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Our purpose is to introduce the reader to the convergence theory
of interpolating rational functions known as Padé Approximants.
Though the subject originated around the turn of the century, it
has only been in the last 15 years that significant applications to
physics (particularly critical point phenomena) has rekindled interest
in this topic. We make no attempt in this brief note to give a
comprehensive survey, but we do hope to provide the flavour of
old and new results. The (hopefully) interested reader can consult
the more extensive bibliographies contained in the references for

further details.
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2 Definitions and Notation

Let m, denote the collection of all polynomials of degree at most
m. A rational function R(z) is said to be of type (n, v), where n, v
are non-negative integers, if

Re€wn,, ={plgpEn,,q€Em,,q * 0}

Given (n, v) and a formal power series

2.1 @) = ¥ apz®,
k=0
we select polynomials Py, € 7, , Quy € 7,(Qy, * 0) such that
(2.2) Qn,D)f(z) —P,,(2) = Z Cka = ﬂ’(Zn'H”'l)_
kR=n+v+i

If fis (n + v)-times differentiable at z = 0, then (2.2) can be equiv-
alently written as

(2.3) (anf—_an)(k)[z=0 =0, k=0,1,...,n+v.

The equations (2.2) and (2.3) are known as the Padé equations.
Since (2.2) represents » + v + 1 equations in #n + v + 2 unknowns
(the coefficients of P,, and Q,,), it follows that this homogeneous
system has a non-trivial solution (necessarily with Q,,,, ¥ 0). Although
P,, and Q,, are not unique, the ratio P,,/Q,, (in lowest terms)
does, however, determine a unique rational function of type (#, »).

Definition 2.1. The Padé approximant (PA) of type (n, v) to f is
given by R,, = P,,/Qny, where P,, €7, and Q,,(¥0)Em, are
polynomials which satisfy (2.2).

In particular, for » = 0 the PA reduces to a section of the power
series, i.e.,

n
Rpo(2) = Z apz®.
E=0
We caution the reader that (2.2) does not in general imply that

f(2) = Rn(2) = "),
Indeed if Q,,,(0) =0 (so that P,,(0) = 0) the contact at the origin
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for the PA may be diminished. However, in the class w,,, the PA
R, is that unique rational function with maximum possible contact
with f at the origin.

The Padé numerators and denominators are rich in algebraic pro-
perties such as the 3-term recurrence relations found by Frobenius.
For a detailed discussion of these classical properties as well as
more recent ones we refer the reader to [2, 10, 15]. Here we pause
only to give a determinant representation for Q,,, (z) which illustrates
the important role played by Hankel determinants:

1 z e, zZv

An+1 a, e Ay_v+1

An+2  Gn4y tee An-v+2
(2.4) Onv(z) = ,

dpsy Gnev-1 ... g

provided this determinant does not vanish identically.
The PAs for (2.1) are typically displayed in a doubly infinite
array known as the Padé Table:

Roo Rio Ry
Ry; Ru Ry
Ro Riz Ry

Here the first row represents the polynomial sections, the 2nd row
consists of PAs with at most one pole, the third row PAs with at
most two poles, etc. Of special interest are the diagonal files of
the table, for these represent continued fraction expansions. Indeed
if
(2.5) f(z) =do + dz

1 + dzz

= Z aka,
e k=0
1+...
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the successive truncations dgy, do +dyz,dg +dz/(1 +d,z), ... are
rational functions of the respective types

0,0),(1,0,1, D, 2, D,....,0,m),(nt 1,n),....

It is easy to see by induction that for each n, the coefficients a,, in
(2.5) depend only on dy,d;,...,d, and hence the Maclaurin
series of the truncations agrees with that of f to the maximum
number of terms. Consequently these truncations are PAs which
form the staircase entries of the table, i.e., the entries along the
main diagonal and first super diagonal.

3 Convergence Theorems

The convergence question for PAs can be stated as follows. Given
the power series (2.1), what can be said about the convergence of
sequences extracted from the table, such as rows, columns, diagonals,
and, in general, any sequence R,,,, for which n + » —> o0?

One of the earliest results concerning row convergence for mero-
morphic functions f(z) is due to Montessus de Ballore [5]. His
proof relied mainly on Hadamard’s theory for locating polar singu-
larities—particularly the properties of Hankel determinants. In 1970
this author gave an elementary proof [17] of the Montessus theorem,
which applies as well to general interpolating schemes. Here we
present an even more abbreviated version of the proof which H.
Wallin attributes to H. Shapiro.

THEOREM 3.1. Let f be meromorphic with precisely v poles
‘(counting multiplicities) in the disk D: |z|<r, with f analytic at
z=20. Then, as n— oo, the sequence of PAs {R,,}n=0 cOnverges to
f(2) uniformly on any compact set in D — {v poles of f}. Further-
more, as n—><°, the poles of the R,, tend, respectively, to the v
poles of fin D.

v
Proof. Set g(z)= Il (z —oy), where oy, o, . .., &, are the v poles
k=1

of fin D. In the Padé equations
3.1) Oupf — Py, =2E"*"*Y), n=0,1,...,
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we normalize each @Q,, so that its coefficient of largest modulus
is 1 (in the case when there is more than one largest coefficient we
choose the one with smallest subscript). Multiplying (3.1) by g(z)
we obtain

(3.2) 0nv8f —8Pny =0@E"™*1), n = 0,1,..

Note that 4, = Q,,gf is analytic in D and that gP,, € 7, ,,. Hence
gP,, is the (n + v)th partial sum of the Maclaurin series for £, (z)
and we can write, by Hermite’s formula,

J. n+v+1h (t)dt

t’“‘””(z‘ 2 , z inside C,

(3.3) h,(2) —8@2)P,,(2) =
where C is any circle centred at the origin and contained in D. As
the functions 4,(¢) are uniformly bounded on C, it follows from

(3.3) that
(3.4) hn(z) —8(2)Ppy(2) >0,

uniformly (in fact, geometrically) on any compact set in D.

Now let @_ be any limit function of the normal family {Q,,,}- <0,
so that Q. is necessarily a polynomial of degree at most v. From
(3.4) we see that Q.. gf is the uniform limit of analytic functions
which vanish at each of the points ¢;. Consequently, as the analytic
function gf is non-zero in these points, we have g|Q... Thus from
the form of Q. it follows that Q. (z) = Ag(z) for some constant
A#0. As @, is an arbitrary limit function, the zeros of the sequence
{Qnyln=o therefore tend to the » poles of fin D, and from (3.4)
we deduce that R,,(z) —> f(z) locally uniformly in D — {v poles of
[} =

Another early result, due to H. Padé [15], concerns the Padé table
for the exponential function.

THEOREM 3.2. For any sequence (m;, v;), i=1, 2, ..., with
n; + v; > oo, the poles of the PAs to € all tend to oo, and
lim R, (z) =

i—> >

uniformly on any compact set in C.
While this result is perhaps more an example than a theorem,
the PAs to e®* have several important applications. The stability
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properties of certain numerical schemes for solving differential
equations can be rephrased in terms of these approximants, and
the Padé numerators are related in a simple way to Bessel polynomials
[12] which have applications to number theory.

The Padé table for ¢® has a particularly elegant behaviour with
regard to the distribution of poles and zeros of the PAs. In 1924
Szegd characterized the asymptotic behaviour of the zeros of the

partial sums
n

Rno(z) = X 2*/k!
0

Specifically, he showed that, as n = oo, the zeros of the normalized
polynomials R, ,(nz) accumulate at every point on the level curve
lze!l"?| =1, |z| < 1. In [19] a generalization of this result is given
for sequences of PAs to e* for which the ratio v/n (v = v(n)) tends
to a finite limit o as n# = oo. In such a case the zeros as well as the
poles of the normalized PAs R,,((n + v)z) all accumulate on an
explicitly given level curve I'y:lwg(2)I =1, |z] <1, with zeros
tending to a subarc (with endpoints on |z|=1) of I'; and poles
accumulating on the complementary subarc.

An important extension of Theorem 3.2 to the class of functions
generated by totally positive sequences was obtained by Arms
and Edrei [1]. Such functions were shown by Edrei to be of the
form

1 /1 + oz
(3.5) f(z) = aye"? ﬂ ( 1_), ag,v, 9, P; = 0,

i=1\l =Bz

Z (Olj +B]) < oo,

For these functions we have

THEOREM 3.3. Let f(z) be of the form (3.5). If (n;,vy), i=1,
2,...,is such that vi/n; > o, and the Padé denominators are
normalized so that Q,,(0) = 1, then

3.6) lim P, ,(z) = ag exp [yz/(1 + 0)] ﬁl a1 + a2),
100 ;

=
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oo

lim Q. ,,(z) = exp [—yoz/(1 + )] TT (1 —B;2);
i 1

i=

the convergence being uniform on any compact subset of C.

In the proof of Theorem 3.3 the positivity of the Hankel deter-
minants plays a crucial role.

A second class of functions for which convergence properties of
PAs are known is the series of Stieltjes (cf. [151).

oo

Definition 3.1. A power series f(z) = cj(—z) is said to be a
j=0

series of Stieltjes if
3.7) o= f tdew, j=0,1,2..,

where ¢ is bounded, non-decreasing, left continuous, and assumes
infinitely many values.

For this class we have the following result which essentially follows
from Stieltjes’ work on the moment problem (cf. [2, 15, 20]).

THEOREM 3.4. Forn=>1, u=—1, each PA R, ., for a series of
Stieltjes has all its poles on the negative real axis. Furthermore,
each diagonal file {Ry4u nln=1> M= —1, converges uniformly on
compact sets of the slit plane C — (— 0, 0].

Notice that Theorem 3.4 does not assert that the diagonal files all
have the same limit. This will be the case only when the Stieltjes
moment problem is determinant, i.e., when ¢ is the unique dis-
tribution whose moments generate the sequence c¢;. The proof of
Theorem 3.4 again relies on the special sign pattern for the Hankel
determinants.

4 All Is Not Roses

While convergence results exist for PAs to other special functions,
(e.g., [2,4,8]) there are “nice” functions f(z) for which the poles
of the PAs misbehave and destroy convergence. To see this, consider
a sequence of non-zero coefficients a,, for which
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“.1) 0 = lim |a,|¥* < limsup |a,+1/an,

n-—>o0 n-—>oo

so that f(z) = % a,z" is entire. As shown by Perron [15], it is

not difficult to construct such a sequence for which {a,/dn+1 }n=o
has limit points that are dense in the plane. But, by (2.4), a,/a, +1
is the zero of the Padé denominator Q,,(z), and so the second row
of the Padé table for this entire function has poles everywhere dense
in the plane. Even more startling is the following result due to
H. Wallin [21].

THEOREM 4.1. There exists an entire function [ such that the
sequence of diagonal PAs {R,.(2)},<¢ for f is unbounded at every
point in the plane except z = 0.

In the light of this result, two possible directions suggest themselves:

(1) consider a weaker form of convergence, such as convergence
in measure or in capacity; or

(2) try to extract subsequences which do have the desired uniform
convergence properties.

In the first direction there is a result due to Pommerenke [16]
who generalized earlier work of Nuttall. Roughly speaking it asserts
that near-diagonal PAs will be inaccurate approximations to f only
on sets of small capacity (transfinite diameter). For the precise
statement of this result it is more convenient to deal with PAs
which interpolate an analytic function at eeinstead of at z = 0. Simply
replacing z by 1/z in the discussion of Section 2 defines these
approximants, which we denote by R,,,.

THEOREM 4.2. Let f be analytic on a domain containing < in the
extended complex plane whose complement is a set of zero capacity.
Let r>1 and N> 1. Then for each € >0 and n >0, there exists
an ny such that |R,,(z)— f(2)| <¢€* for all n, v for which n> n,
and 1/\<n/v <\ and for all z such that |z| <rand z € E,,, where
cap E,, <n.

In the case when bounds are known for the function f(z), FitzGerald
[9] showed how Theorem 4.2 can be used to generate “truncated”
PAs whose areal means converge normally to f(z).
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In the second direction, Baker and Graves—Morris [3] (extending
earlier work of Beardon) have proved that if f(z) is analytic in a
neighbourhood of the origin, then it is possible to select subsequences
of the 2nd and 3rd rows of the Padé table which will converge to
f(2). Recently Edrei [7] has, for the case of entire functions of
finite order, extended these results by proving the existence of
uniformly convergent subsequences for certain other rows (depend-
ing on the order of f) of the table. There still remains open, however,
the following.

Conjecture (Baker, Gammel, Wills). Let f be analytic on |z|<1
except for m poles (different from z = 0) in D:|z| <1 and except
for z =1 at which continuity holds only when points in |z| <1
are considered. Then there exists a subsequence of the diagonal
PAs {R,,} to f which converges uniformly to f on compact sets of
D — {m poles of f}.

5 Converse Theorems

Recently A. A. Gontar has suggested the study of converse theorems
of the following form: given a function f known merely to be
analytic at z = 0, and given information about the behaviour of the
poles of a sequence of its PAs, what can be said about analytic
continuations of f and the location of their singularities? Such
results would generalize a theorem of Fabry [6, p. 377] who proved
that if

lim a,/a,+, = Zy

7 — oo
exists, then z, is a singular point of f(z). A converse to the Theorem
3.1 was announced by Kovateva in [14]. She proved:

THEOREM 5.1. If f is analytic at z = 0 and the PAs in a fixed row,
say {Ry,,}n=0, have poles which tend at geometric rates to v finite
points oy, 0y, . ..,q, (not necessarily distinct, but different from
z = 0), then there exists a disk D,:|z| <r containing the o; in which
fis analytic except for actual poles at the o;.

In a similar spirit we state the following recent result:
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THEOREM 5.2 (Karlsson, Saff [13]). If f(z) is analytic at z =10
and the poles of the diagonal sequence of PAs {Rpnin=0 for f all
tend to infinity, then f can be extended to an entire function,

1.

10.
11.

12,
13.
14,

15.
16.

17.

18.
19.
20.

21.
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