero-free parabolic region, we find that 6.(z/2; a) is zero-free in the
closed right half-plane for n=7. Next, for n =6, we use the following values of

A4 in Lemma 9.2:
Al =A2=*y AJ=§; /{4':%1 )*Sz ]_52 y /16:‘0)
and the proof proceeds as above, with the radius of the disk from (9.6) now

being 6.
The remaining cases, n= 3, 4, and 5, then follow, together with the sharpness

result, by applying the Wall criterion [20] and checking degenerate cases sepa-
rately. O

PROOF OF THEOREM 4.5. To prove the Grosswald conjecture [5, p. 162,
number 6}, concerning the stability of the yn(z; a) for arbitrary (but fixed) ¢ and
sufficiently large n, it suffices, in view of Theorem 4.4, to restrict ourselves to

the case a< - 2.
This time, Lemma 9.2 will be applied using

(9.8) Anj=(Y -1/ ~1),j=0,1,..,n—1.
With the well-known inequalities
273> 2" Szn? foralln=1,2, ...,

one can easily show that the coefficient of Re z/|z] in (9.6) is nonnegative for
n=2"¢and k=1,2,....,n. Lemma 9.2 then leads t0 a zero-free region in the
closed right half-plane, outside the disk of radius R given by

R:=max (———'(—1*‘— k=2,...,n}.
{20 (= 20

Inserting the values of A; from (9.8), we find that
R=max {(2 —2"/“ Dr—j-1:/=01,..,n-2}.

Now, for n=32, it is easy 10 show that the maximum of the function
S)y=Q-2"""YWn-x~1)

on {0, n-2] occurs at a point X with n-2>x>log; n-3, and, furthermore,

that f{¥y<2(n ~ X —1). Hence, 6.(2/2; a)is zero-freein {ze C: |z| 2z2(n-%-1), .

Re :=0}. Combining this result with the zero-free parabolic region, one finds
that all the zeros of 6.(z.°2; a) lie in the open left half-plane if logan+a-3=0,
from which the bound nu(«), given in Theorem 4.5, follows. O

|



We now return to the sharpness results that have been left unproven up to

now.

PROOF OF THEOREMS 3.3 AND 4.1(ii). The proof follows by imitating the
argument given in Saff and Varga [16] for establishing Theorems 2.2 and 2.3 of
[16]. It depends heavily upon the existence of zeros of a certain form for y.(z; a)
which can be proved by adapting the proof of Theorem 2.1 from [16] by re-
placing the parameter v, appearing there by n + a, —2. Specifically, let {a.}7=1
be a sequence of real numbers satisfying

R+an—220(nelN), lim 2~ =g-1 (g€ (0, ®)).

a=w N
Then, y.(z; a.) has zeros of the form

2 . ~l< z_a" )] )
_e +ico — )+ 2 +an—1)"37 — o,
(2n+an—1) XD{ > 2n+an—1 @n+a.-1) Jasn—e

The proof then continues as in [16]. [ ,
For the proof of the main result of Section 5, we can again refer to a

technique developed for the study of the zeros of Padé approximants to the
exponential function e*.

PROOF OF THEOREM 5.1. As previously stated in Section 5, the upper bound
of (5.1) is a known result. To establish the lower bound of (5.1), it suffices to
imitate the method of proof in [17, Theorems 2.1 and 2.2}, using now the poly-
nomials [(n+a—-1)2"6.(z/2; a)/I(2n+a—-1). To this end, one has to replace
the parameter vin (17} by n+a-2. O

PROOF OF THEOREM 6.1. Apart from the upper bound for £ in (6.2), the
only part of this theorem that does not follow from the preceding sections on
taking @ =2, is the lower bound for the modulus of the zeros appearing in the

set A;, defined by

; 1 1 1-cos @
9.9) Ax=jzr=retinz |0 2cos"<—- -—-), e <7< }
9.9) [ ref: inz {9| . — =
To establish this lower bound, we recall from (2.6) of Theorem 2.2 that
2
yal2)=yalz; D=0 Wy, %<?>’

which leads to the tact that the function

wa(z): =e & 3’_\).-(%)

4

satisfies the differential equation

d-w(:) B I%‘* "("T])IW(z).
az-

“~




Using a path of integration wholly within C\ {0}, one can easily show that
any solution of this differential equation satisfies
2

daz.

4
daz 21 g dz

4

(9.10) f{l_,_ _ni'l}u}!w(z),ldz:ﬂwl“z_‘f _4__w_

4
Now, let t=pe¥, with /2 <@ < n, be any zero of wx(z) and consider the path
of integration given by the half-line
To(l+e7%x), 0<x < o,

which is the same path of integration as employed in [17, Theorem 2.2).
Because of the restriction on ¢, it is easy to prove that the integrals in (9.10)
converge. Also, since dw/dz wl|¥ =0, we find that

© oo Y 2
9.11) Sr’e"“"i%#— ~—;—i'z—ﬂ—?;—:}]\&(x)]2dx=—§ LR e
0 (1 +e Wx) o | dx

where w(x) is given by
W(x): = wa(t(l + e~ 9%x)), 0<x<oo,

Taking imaginary parts in (9.11), we deduce, using A: = n(n+ 1), that

X+cos ¢/2 } N2
- — dx=0.
T3 2% cos (@) T 1F ) | FEITax

(9.12) 5{9: cos
o (47

(SRR

As the limit as x—oo of the expression in braces in (9.12) is positive
((n/2)< @< m), the minimum of this function on the real axis must be negative.
Making the restriction (27/3) = ¢ > n/2, this leads to the fact that the integrand
must be negative for x=0, i.e.,

2
© COs io* - COs

42 2

<0,

. ]s

or, equivalently
o<2|7.

This shows that the zeros of y.(2) with (2n/3) = | 8| > /2 must satisfy

[\

<27,

3
which gives the desired lower bound for rin (9.9).

To complete the proof of Theorem 6.1, it remains to establish the upper
bound for & in (6.2). However, this upper bound for £ is a simple consequence
of the first part of this theorem when #23. For the remaining case n =2, this
upper bound follows by direct computation. O

Finally, we shetch the proofs of the theorems in Section 7.



PROOF OF THEOREM 7.1. First, one can directly verify from (2.1) and (2.4)
that the following integral representation is valid:

@

(9.13) INn+a-1)2"6,2/2; a)= [e~'(t+z)""*9- 21, (n+a—1>0),
0

the path of integration being the nonnegative real axis. Similarly, it is known
(cf. [18, eq. (4.7)]) that the Padé numerator P, (2) of the (n, v)-th Padé rational
approximation to e? of (2.9), has the integral representation

(9.14)  (n+ ! Po(z)= [ e (1t +2)"rdr.
0

Because of this, the asymptotic methods of [18], based on steepest descent
methods applied to the integral of (9.14), can be analogously applied to the
integral representation of (9.13) for any fixed real a. More precisely, with

(9.15) vii=n+a-2,
then

lim va/n=1 for any fixed real a.
Thus, we deduce, as similarly in the special case g =1 of [18, Theorem 2.2}, that
Z is a limit point of the zeros of the normalized polynomials

8:((2n+a-2)z/2; a)
iff

ZeV"w B

—_——| =1, |z sl,andRest}.
1+)T+27 1zl

ZeD:= {ZGC:

For any fixed real g, it then follows, by means of the inversion z—1/zthatzisa
limit point of zeros of the normalized GPB yn(2z/(2n+a-2); a) iff zeI', where
I is defined in (7.1) and (7.2). This establishes the first part of Theorem 7.1.
The second part of Theorem 7.1 similarly follows as in the special case =1 of

[18, Theorem 2.3]. [

PROOF OF THEOREM 7.2. To establish Theorem 7.2, we again apply the
asymptotic results of [18], and, for convenience, we use the same notations and

definitions as in [18]). We further set

-1

(9.16) A;= for any 0= 1< o,

+71

As shown in [18, eq. (4.2)], for any T with 0 s 1< o=,

wi(Z)

(9.17) ———(T =g(2): = y"ﬁ?— 24,2, forall ze C\ #,
Wl

P

67 .



from which, after some calculations, it follows that for any fixed z with
0<|zi<],

d 2 Z"‘)w
(9.18) —;—lnlw,(z)[= (l+'[)2 lnf§+|/l+c_”2f where {: = ’17]:_::?5

Setting r={+ )1+ 2, so that (= 4(t—(1/1)), it can be verified that any ¢ with
Re { <0 has its image in the /-plane in the open unit disk. Consequently, from

(9.18)

9.19) —:— In|w.(z)| <0 for any fixed ¢ with 0< |z| <1, and Re z< /,.
T

This can be applied as follows. If
(9.20) Dpr={zeC:iwd2)l=1, [z]=l,and Rez<Ai;}, O<s1< o,
it is known from [18] that D. is a Jordan arc which lies interior to the unit disk,

except for the points z:= exp { £ icos™' A;}. Thus, (9.19) establishes that D.-
lies “‘strictly to the left”’ of D, for any 0<r<t'<oo, as indicated in fig. 6

below.

Fig. 6. v’ >1>1.

Using the notation of [18], define
Rt (2) ’>“’z
Rt (2))

which is analytic and single-valued on € \( 7. U{0}) for 0 < r< oo,

(9.21)  Niz): =<



It can be verified from (9.21) and the definitions of {18] that

LRI AT e\ (U0,

(9.22) Nidz)= vy

and that

ZN'(2) 1
9.23 I = - —— Vze C\(F U {0)).
(9.23) X2) P, ze C\( {oH

Because (cf. [18], eq. (4.1)) Re g.(z)>0 on C\ %, it follows from (9.23) that
|Nx(z)] is strictly decreasing, for any fixed 6, on the ray {z=re’: 0<r< o} in
C\(#:U {0}). Furthermore, as Im g.(z)<0 along the (open) arc of the unit
circle from z=z; to z= -1, it also follows from (9.23) that :N’,(z)} is strictly
increasing along this arc. (Similarly, |N(z)] is strictly decreasing along the arc
of the unit circle from z= -1 to z=z,.) These observations will be useful
below.

Considering now any zero zi.» of 8,((2n+a ~2)z/2; a), we must show that,
for all n sufficiently large, zx . lies to the left of Dy of (9.20). Since D is a
Jordan arc in | | =1, we may assume, without loss of generality, that |zx .| 1.

Next, from [18, eq. (4.30)],

. R 1
(9.24) | Won(Zk, n) I"+ Y = [Ng(n)(Zk, n) l {] + /"< )} ,as n—oo,
n+ vp

where (cf. (9.15))

(9.25) o(n):=va/n=(n+a-2)/n, for all n sufficiently large,

and where the term #(1/(n+vy)) in (9.24) holds uniformly on any compact
subset of C\ (4 U {0}). On the other hand, it follows from Theorem 4.1 that
this zero zx . satisfies |Arg zxn|>cos™! (—a/(2n+a—2)). Thus, it follows
from previous observations from (9.23) that, with an: =cos ™! (- a/(2n+a-2))
and un: =exp (ian),

9.26) min {|Nom(2)]:]z| =1 and |Arg 2] Z an} = | Nowm(un) |

Furthermore, direct calculations with the right side of (9.26), using (9.22). show
that there exists a positive constant ¢ such that
'ga(n)(ﬂn) + 1= Agimpin]| - C

927 | Nomn)| = s =1+ —=, asn—cx,
l"l —A;(n) /

Thus, (9.26) and (9.27) together imply, with (9.24), that there cxists a constant
¢'>0 such that

(9.28) !Wmn)(Zk;n)l"*V"Z(l + —-C—>gl + /(l>2 >1+ —(,f as n—oe,
Vn n /. yn



s0 that i , must lie strictly to the lett of Dy, for n sufficiently large. But, as
(cf. (9.25))

n+a-2 a-2
gny= ———— =1+ ,
n

n

then ag(n) strictly decreases to unity as n— oo, for any fixed ¢=2. Hence, from
our previous discussion, each zero zi » of 0.((2n+a—2)z/2; a) must he, for
each n sufficiently large, to the left of ;. Performing the inversion z—1/z, this
implies that each zero z of y.(22/(2n+a-2); a) for n sufficiently large, must
satisfy (cf. (7.1) and (7.2))

Jw(z)} >1 and Re z<0,

which establishes Theorem 7.2. T

PROOF OF THEOREM 7.3. For n a positive odd integer, let z.(a) denote the
negative real zero of 8,((2n+a—2)z/2; a) so that (cf. (9.24))

1
)}, as n— oo,
+ Vn

where v, and o(n) are given respectively by (9.15) and (9.25). Then, let Z,(a) be
defined as the unique negative real number such that

9.29) | Won(2a(@) """ = | Noty(zn(a)) | {1 + (< .

(9.30) [ Woun(Eul@))|" "V = | NowkZala)) |,

for each n=1. That Z,(«¢) is uniquely defined for each n=1 follows from the
fact that iN(z)i is, from (9.23), strictly decreasing on the ray {z= -r,
O0<r<o}, while |we(z)! is, from (9.17), strictly increasing (from zero to
infinity) on this same ray. Next, by means of Taylor series expansions and
identities involving woun(z) and Nym)(z) (which we omit for reasons of brevity),
it can be verified that

/ 1
9.31)  zala) =Zala) + f'< —;) as n—oo,
An+ vy

Thus, if we can express Inla) as

yila)

)
2 I =r + 7 T ), as N/,
(9.32) (@)=r+ (n+ vn) ( (n+va),

where 7 is defined in (7.5) and y;(a) is independent of n, then a consequence of
(9.31) is that

i yitd) [ 1 )

In =r+ + /7 — ], as n—roo,
(9.33) ar=r (n-+1vy) ( (1 4+ vp)- )
To establish (9.32), we have from (9.30) that

f17(n= vp)
s .

(934) i WanlSala)) i = ?-/\-':a(m(fn(a))

N



Assuming the form (9.32), it follows from (9.17) that

- " am(f 1
(935) Wam(Znla)) = Wa(nl(f)zl + YI((:)f v"));r) + /’( T v,,)z )}, as n—oo,

Now, from (9.18), it can be verified that

(@~-2)|wi(F)|» In (F+1+F?) +ﬂ<_l_) as n— oo

2n n?

| wom(F)| = | wi(F)} +

But as |w ()] =1 from [18, eq. (4.40)}, the above reduces to

(@a-2)In (F+{YT+7) +ﬁ< ] > e 0o

2n n

(9.36)  [wam(F)l =1+ 2
n

Similarly, using the definition of g«(z) in (9.17), it can be shown that

Y@ Eain (F) +ﬁ< 1 >=1+ r@yT + #* +0< 1 ) R
2nf ' )

©.31) 1+ (n+ va)F (n+vn)? n?

Thus, combining (9.35)-(9.37) yields

I+ 7]'7— {(a—?.) In (r‘+]/1+f’)+
)'1(a)}'l+f-} ( 1 )'
-+ - + (7] — .

s
r n-

iwgin(Inla))i =

(9.38)

Next, using {9.23), it can be verified that

9.39)  [NomGalayyitin =1+ X, ,,(.L) as n—oo.

2n n?
Thus, on combining (9.38) and (9.39) in (9.34), we deduce that
’——.—“Z _ P
(9.40)  yia)=7 { a7+ ,__‘fll;’k("““” )}.

Now, as n+v,=2n+a-2, it follows that the negative real zero of
6:((2n+a-2)z/2; a), for n odd, is given by

. vita) 1
G4 y=f+ —————— + (| ———— |, as N>,
(2n+a-2) @Qn+a-2)°
Recalling (2.4), then (Y.41) implies that the negative real zero a,(a) of the non-
normalized GBP v.(2; @), for n odd, satisfies the desired result (7.4) of Theorem

7.3, C

ACKNOW LEDGMENTS

It is a pleasure to thank Dr. Michael Lachance of the University of Michigan
at Dearborn, Mrs. Jessica Craig of the University of South Florida, and Mr.
Amos Carpenter of Kent State University for their various computations from
which our numerical results were derived.

T



REFERENCES

1.

Botiema, O. ~ On the zeros of the Bessel polvnomials, Nederl. Akad. Wetensch. Proc. Ser.
A 80 =Indag. Math. 39, 380-382 (1977).

. Bruin, M.G. de — Convergence 1n the Padé table for jFy(1; ¢; x), Nederl. Akad. Wetensch.

Proc. Ser. A 79 =1ndag. Math. 38, 405418 (1976).

. Doéev, K. ~ On the generalized Bessel polynomials, Bulgar. Akad. Nauk. lzv. Mat. Inst. 6,

89-94 (1962).

. Enestrom, G. — Hariedning af en allman formei for antalet pensiondrer . . ., Ofv. af Kungl.

Vetenskaps-Akademiens Forhandlingar N: O 6, 1893, Stockholm; French translation in

Todhoku Math. J. 18, 34-36 (1920).
Grosswald, E. — Bessel Polynomials, Lecture Notes in Mathematics 698, Springer-Verlag,

New York, 1978, 182 pp.

. Grosswald, E. —- Recent applications of some old work of Laguerre, Amer. Math. Monthly

86, 648-658 (1979).

. Kakeya, S. — On the limits of the roots of an algebraic equation with positive coefficients,
Toéhoku Math. J. 2, 140-142 (1912).
Karlsson, J. and E.B. Saff - Singularities of analytic functions determined by the behavior

of the polés of interpolating rational functions, (to appear).

. Krall, H.L. and O. Frink - A new class of orthogonal polynomials: the Besse! polynomials,

Trans. Amer, Math. Soc. 65, 160-115 (1949).

. Luke, Y.L. ~ Special Functions and their Approximations, vol. 2, Academic Press, Inc.,

1969.

. Martinez, J.R. — Transfer funcuons of generalized Bessel polynomials, IEEE CAS 24,

325-328 (1977).

. Olver, F.W.J. — The asympiotic expansions of Bessel functions of large order, Phil. Trans.

Roy. Soc. London Ser. A 247, 338-368 (1954).

. Perron, O. - Die Lehre von den Kettenbriachen, 2nd ed., B.G. Teubner, Leipzig, 1929,

reprinted by Chelsea, New York.

. Saff, E.B. and R.S. Varga — On the zeros and poles of Padé approximants to e2, Numer.

Math. 25, 1-14 (1975).

. Saff, E.B. and R.S. Varga - Zero-free parabolic regions for sequences of polynomials,

SIAM J. Math. Anal. 7, 344-357 (1976).

. Saff, E.B. and R.S. Varga - On the sharpness of theorems concerning zero-free regions for

certain sequences of polyvnomials, Numer. Math. 26, 345-354 (1976).

. Saff, E.B. and R.S Varga ~ On the zeros and poles of Padé approximants to e<. II, Pad¢

and Rational Appronimations: Theory and Applications (E.B. Saff and R.S. Varga, eds.),
pp. 195-213, Academic Press, Inc., New York, 1977.

. Saff, E.B. and R.S. Varga — On the zeros and poles of Padé approximants. II1, Numer.

Maih. 30, 241266 (1978).

. Underhill, C. ~ On the zeros of generalized Bessel polynomials, internal note, Univ. of

Salford, 1972.
Wali, H.S. - Polynomials whose zeros have negative real parts, Amer. Math. Monthly 52,

308-322 (1945).

. Wimp, J. — On the zeros of a confluent hypergeometric function, Proc. Amer. Math. Soc.

16, 281-283 (1965).

. Wragg, A and C. Underhill - Remarks on the zeros of the Bessel polynomials, Amer. Math.

Maonthh 830 122-126 (1976).

D




