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Abstract. There has been much recent interest in the use of incomplete factorizations of matrices, in
conjunction with applications of the generalized conjugate gradient method, for approximating solutions of
large sparse systems of linear equations. Underlying many of these recent developments is the theory of
H -matrices, introduced by A. M. Ostrowski. In this note, further connections of the theory of incomplete

factorizations of matrices with the theory of H-matrices are derived.

1. Introduction. Suppose we wish to approximate the solution of the matrix
equation
(1.1) Ax =k,

where A is typically a large sparse real symmetric and positive definite n X n matrix.
Because the unique Cholesky factorization of A as L - L7 may, as a result of fill-in,
produce a lower triangular matrix L (with positive diagonal entries) which is consider-
ably less sparse than A, it is then convenient to consider a matrix splitting of A, i.e.,

(1.2) A=M-N,

where M is also a real symmetric and positive definite n X n matrix. The matrix M
should be chosen, for purposes of actual computations, so that matrix equations of the

form
(1.3) Mg=h

can be readily solved for g, given h. (One interpretation of this could be that the
Cholesky decomposition M - M7 of M has an acceptable or controlled degree of
sparseness.) In addition, the matrix M should be chosen in (1.2) so that M 'A is, in
some sense, a reasonable approximation of the identity operator I, so that the

preconditioned system
(1.4) M 'Ax=M"k

may be better conditioned than that of (1.1). What is an important recent observation is
that a good choice of the matrix M in the splitting (1.2), when coupled with the
generalized (or implicit) conjugate gradient method applied to (1.4), produces a
powerful numerical method for the solution of the matrix equation (1.1). In this regard,
see Concus, Golub, and O’Leary [2], Greenbaum [3], Kershaw [4], Manteuffel [5],
Meijerink and van der Vorst [6], and Reid [8].

One method which has received recent support in selecting the matrix M in the
splitting (1.2), is to control the fill-in of the Cholesky decomposition of A by means of a
graph, an idea which seems to have first been suggested in Varga [9] as a specific
technique for generating regular splittings (cf. [10, p. 88]) of certain finite difference
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operators. This method leads to incomplete factorizations of A, and is described below.

For n any positive integer, let C™" denote as usual the. collection of all nxn
matrices A =[a,;] with complex entries a;; and let G (for graph) denote any set
(possibly empty) of ordered pairs of integers (i, j), with 1 =4, j=n and with i # /. It is
convenient to call ¥, the collection of all such sets G. Then, given any A ={a,;;]e C""
and given any G € %,, we attempt to produce a nonsingular matrix approximant, A(G),
of A, dependent on G, which is represented in factored form as

(1.5) A(G)=L(G)  2(G) U(G).

Here, L(G) = [l;;(G)] and U(G) = [u,;;(G)] are to be respectively (unit) lower and
upper triangular nxn matrices with all diagonal entries unity, and

2(G)=diag{o(G), -, d,(G)]is to be an n X n nonsingular diagonal matrix, where
the dependence of these matrices on G is defined recursively (i=1,2,--,n) as
follows. With
i~1
(1.6) oi(G) = a.-.;-~k§1 L (Gor(Gue i(G),
(where 22=1 =0 when i =1 above) then if o;(G) # 0, set
i—1 .

(0= T 1u(G)0x(GIue (@) (G, it (i,/)€ G,
u (G)= .

0, if (i, /) e G,

for each jy with i <j=n;

(1.7)

(4 T 141610 (O)ui(©)) /G, it (j, )G,

1i(G) = i
0, if (/,i)g G,

for each j with i <j=n.

We note that the set G controls the sparseness of the factors of (1.5). Next, we say
that the above procedure fails if, at any step, ¢:(G)=0,i=1, 2, -+, n. If the above
recursive definition does not fail at any step, we say that A admits a regular incomplete
factorization with respect to G. Evidently, if A admits a regular incomplete factorization
with respect to some G € 4, then

(1.8) det A(G)= T[] a:(G)#0.
i=1
In particular, if & denotes the maximal element in 4, i.e.,
(1.9) ‘ G={Gj):i#jand 1=ij=n),
and if A admits a regular incomplete factorization with respect to G, then evidently
(1.10) A=A(G) and det A#0.

Our interest here is in those matrices A € C™" which are regular for 4, ie., A
admits a regular incomplete factorization with respect to any G € 4, and we set

(1.11) F,={AeC"":A is regular for 4,}.

In terms of applications, this means that, for any A € %,, any choice of G € ¥, produces
a regular incomplete factorization A(G), which is a candidate for the matrix M in (1.4).
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From Meijerink and van der Vorst [6], it is known that every n X n nonsingular
M -matrix is in %,. More recently, this result has been extended by Manteuffel [5], who
in essence established that every n X n nonsingular H -matrix is also in %,. Our interest
here is in characterizing particular subsets of %,, as they relate to these known results in
the area. For the remainder of this section, we introduce some additional notation.
For any A =[a;;]Je C™", its comparison matrix W A) is defined by
(1.12) M(A)=[a,;]eR™", wherea,;=|a,,|, ay=-|a,l, i#j, 1=ij=n.

With 7= max | <i=n {ai‘,-], we can write JR(A) = 7T — C*, vhere C*=0 (i.e., C*? is an
n X n matrix with nonnegative entries). Following Ostrowski [7], A is then said to be a
nonsingular (singular) H-mairix iff D(A) is a nonsingular (singular) M -matrix iff
7>p(C?) (r=p(C?)), where p(B) = max{[A|: det(A] — B) =0} denotes the spectral
radius of any B € C™"". We then set

(1.13) ¥, ={AeC™ A is a nonsingular H -matrix},

and, for any A =[a;;]e C"", we further set

(1.14) Q°(A):={B=[b,;]e C*":|b,;|=|a,,| for all i =i, j=n},

and

(115) Qd(A) = {B = [b,’_,‘] S Cn,n :|bi,il = ]a,-,,-i and Ibi,il = ‘a,—,,-! for all 1= Z,]é n},

(where the superscripts ¢ and 4 on (1 denote “circle’” and ““disk”, respectively).

§ 2. The set 9’:. As a preliminary result, we first establish
LEMMA 1. Forany A € ,, then
(2.1) Q%A s Z,.

Proof. Given any A =[a;;] in ¥, then its comparison matrix J(A) = I —C?is
such that r>p(C™). For any B =[b,;] in Q%(A), it follows from (1.13) and the
Perron-Frobenius Theorem (cf. [10, p. 46]) that M(B) = 7[ - C?, where C? =@ and
where p(CB) ép(CA) <. Consequently, ¥B) is a nonsingular M -matrix, or
equivalently, B € ¥,. Manteufiel’s result ([5]) gives B € #,. 0

If we set
(2.2) Fl={AcF, 0 A)cF}
then Lemma 1 asserts that
(2.3) %, FL.

Actually, the reverse inclusion also holds, as we now show.
THEOREM 1. For any positive integer n,

(2.4) ¥, = FL.

Proof. From (2.3), it suffices to show that 2 < 9,. Consider any A € <. Forming
P(A) =71 — C* where C* =[c{}]= 0, we wish to show that p(C™) < r. Assuming the
contrary, then 7 =p(C™). From the discussion following (1.12), then

(2.5) lail=7—cfi Vi=si=n

From the hypothesis that AeF? it follows from (1.15) and (2.2) that
diaglai, -+ -, ann]€ F,, and this readily implies that q,;#0 for all 1=i=n.
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Consequently, from (2.5),

A
(2.6) 7> max ci,.

I=sisn
Next, for any r [0, 1], define C(r) :=[c;;()]e R™" by
¢, (t)= tcf“,-, [#7; .= c,’f‘,- Visij=n, Vre[0,1],
and set B(t) = 1[ — C(t). Clearly, C(t) = C, and p(C(¢)) is a nondecreasing function of ¢

on [0, 1] by the Perron-Frobenius Theorem, with

p(C(0)= max i, and p(C(1))=p(C?).
1

=iEn
Thus,
gl)=1-p(C(1))

is a nonincreasing function on [0, 1] with g(0) =7 —max <=, cf; >0 fron) (2.6), and
with g(1)=7—p(C?*)=0 by assumption. By continuity, there exists a re(0, 1] for
which g(f} =(), so that B(;) is a singular M-matrix. On the other hand, B(t) is, by
definition, an element of Q%(A), and hence, by hypothesis, is in %,. If we choose G of
(1.9) in %,, it follows from (1.10) that B(f) is necessarily nonsingular, a contradic-
tion. [0

We next establish an Ostrowski-like result (cf. {7]) for the set 5, which generalizes
a recent result of Manteuffel ((5, Cor. 3.4]).

LEMMA 2. For any A € %, then

(2.7) min{|detB(G)|: B Q%(A), Ge %,} =det M(A)>0.

Proof, For Ae %,,each Be O%A)isin #, from Theorem 1. Thus, for any G € %,
B(G) admits a regular factorization (cf. (1.5))

B(G)=L*(G)2?(G)UP(G),

where 2°(G) == diag[o?(G), - - -, on (G)] satisfies |oF (G)|> 0 for all 1 =i=n. Now,
using the same induction argument as originally used by Ostrowski [7], it follows that

(2.8) lc2(G)zo:(T(A) VBeNA), VGe¥, Visi=n,
so that on taking products over /, we have
(2.9) min{|/det B(G)|: B e Q%(A), G e 9,} =det M(A)>0.

Obviously, since M(A) is itself an element of Q%(A), the first inequality in (2.9) reduces
to equality, thereby establishing (2.7). U

3. The set # . Thus far, all published investigations concerning matrices A which
admit regular incomplete factorizations for all G € %, have involved explicitly the
subset 4 of (2.2). Using the notation of (1.14), we now consider the larger subset of &,
defined by

3.1 F.={Ae%,:Q(A) = ZF,}.

As Q°(A) < 04 (A) from (1.14) and (1.15), then obviously Fd < F<. More precisely, it is
clear that #{ = 5 = #,, and simple examples show that

Fic FncF, VYnz2.

It is convenient to make the following definitions. Given any G € ¥, and given any
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A =[a;;]e C"", then the matrix Ag :=[c;;]e C"" is defined by

ci=a;,; V1IsSi=n;
(3.2) cii=ay; if(i,j)eqG, i#],;
;=0 if(i,))eG, i#]

Next, given any G € %, and given any A € C™", then G is said to be a masking graph for
A if i) A admits a regular incomplete factorization with respect to G, and ii) A(G) = Ag.

We remark that if A admits a regular incomplete factorization with respect to G,
then A(G)=L{(G)  Z(G) - U(G) from (1.5), when multiplied out, is not in general
equal to Ag, so that all graphs are not necessarily masking graphs for A. On the other
hand, we have the following necessary and sufficient condition for a graph G to be a
masking graph for %,, i.e., for every A€ Z,.

PROPOSITION 1. Given G € 4,, then G is a masking graph for %, iff

i 21

(3.3 {if (i, ))& G with i #j, then, for each positive integer k with

1=k =min (i, j), at least one of the pairs (i, k) and (k,]) is not in G.

Proof. Assuming G € 9, satisfies (3.3), consider any A € %,. Then, A admits (cf.
(1.5)) the regular factorization A(G)=L(G) - 32(G) - U(G) =:[e;;], where

min(i;j)

(3-4) €= Z li,k(G)U'k(G)uk,i(G)-

Applying (3.3), we see that e;; =0 for every (i, /) G with i #j. Similarly, the cor-
responding (i, j)th entry of A is also zero from (3.2). On the other hand, if (i, j) € G,
then from (1.7), e;; = a;j, whence A(G) = Ag. Thus, G is a masking graph for every
AeZ,

Conversely, suppose that G is a masking graph for every A € &,. On choosing A to
be any nonsingular M -matrix, all of whose off-diagonal entries are negative, it follows
(cf. (1.7)) that every off-diagonal entry of L(G) and U(G) is necessarily negative or
zero, while o4 (G) is positive for all 1 =k = n. Consequently, each product term in the
sum {(3.4) is either positive or zero. Now, because G by hypothesis is a masking graph for
A, then A(G) = Ag. Thus, if (i, ) € G with | # j, the sum in (3.4), consisting of positive
or zero terms, must also vanish from (3.2), from which it is evident that (3.3)is valid. 0

As an immediate consequence of Proposition 1 and (3.1), we have

COROLLARY 1. If G € 4, is a masking graph for %, and if A € F, then B(G) = Bg
forall Be Q°(A).

Combining the above with the Camion-Hoffmann Theorem [1], we next establish

THEOREM 2. Let A € %,, and let G € G, be a masking graph for each B € Q°(A).
Then, there exists a unique n X n permutation matrix P (dependent on G) such that
PAG 1S %m

Proof. By hypothesis, B(G) is nonsingular and B(G) = B¢ for all B Q°(A). Thus,
all matrices equimodular (cf. (1.14)) to Ag are nonsingular. Using the main result of
Camion and Hoffman {1], there is a unique n X n permutation matrix P such that
PAG € %,,. il

From Theorem 2, we easily deduce

COROLLARY 2. Let A € &, and let G € 4, be any masking graph for &,. Then, there
exists a unique n X n permutation matrix P (dependent on G) such that PAg € #,. In
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particular, if S is any r X r principal submatrix of A (with 1 Sr Z n), there exists a unique
r X r permutation matrix P (dependent on S) such thar PS € %,.

Proof. The first part follows immediately from Corollary 1 and Theorem 2. If S is
any principal submatrix of A, we can select G € 9, satisfying (3.3} such that A is the
direct sum of § and other principal submatrices of A. The desired result then follows
from the first part above. U

Turning the first part of Corollary 2 around, it is natural to ask whether, if A € %,, and
if every G € %, which is a masking graph for %, has the property that there exists a
permutation matrix P such that PAg € ¥, then is A € %, ? This is true for n =1 and
n =12, and is an open question for n >2. The similar {(but stronger) question can be
asked for the necessary condition of the second part of Corollary 2;i.e.,if A € C™" and if
every r X r principal submatrix § of A (with 1 =r =n) has the property that there exists
an r X r permutation matrix P such that PS € %, is A € #,,? This is again true for n =1
and n =2, but fails for n = 3. To illustrate this, consider the matrix

1 6 -1
A=16 1 -11,
11 4

which has the property that, for every principal submatrix S of A, thereisa permutation
matrix P = P(S) such that PS is a nonsingular H-matrix. Choosing G = G\{(1, 2)}
where G is defined in (1.9), we see G satisfies (3.3) of Proposition 1. However, A(G)
can be factored as

1 0 0 1 00 1 0 -1
6 1 00 1 0110 1 51,
1 11 0 0 O 0 o 1

andis evidently singular. Assuch, A is not an element of %, and hence, is not, a fortiori,
in 3.

However, Theorem 2 is useful in another direction. For any A € %,, we evidently
have that

3.5) idet B(G)|>0 VBeQ(A), ¥VGe¥,
so that in analogy with (2.7), we have
(3.6) 0<u°(A) = min {det B(G)|: B Q‘(A), Ge %,}.

We further know from Theorem 2 that there is a unique n X n permutation matrix P
such that PA e #,, or equivalently, that J(PA) is a nonsingular M -matrix. Thus, given
an A € #,, we have a choice of considering incomplete factorizations relative either to
A orto PA. Is there an advantage in general with the latter choice? With this question in
mind, we establish _

THEOREM 3. For any A € %, let P be the unique n X n permutation matrix such that
PA € ¥,. Then (cf. (3.6)), :

(3.7) uC(A)é/,LC(PA):detEDE(PA).

Remark. At least from the point of view of determinants, (3.7) suggests that it may
be preferable to consider incomplete factorizations relative to PA, rather than to A.
Proof. First, note that the equality in (3.7) is a consequence of Lemma 2, and the
fact that M(PA) is an element of Q°(PA), which is a subset of Q¢(PA). Suppose that the
first inequality of (3.7) is not valid, i.e., u“(A)>det M(PA), which implies from (3.6)
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that
(3.8) idet B(G)|>det I(PA) VBeQ(A), VGe¥,.

Next, define B = PT‘J)?(PA), which is clearly an element of Q°(A). On choosing G of
(1.9) in %,, we obtain from (1.10) that B = B(G). But, since |det P7|= 1, we see that

[det Bl =|det PT - det IR(PA)| = |det PT| - |det IM(PA)| = det M(PA),

which contradicts (3.8). O

It would be tempting to conjecture that if the unique permutation matrix P in
Theorem 3, for which PA € #,, is such that P I, then strict inequality would hold for
the first inequality in (3.7). This, however, is not the case, which can be seen by

examining the particular matrix of

12
A"_[z, 4}‘

In this case, A, € #3 and equality can be shown to be valid throughout in (3.7), with
det P(PA)=2. On the other hand, the first inequality of (3.7) can be strict. To show

this, consider

e 1 1
A 12[ ], 0<eg<—,
? 1 ¢ J2

which is an element of 5. In this case, u“(A) = £, while det I(PA) = 1 —¢?, which is
significantly larger for £ small.
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