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I. INTRODUCTION

In 1976, G. G. Lorentz [4] introduced the study of certain con-

strained polynomials which are referred to as incomplete polynomials. By

an incomplete polynomial of type 6, 0 < 6 < 1, we mean any real or

complex polynomial (of any degree) which can be written in the form

n
P(x) = 2 akxk , where s = 6n ,8 > O. (1.1)
k=s
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For the most part, research interest has focused upon the behavior,
relative to the interval [0, 1], of such polynomials P(x) for 8 fixed.

For example, on denoting the supremum norm over a set B < € by

lelly:= suplle@| : =z € 81, .

“and letting Rl e

St
o

Ie:== {P : P is an incomplete polynomial of type 6}, 0<g<1, 1.2) "

we have the following fundamental property of incomplete polynomials:

Theorem 1.1. (Kemperman and Lorentz [2], Saff and Varga [6]), [7]). 1f

P € Ig, P #0, and 1£ § € [0, 1] is any point for which |P(§)l =||P”[0 17’
?

then € 2 o2
It is moreover shown in [6] that E > ez, and in [7] that this lower
bound 92 is gharp in the sense that if §(P) is the smallest such £ in
[0, 1] with [P(E)] = ”"”[0,1] for each P # 0 in I, then
inE{E(P) : P # 0 in I} = 02.

In this régard, letting . denote the set of all real polynomials of
degree at most r (with LR {0]), consider the following extremal

problem. Given any pair (8, m) of nonnegative integers, set
M - 8, m .

a%m min{ffx® (" - gm-l(x))”[O,l] tgpy €7 _1}

R .3)

o= " - gm_l(x))”[o’”‘

- R

M

Then, the" ih;,omplete polynomial

T

L)

3

& ) r': Lo Ts’m(X):= xs(xm - gm_l(x))/es’m, (1.4) .

which is of type s/n with ni= s + m, is called the constrained Chebyshev

polynomial of degree n, having a constrained zero of order s at x = 0.

Several properties of these congtrained Chebyshev polynomials were
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obtained in [’]. In particular, we remarked there that Ts,m(x) attains
its maximum absolute value on [0, 1] in precisely m + 1 points, with
necessarily alternating signs. Hence, if s/(sim) 2 9, then, by
Theorem 1.1, these alternation points must lie in (92, 1], and

consequently, (62, 1) contains all nontrivial (i.e., nonzero) zeros of

Ts,m(")'

One purpose of this note is to obtain (cf. Theorem 3.6) the precise

asymptotic distribution of these zeros for any sequence (T x)} ®
8, smy i=1

for which si/ni = @ and n = (where ng = 8 + mi). Qur approach, which
is to study the electrostatics analogue of the problem, also provides a
streamlined method for proving several of the fundamental properties of
incomplete pol&nomials.

The outline of this paper is as follows. In Section 1I, we discuss

a generalization of the incomplete polynomials of (1.1), and give some
known results. In Section III, we state and prove our main résults on

the asymptotic distribution of zeros, and in Section IV, we mention two

related problems.

II. POLYNOMIALS VANISHING AT BOTH ENDPOINTS

Note that an incomplete polynomial P(x) in (1.1) has a zero of order
at least On at the left endpoint of the interval [0, 1]. 1In [3],
Lachance, Saff, and Varga studied the more general possibility of
polynomials vanisﬁing at both endpoints of an interval. For reasons that
Then,

will be subsequently clear, we take this interval to be [-1, 17.

by an incomplete polynomial of type (61, 92), where 0 < 61, 0=< 62, and

0< 91 + 92 <1, we mean any real or complex polynomial which can be

written in the form
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772
n-s8,-8
8 ] 1 72
p(t) = (e-1) Les) 2 2 otktk,
where k=0 2.1)
- 8 = 91n, 5, b= 62n, 8 +8, > 0.

Furthermore, we set

e e

I = {p:p is an incompleké”polynomial of type (8,,9,)}. (2.2)
91,62 o 1’72

We remark that the collection Ie 0 contains polynomials of arbitrarily
1’72
large degree, and is closed under ordinary multiplication, but not under

addition. -

With the above notation, the generalization of Theorem 1.1, relative

to the interval [-1, 1], is as follows.

Theorem 2.1. (Lachance, Saff, and Varga [3]). If p € 161’92’ p¥oO,

and if € € [-1, 1] is any point for which lp(§)| = HpH[_l 17’ then
’

a(8;; 8,) SE = b(s,, 8,)s 2.3)

where, wigh o= 92 + 01, §i= 92 - 61, a and b are given by

. a=a@, =06 - Ja-gHa-eh
S > 2.4)
Lo b= bl 8,):=06 + JA-aT)(-8") .

ER
Note-ghatbwhen 91 = 0 and 92 = g, we find a = 282- 1, and b = 1, s0

that the#‘l;t;;z’:yal 292 -1<t<l of (2.3), after the transformation

X = (t+1)/?;?:j[-1, 1] -~ [0, 1], becomes eZSxSI, which agrees with
;heorem }Zi. ’Unlike Theorem 1.1, however, the sharpness of both endpoints
a and b %or the general case of Theorem 2.1 has not been previously
established. 1In the next section, we prove that the interval in (2.3) is,

in general, best possible. For this purpose, we study the properties of
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the two-endpoint constrained Chebyshev polynomials Ts s m(t) which are
1’72

defined as follows (c£. [3]).

N Let (91’ Sys m) be any triple of nonnegative integers, and set

_ 1 52 m
, Esl’SZ’m:_ minff (£-1) *(e+1) “(e -hm_l(t))”[_1’+1]: b €n )

D ey 2 eyl 2.5)
= (e-1) ) m-1 1y .

»n

and
8

1 52 m o
(e+1) “{t 'hm-l(t)]/Esl,sz,m' (2.6)

Tsl,sz’m(t):= (t-1)
‘Note that T_ is an incomplete polynomial of type (sl/n, sz/n),

1289om
where n:= sl-fsz-fm is its total degree.

III. MAIN RESULTS

Our approach to describing the behavior of incomplete polynomials of

type (el, 92), ralative to [-1, 1], 18 to consider the following

Electrostatics Problem. Let 0 < 91, 0 82, satisfy 0 < 91 + 92 < 1.

Suppose that on the interval [-1, 1], a fixed charge of amount 91 is
placed at t = 1, a fixed charge of amount 62 is placed at t = -1, and a
continuous charge of amount 1 - 91 - 92 is placed on [-1, 1], allowing it
to reach equilibrium, the only constraint being that the charges remain
confined to the interval [-1, 1]. Here and throughout, the logarithmic
potential and its corresponding force is assumed. Then, the problem is

to describe the distribution of the continuous charge.

M This is answered in

Theorem 3.1. For the electrostatics problem described above, the

continuous charge of amount 1 -91 -92 lies entirely in the interval
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5(91, 92) ft= b(el, 62), where a and b are defined in (2.4). Moreover,

the point density of the charge 1 ~ 61 - 82 on this interval is given by

-

ta)(®-t) | a<e<b. @3.1)

We shall prove Theorem 3.1 byﬂ considering the limit of the correspond-

S
,

ing problem for discrete point chétges.

. Lemma 3.2. For each sufficiently large integer n, let 8y (n), 8y (n) be

positive integers such that 8y (n) + 8, (n) < n and such that

8, (n) 8, (n)
lim —— =g, lin -2
n—»o n—-o

= 92, 61 + 92 <1. 3.2)

Suppose that a charge of amount 8 (n)/n is placed at t = 1, and a charge
of sz(n)/n is placed at t = -1, and let m(n):= n~sl(n)- sz(n) point

charges, each of amount 1/n, be placed on (-1, 1) so that equilibrium is

reached. Let ~1 < tn,l < tn,2 < e & tn,m(n) < 1 denote the location of

these point charges, and set

m (n)

(z):= 11 (2 - t:n

fm(n) o ,k) . 3.3)

Then, uniformly on each closed set in (:\[a(el, ez), b(el, 92)], we have

o £ ()
. 1im —Bm) Ly, (3.4)

1
e m(n) fm(n) (z)

where
e ¥(z):= £ =02 +4/2(21‘)@'2) , (3.5)
- e (1-0) (z°-1)

the quam;."iéi.esf'u, 6§, a, and b being defined in (2.4).

. We remark that, tn (3.5), /(z-a) (z-b) denotes the branch with cut

[a, b] that behaves like +z near o.

Proof, From the equilibrium equations

m(n) g, (n) 8, (n)

[Zst it +t1-1+t 2+1]i0,k~1, se*y m(n),
. J’l n,k n,J n,k n,k
J¥k

q=

4

—2
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it follows, as in Szegd [10, p. 1417, that fm(n) (z) satisfies the
differential equation
- 2 - '
(z -l)f‘:\'(n) + 2[[§1 (n) + sz(n)]z + 8 (n) sz(n)}fm(n)

(3.6)
= [m(n)[m(n)-1]+2m(n)[sl(n) + sz(n)]]fm(n).
In fact, fm(n)(z) is just a constant multiple of the Jacobi polynomial
Pé"&?’(z), vhere a:= 28 (n) - 1 and B:= 26,(n) - 1 (cf. [10, p. 140]).
Now, with the assumption of (3.2), it is proved in [5] that the sequence

of these Jacobi polynomials, as n ~ «, has no limit point of zeros

exterior to [a, b]. Hence, the functions

£ (z)
_ 1 m(n)
wn(z):— mm) ﬁm(n)(z) 3.7)

form a normal family of analytic functions in the complement of [a, b],

relative to the extended complex plane €*.

On dividing (3.6) by fm(n) and using the easily verified relations

£' (z) £ (z)
(n) (n) ' 2 2
f:(n) @y = m@y ), f:(n) @y = MY () + o )y (),

we find that Wn(z) of (3.7) satisfies

(22 -1)[m(n)w& + mz(n)¢§] + 2{[51 + sz]z + 8 --szlm(n)wn
) (3.8)
= m(n)[m(n) - 1] + 2m(n) (5; + s8,),

. ' where, for convenience, we have written 5 for sl(n), 8y for sz(n). Now,

-

let {(z) be any limit function (as n = =) in C*\[a, b] of any subsequence

¢ of the normal family [wn(z)]. Since y'(z) is the limit of the correspond-

ing sequence of derivatives, it follows from (3.8), on dividing by n2 and

using the assumptions (3.2), that {(z) satisfies the quadratic equatiom
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Py - 2002y . —LEo o, 3.9)
(1-0) (z2-1) (10) &*-1)

V“here g = 92 + 81, 6 = 92 - 91. Hence,
8 -~ oz + ./(z-a)(z~b)
V(z) = — . (3.10)
(e )(z" - 1) ,
VA

Since z¢n(z) -1 as z » » for each‘n, then necessarily also zjy(z) = 1 as

z = o, which implies that the plus sign must be taken for the radical in

(3.10). Hence, §(z) is given by (3.5).

Finally, as {(2) represents an arbitrary limit function of any
subsequence of {tn(z)] in C*\[a, b], the conclusion (3.4) of the lemma
follows. ]

Concerning the limiting distribution of the point charges in
Lemma 3.2, we prove

m
Lemma 3.3. Let qm(z) = Il (z-T ,) be a sequence of polynomials, each

k=1 myk
having all its zeros on [-1, 1], and suppose that
) 1 @
lin = ooy = V(z), for z € \[-1, 1], (3.11)
o m

where §(z) ,ié;; defined in (3.5) with 0 < 91 + 62 < 1. For each m, let
\)n; dénote glig”a;omic measure (on the Borel sets of [-1, 17]) having mass
.l/m each poi’iﬂ: :rm’k, k=1, 2, ***, m. Then, there exists a measure V¥
guch l:he.t:.\'rr:1 ';.o,v* weakly as m -+ o, where the support of the measure v¥
is exaccl;f‘[-’-é}el, 8,), b(8;, 8,)] (cf. (2.4)), and where

W dt, ¥(,B)<[a,b]. (3.12)

l-¢t

B
& ox 1
v{(a,"B)) =
L m(1-6,-6,) fa

Proof. We first note that
t
qm(z) . J.+1 dvm(t)

9,(2) g z-t’

vz ¢g[-1, 1i]. (3.13)

1
m




Approximation Theory 111 777

Since vm[[-l, 17} = 1 for all m, it. follows from Helly's theorem

(cf. [9], [12]) that there exists a subsequence Vo and a measure V¥ such
i

+that Vi ™ V¥ weakly. Hence,

1
dv_ (t)

+1%m S
i _ dv™ (t) -

Z-t -1 2o vz e[, 1]

lim
v js0 =1

But, from (3.13) and (3.11), this means that

+1
j 9¥i§§l =¥(z), Yz £[-1, 1]. (3.14)

1

Now, by applying the Stieltjes inversion formula (cf. [11, p. 250])
to (3.14), we have for each interval (v, B) < [-1, 1] that
* % - B
V¥ @,8)} + !_%gl:+ Y—gﬂl = lim ;%-f Im § (t+iy)dt. (3.15)
. : a

From (3.5), we see on the other hand that

0, for t £ [a, b]

f(ty:= 1im Im Y (tHy) =

+
y=0 (£:a) B8 | for ¢ € (a, b).

(1-o)(t™-1)
Thus, (3.15) implies that the support of v¥ isg exactly the interval
[a, b], and since §(t) is continuous on (-1, 1), V¥ is absolutely

continuous with respect to Lebesgue measure. Consequently, (3.15) ylelds

A
V@, B = gy | HEREE 4 v @, 8) < [a, b].
o

o) 1 - ¢

* Since this 18 true for every weak limit v*, Lemma 3.3 is proved. ®

o " Proof of Theorem 3.1. Combining Lemmas 3.2 and 3.3, we see that the

limit, as n —» =, of the discrete electrostatics problems described in
Lemma 3.2, has a charge of'e1 at t = 1, a charge of 8, at t = -1, and a

charge of 1 - 8, - 8 distributed continuously over the interval



778

[8(91, 92), b(e,, 62)], with density (cf. (3.12)) given by

a-eo - ez)dv*(t) =°sz_tldt , t €[a, b]. =

m(l - t7)

We remark that the function
V(z; 8y, 0,):= efh'z'll*‘ei”lz+ltﬂ;f%"91' 0,) j; o z-t]av* (t) (3.16)
gives the potential for the electrostatics problem of Theorem 3.1, 1In
fact, it can be shown that
V(z; 91, 92) =0 A +0n G(z; 61, 82), (3.17)

where

8= L /110) ™ 10210 1) o (1-6) 178, (3.18)
_and (cf. [3, p. 425])

8
1 2

. . @(z)-p(l) @(z)-@(-1)
6(z; 8;, 8,):= |o@)] ,¢(1)¢(z)_1, w(-l)w(Z)-l‘ , (3.19)

where

v = 9@):= (ema'+ yeob)/ (/fe-a - \/z-b)

maps "*\[8(91: .02), b(el, 82)] onto the exterior of the unit circle

'w, =1. To prove (3.17), one need only verify that the difference

V- @i +.0n G) is harmonic in c*\[a, b], equal to zero at «, and
ai:proaches E_."é“;?ta“t as z approaches the boundary segment [a, b]. Thus,
.this harmoni"q‘.‘:‘f.u-nction 1s identically zero in ¢*\{a, b].

» Now in: [3,,p. 434], it is proved that any sequence of two-endpoint
eEe T
constraiQfdtggbyshev polynomials (cf\. 2.6)) Tsl (n),52 (1) ,m(n) (t) of

respective degrees n for which

al(n)/n - 91, sz(n)/n = 8, n= sl(n)+52(n)+m(n) ~ o, (3.20)

. 8a tisfies

E. B. Saff et al.

x




Ca

Approximation Theory 111 779

Lim ITs1(n),82(n),m(n)(z)ll/n = 6(z; 8y, 8y), 2 € e\la, b]. (3.21)

n-s o

Hence, we claim that the sequence of polynomials
8 () 8, (n)
In(n) @17 Ta ()8, (@),m(n) @/ G T @) T, =l 2, e 3.22)

satisfies the hypotheses of Lemma 3.3. Indeed, on writing Tn(z) for

sl(n),sz(n) m(n)(z) and V(z) for V(z; 61, 62) for simplicity, (3.17) and

(3.21) imply that
1

T (@)

T @

% U@ - 1V @), z=xHy € e\a, b].

Hence, from (3.16) and (3.14), it follows that

m(n) D )(2) (1-91-92) Vy (@) - ” @) - ;o z-1 z+ V(=)

for all z = x+iy € ¢\[a, b]. Consequently, we have

Theorem 3.4. Let ﬁn(t):= Tsl(n),sz(n),m(n)(t) be any Sequence of

two-endpoint constrained Chebyshev polynomials of respective degrees n for

which (3.20) holds. Then, the zeros of the sequence ﬁn(t), other than

those at t = + 1, have no limit points exterior to [a, b), and are dense

in [a; b], where a gﬂg b are defined in (2.4). Furthermore, if Nnﬁx, B)

denotes the total numberléf zeros of ﬁn(t) in any interval (o, B)C (a,b],

then
N, @ B) m
lim 2—" f a)(b-t) g, (3.23)
n—+o ] o 1 - t

Theorem 3.4 immediately implies the sharpness of Theorem 2.1l. Indeed,

if we consider any sequence of constrained Chebyshev polynomials from

0,0 for which (3.20) holds, then their respective alternation points
1’72 :

all lie on [a, b] and are interlaced by their respective zeros. As these

zeros are, from Theorem 3.4, dense in [a, b], we have
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Corollary 3.5. The interval [a, b] of Theorem 2.1 is sharp in the sense

that, for any pair (81, 82) with 0 < 91, 0= 92, and 0 < 91 + 92 <1,

there exists a sequence [pn(t:)] c Ie N of nonconstant polynomials and
1’72

sequences of points § , § in [-1, 1] such that lp (3 )l ={p (€ =
n,1’ °n,2 —— ——""n""n,1 n ‘°n,

[}
L

ith 1i = a; .1 = b.
”Pnn[_l,lj with “_.“;gn’l a “i?;:fn’z, ‘

We conclude this section by"'lci‘éscribing the distribution of zeros for v
» the (one-endpoint) constrained Chebyshev polynomials of (1.4);. This is

just a special case of Theorem 3.4 when 61 = 0, 92 = @, and the interval

(-1, 17 is mapped to [0, 1].

Theorem 3.6. Let ﬁn (x):= :rs (@) ,m(n) (x) be any sequence of constrained

Chebyshev polynomials (cf. (1.4)) of respective degrees n=sg(n)+m(n) for

which s(n)/n = 8 as n = », wvhere 0 < @ < 1. Then, the zeros of f’n(x),

other than those at x = 0, have no limit point exterior to [92, 1], and

are denge in [92, 1]. Furthermore, if ﬂln(ot, B) denotes the total number

of zerog of ‘i’n(x) in any interval (o, B) C [92, 13, then

’ * (@,8) -, 8 2
‘ D § 1 [x-9"
. lim —— = fd Vi dx. 3.24)

-X
n- o

IV. RELATED QUESTIONS

Ve

i "

Concerntng the possibility of uniform approximation of continuous
B

functi.onzs'\'én tO, 17 by incomplete polynomials of type @ (cf. (1.1)), the

follow_in‘g‘;'r;as‘ult is known. ~
AR s

. Theorem 4.1.: (Saff and Varga [8], v. Golitschek [1). Let 0 < 8 <1 be '
. 1)

fixed, and let F € ¢ [0, 1] with F ¢ I, (f. (1.2)). Them, a necessary

and sufficient condition that F be the uniform limit on [0, 1] of a

gequence of incomplete polynomials of type © is that F(x) = 0 for all

05}(592.
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For the more general two-endpoint case, the characterization of the

uniform limits on [-1, 1] of incomplete polynomials of type (91’ 62)

remains an open question. However, the results of our investigations

suggest the following

Conjecture 4.2. Let 0 < 91, 0< 82, with 0 < 91 + 92 < 1, and let

F€cl-1, 1Jwith FEI (c£. (2.2)). Then, a necessary and

8,,6
1’72
sufficient condition that F be the uniform limit on [-1, 1] of a sequence

of incomplete polynomials of type (91’ 62) is that F(t) = 0 for all

t €[-1, a(e;, 8,)]ULb(e,, 8,), 1], where a and b are given in (2.4).

Another related question concerns the behavior of incomplete poly-

nomials that have a high-order zero at an interior point A of [0, 11,

namely, the collection

n

I(K):= {p: P(x) = Z)ak(x~A)k, s=606n, s >0}, 0<x <. (4.1)
& k=s

Here, the related electrostatics problem involves placing a fixed charge

of amount § at x = A, and the remaining charge of amount 1 - 8 on [0, 1],
so that equilibrium is reached. It seems likely that the methods
employed in this paper can be adapted to find the distribution of such
charges, part of which will lie on [0, xl(x)] and part on [xz(x), 1],

where xl(x) <A< xz(A). However, the analysis is more involved in that

elliptic integrals arise. This generalization will be reserved for a

later occasion.
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