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1. INTRODUCTION

At the December 1976 Tampa Conference on Rational Approximation
with Emphasis on Applications of Padé Approximants, Lorentz [3] presented
results and open problems concerning incomplete polynomials of type 0,
ie, for a fixed 0 with 0 < @ < 1, the set of all real or complex polynomials

of the form
n
Zakx", where s = 0-n, nan arbitrary nonnegative integer. (1.1)
k=s

These incomplete polynomials of type 0 have been further studied by Saffand
Varga [7-9], by Kemperman and Lorentz [1], and by Lorentz [3]. Note that
any incomplete polynomial of type 0 has, from (1.1), a zero at x = 0 of

order at least [#n - 0].

In this paper, we consider the more general problem of polynomials
constrained to have zeros at both endpoints of a finite interval. Without
“loss of generality, we take this interval to be [— 1, +1]. By analogy with
(1.1), for any ¢, > 0 and 0, > 0 fixed with 0, + 0, < 1, we consider here
the set of all real or complex polynomials of the form

"

(x = Dy + D2 Y gt where s, 2 0,-(s; + s, + m),
k=0
S, 2 0,-(8, + s, +m). (1.2)
421
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In Section 2, upper bounds for the growth of polynomials of the form (1.2) are
determined. In Section 3, an analog of the classical Chebyshev polynomials
for constrained polynomials of the form (1.2) is given, and it is shown that
the upper bounds of Section 2 are, in a certain limiting sense, best possible.

2, GROWTH ESTIMATES FOR CONSTRAINED POLYNOMIALS

In the spirit of two lemmas of Walsh [12, p. 250], we prove the following
result of Lemma 2.1 on bounding above the moduli of constrained poly-
nomials. For a related result, see Kemperman and Lorentz [1].

Lemma 2.1. Let & be u closed bounded point set, not a single point, whose
complement K with respect to the extended complex plane is simply connected.
Let w = ¢(z) denote a function which maps K onto |w| > 1, so that the
points at infinity correspond to each other. Let the (not necessarily distinct)
points 2, k = 1,...,m, lie exterior to &, and let P(z) be a polynomial of degree
n (n = m) which vanishes at each of the points o, (with each o, listed according
Lo its multiplicity). If, on the boundary of &,

IP@)| < L, @1
then, forall z in K,
2(2) = o).
ola)p(z) — 1
Proof. Define Q(z) for z in K by means of
N P& (e0)e(z) — 1)
2=ty L (rp(z) =~ o)

so that Q(z) is analytic in K, even at infinity. Its modulus is continuous in the
exterior of &, and, on the boundary of &, is bounded above by L. Hence, by
the maximum principle, '

Q) = L, forall zin K,

|P()| £ Llo@)|" ]

k=1

. 2.2)

which gives the desired inequality (2.2).

Here, we are interested in polynomials constrained to have certain
order zeros at x = —1 and at x = 1, and we thus introduce the following
notation. As usual, for each nonnegative integer n, 7, denotes the set of
complex polynomials of degree at most n. For every ordered triple of non-
negative integers (sy, $,, m), the set n(s,, s,, m) is defined by

n(sy, s, m) =[x — )%(x + )%g(x):qemn,). 2.3)
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Finally, for cach continuous g defined on a compact set B, we set
lglls:= max{|g(z)|: z € B}. 24

To obtain growth estimates for constrained polynomials from Lemma
2.1, take the set & now to be some real interval [a, b], with —1 <a <b < +1.
Then,

2 2 2

maps the exterior of the unit circle in the w-plane onto C*\[4, b] in the z-
plane (where C* denotes the extended complex plane). The function ¢(z)
required by Lemma 2.1 is then the inverse map of (w), i.e.,

VIZAatVIzmb o om(a b, 2.6)

b _ -1
PR A L SN ek (“’J’W ) lwl > 1, @.5)

for some suitable branch of the square root function. For this choice of &
and for the choice % = LI Sk s s,and g = =15y + LSk <5 + 55,
we have, as an immediate consequence of Lemma 2.1,

Corollary 2.2.  Let p € n(sy, S, m), and set n:= s, + s, + m. Then, for
call = € C*\[a, b],

S 52

o(z) — (1) Y

e(Dep(z) ~ 1

@o(z) — (1)
(= Do(z) = 1

Ip(2)] = “P||[a.b]|(P(Z)|"

where @(2) is given by (2.6).

In a typical application, it may be known that a polynomial from
n(sy, 5, m) is bounded above in modulus on [ -1, 1] by some constant L.
We then wish to choose an interval [a, b], strictly contained in [—1, 1],
so as to optimize the upper bound of (2.7). In what follows, we examinc
the behavior of polynomials of large degree from n(s|, s,, m) where s, /n 2 ¢,
ands,n 2 0,.for ), and 0, fixed. We then make use of certain limiting results
to determing the best choice for [«, b], depending only on the relative orders
of contact at x = — | and at x = 1. As Jacobi polynomials play a significant
role in the determination of such an optimal interval [4, b] and in the results
of Section 3, we briefly summarize some of their basic properties.

FFor ihe real parameters @ > —1 and § > —1, P*#{x) denotes the
classical Jacobi polynomial of degree n. 1t is well known (cf. Szegd [11,
p. 68]) that if

1
e = f (1 — x)%(1 + xY(P*P(x)? dx, (2.8)
-1
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then the sequence {PYP(x)/4, /h" e s orthonormal with respect to the
weight function (I — x)*(1 + \)” in the interval [ -1, 1], i.e.,

t P(xvlﬂ(x)) (p(a.ﬂ)(x)) §
I — x)(1 + x)ff -~ " dx = 8, .
f—l( W ¥ (,/hf,"‘” N2 '

The following representation for A& # will be useful (cf. Szego [ 11, p. 68]):

e = A C(n+a+ D0+ f+ 1) 2.9)
"+ f+ DI+ DI Fa+ f+ 1) :

As a well-known consequence of the theory of orthogonal polynomials,
(cf. Szegd [ L1, p. 63]), the unique monic polynomial g(x) in 7, which mini-
mizes the integral

J. + (= )1 + x)(g(x))* dx
-1

is given explicitly by the monic Jacobi polynomial

7"(211 +a+f

H

-1
) P P(x), (2.10)

It is further well known that the zeros of P®#X(x), for any n 2 1 and for
any choices of x > —1 and f > ~1, all lie in (~1, +1). Concerning the
asymptotic location of zeros of particular sequences of Jacobi polynomials,
we state

Lemma 2.3. (Moak er al. [6]) Let a, and b, denote, respectively, the
smallest und Iu; gest zeros of P& P(x), whereoz > —land B, > — 1. Assume
that

i
lim ot =0, and lim Py

S — R Y
e 20+ %, + B, oy S )

Forp:=0, + 0, and v:= 0, — 0,, set
= . A 2 1 B
a (.x(()l, 0,) = v — /(1 ;t’)( v, . @2.12)
b=b0,0,):=pv + (1 — )1 =)
Then,
lima,=a and lim b, = b. (2.13)

[ add & n— o

Moreorer, the zeros of the sequence {PP PN x5 o are dense in the interval

(u. b].
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We make use of this last result in sclecting the optimal interval [a, b]
in Corollary 2.2. To every ordered pair (¢, 0,) from the set
Q:={(0,,0,):0,>0,0,>0,0, + 0, <1}, (2.14)

there corresponds a unique interval [a, bl with — 1 < g < b < lrom (2.12).
Conscquently, for cach (0,, 0,) in ©, there exists a unique mapping function

Vi—a+.Jz—b @.15)
Ji—a-Jz=b '

'mupping C*\[«a. h] onto the exterior of the unit circle. For (0,, 0,) € Q
and z € C*\ [, b], we now define the function G(z; 0,, 0,) by

@(z) — (1) "‘.} o(z) — o(—1)
p(Do(z) — 1 o(—Dep(z) — 1
We extend G(z: (), 0,) continuously to the interval [a, b] by defining
Gz 0,0, =1 for ze[a, b]. We remark that G(z; 0,, 0,) is continuous
in the variables 0, and 0, and we extend its definition continuously to the
closure £ of Q. For example, when 0, + 0, = 1, we have

G(z) = G(z10,,0,) = 20))"Q20:) 1 — z|®|1 + z/%  (2.17)

P(z) = Pp(z:0,,0,) :=

]

G(=) = G(z:0,, 03) 1= | ()] (2.16)

In the special case when 0, = 0, the G function agrees with the corresponding
G function defined by Saff and Varga in [7, 8]. To facilitate the statement
of the main result of this section, we first mention some simple propertics
of the function G(z; 0,, 0,).

Note that, as the points at infinity correspond to each other under the
mapping @(z), for (0, 0),) fixed in Q, we have

G(z;0,,0,) > as |z| - o0, (2.18)
Morcover, it is evident from (2.16) that, for (0,, 0,) € Q,
G(—1,0,,0,) =0=G(1;0,20,). (2.19)

Next. we also have the following result of Lemma 2.4. Its proof, being
similar to that of [7. Lemma 4.2], is omitted.

Lemma 24, For(0,,0,) fixed in Q, G(x: 0y, 0,), considered as a function
of the real variable x_is strictly decreasing on (— o, — 1) and on (b, ) and is
strictly increasing on (=1, a) and on (1, 4+ 20).

As a conscquence of Lemma 2.4 and the properties of (2.18) and (2.19), for
each (0. (5) €  there exist two unique real points

p=p0,0,) < —1 and a=a(0,0,)>1 (2.20)



426 M. LACHANCE, E. B. SAFF, AND R. §. VARGA

Y e .

I I e R e ]
eb——_———————
Qb e

+1¢

Fig. 2.1.  G(x; 3/9, 5/9), x real.

for which we have
G(p(0y, 05); 0, 05) = | = G(a(8,, 83); 0,, 0,). (2.21)

By way of illustration, Fig. 2.1 gives the graph of G(x; 3/9, 5/9) for real values
of x. \

We comment that, although we do not have an explicit representation
for p or ¢ in (2.20), numerical estimates for p and o are easily determined.

Since, for each (04, 8,) € Q, the continuous function G(z; ¢, #,) vanishes
atz = —1landz = 1, we have the existence of neighborhoods about z = ~1
and z = 41 for which G(z; 6,, 8,) < 1. Actually, the level curve G(z; 8,, 6,)
= |, enclosing these neighborhoods, traces out a “barbell”-type curve.
We ilustrate this “barbell” configuration in Fig. 2.2 by graphing the level
curve G(z: 3/9, 5/9) = 1.

Next, for each pair (0, 0,) in Q, we define the open set

ABy, 0,):= {z:G(z; 0y, 0,) < 1}. (2.22)

We now state the main result of this section,

Fig. 2.2. G(z:3/9,59) = L.
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Theorem 2.5. Letpe (s, 52, m) with p not identically constant, and set
ni=s, + s, + m. Then, for all z,

[P} = Ipllp- 1. (G230 sy/n, s2/m))". (2.23)
C (m.\'cqueml.\", for z € A(s,/n, s3/n),
Ip(2)| S ”P”(—x‘.l](G(Zi s/n, 5,/m)" < ”17“1—1.1]- (2.24)
In particular, if &€ [—1, 1] is such that | p(&)| = pll{= . 1y, then
a(s,/n, so/n) £ &< b(s,/n, s,/n). ‘ (2.25)

The statement (2.23) is actually a restatement of Corollary 2.2 in terms of
the function G(z: 04, 00,). Furthermore, we will show in Section 3 that the
inequality (2.23) is sharp in a certain limiting sense.

In the next two corollaries, we state convergence and interpolation results
for sequences of constrained polynomials.

Corollary 2.6. Let (0,, 0,) be fixed in Q and let
{p,(:):: (z = 1"z + 1=y a,\,.,-z"}
k=0 i=1

by any infinite sequence of complex polynomials satisfying

limn, = o0 (=8, +s,+m,iz21) (2.26)
and
lims, /n;, = 0, and lim s, /n; = 0,. (2.27)
If
Jim sup(pil -1, )™ <1, (228)
then
limp(z) =0 Jor all ze A(0,, 0,). (2.29)
Moreover. for any closed subser B of A(0,, 0,),
“”.] sup(lpill )™ S I1G(-5 04, 01l < 1. (2.30)

The proof of Corollary, 2.6 follows from applying inequality (2.23) to
each polynomial p(z) and ffom the continuity of G(z; 0,, 0,) in the variables
¢, and 0,. We will show in’Section 3 that Corollary 2.6 gives the largest
possible open set of convergence to zero for the class of such polynomials
piz).
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Our final result of this section concerns polynomials interpolating a
function f(z)ut the points z = —-land z =

Corollary 2.7.  Let f(2) be analytic at z = —1 and at z = 1. Suppose
there exists a sequence of polynomials {p{z)}2  withp;e m,, Vijng <ny, <-«-,
where ny, /n; = Vas i — <, and such that

PR = R, k=0,1,...,8 .

pPO(=1) = fO(=1), k=01...,8," 231
Further, suppose that
lim -‘ﬁ— =0, and lim ifT =0, (2.32)
and that
lifiiup(llr’.-lh-n, s L (2.33)

Then, {(z) is analvtic at each point of A(04, 0,) and p(z) — f(2) for z € A(0,,0,),
the convergence being uniform on any closed subset of A(0,, 0,). On a closed
subset B of A(0),, (1,) we have the following convergence rate:

lim sup |/ = pill g™ S 1G(-; 04, 05)l5 < L. (2.34)

i~

To prove this last result, we consider consecutive differences from the
sequence | f(z) — p(z)}/%, which in turn form a sequence of constrained
polynomials {p;, () — p(2)}Z ;. This sequence satisfies the hypotheses of
Corollary 2.6 and hence tends to zero, geometrically in A(0y, 0,).

As an application of Corollary 2.7, we.mention an interpolation problem
suggested by Meinardus [S], related to the design of filters. Let g be the real
step function detined for all real 1 by

Il for t<

g(t) =1 3 for =

0 for t>

(2.35)

Wl Nl Bob—

and consider the sequence of polynomials {g,(x)}azo With ¢, € ,, 4, for all
n 2 0. satislyig the conditions '
RYOY = o) k=01,....n
q'l 0) =y '(0), (2.36)
g1 = g™(1), k=01,...,n

The polynomials ¢, are uniquely determined, and, in fact, are explicitly
aiven by

([Il('\-) = BZn+ l(x; ‘})’ n g 0-,
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. . ¢ !\_ n K — n—k
B,.(-\,fi)-— k;)./ (n)(k)'\ (1 =x)

is the Bernstein polynomial of degree n for a given real-valued function on
[0. 1] (cf. Lorentz [2, p. 4]). It is casily seen that {g,(x)},2 so defined are
uniformly bounded by unity on [0, 1]. Setting p,(x) := ¢,((x + 1)/2), we
find that the sequence {p,(x)}X, satisfics the hypotheses of Corollary 2.7
with0, = (), = 1/2. Inthis case, onc readily verifies {cf. (2.20)] that p(1/2, 1/2)
= — /2 2 and o(1/2, 1/2) = \/ so that, by Corollary 2.7, we have for real
x that the sequence .p,,(\)},,_ yconvergesto lforx e (— \ﬂ, 0) and converges
to 0 for x € (0. \/ 2), the convergence being geometric on any closed sub-
interval of (= 2. 0) L (O, \/2). Consequently, as n — o, q,(t) — g(t),
geometrically on any closed subinterval of
(2 (57)

2) T\

where

More generally, for complex 1, Corollary 2.7 implies that the sequence
(1) converges geometrically on each closed subset of

H=1{eC:(2 — e A(1/2, 1/2)}. (2.37)

Meinardus [3] has been able to show morcover that the sequence ¢,(r)
diverges for ¢ < (1 — ﬁ)/2, and for t > (1 + \[2)/2. We remark that the
“overconvergence” properties of Bernstein polynomials have been
extensively studied (see Lorentz [21). In the cases when 0, + 8§, = 1, the

convergence region given, via Corollary 2.7, by
teC:(2t — 1) e A(0,, 0,)}, (2.38)

and by that of Bernstein polynomials, coincide.

3. CONSTRAINED CHEBYSHEV POLYNOMIALS

In [8]. the analog of the classical Chebyshev polynomials for polynomials
constrained at one endpoint of an-interval by a certain order zero were
studied. In this section. we extend the definition of these constrained poly-
nomials to the two endpoint case. As a consequence, we shall prove that
Theorem 2.3 is best possible in a certain limiting sense,

Proposition 3.1.  For cach ordered triple of nonnegative integers (s, $5,1m),
there exists a unigue monic polynomial Q,, , w(x) in n(sy, s;, m) [cf. (2.3)]
of precise degree n:= s, + s, + m satisfying

FQuiiseomii-1, g = inf{fi(x — D¥(x + 1)
- U(~Y)||[—1. 1 ‘Y€ n(sy. sy, m — 1)}

Np.83,m

=:E 3.0
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(where n(s,, s;, m — 1):= {0} if m = 0). Furthermore, for n > 0, Q;, , (x)
has an alternation set of precisely m + 1 distinct points E§v5#™, j = 0,1,...,m,
with [cf. (2.12)]

a(s,/n, s;/n) < Epsam < glnsam o o Elensam £ b(s, /n, s, /n), (3.2)
Sor which
QerosaamlES™) = (=" VE e J=01L..,m (33)

Proof. As the special cases s, + s, = 0 and m = 0 of Proposition 3.1
are clearly true and will in fact be explicitly covered in Proposition 3.2,
assume that s, + s, > Oand that m > 0. From general linear approximation
theory, it follows that there exists a monic polynomial, say p, in n(sy, s,, m)
with

HP“[—x,u = Es.,sz,m'

As a consequence of Theorem 2.5, the polynomial p also satisfies the extremal
problem

IPllu.sy = Inf{[(x ~ 1)*(x + 1)*2x"™ — g(X)(a, 51+ g € 7(Sy, 2, m — 1)},

where a = a(s,/n, s;/n) and b = b(s,/n, 5,/n) are defined in (2.12). On this
subinterval, the linear space n(s,, s,, m — 1), which has dimension m, satisfies
the Haar condition, which guarantees (cf. Meinardus [4, p. 20]) the unique-
ness of p. From the same result, we have the existence of an alternation set
of at least m + 1 distinct points in [a, b]. If there were m + k alternation
points with k > 1, the derivative of p, a polynomial of degree n — 1, would
have at least n zeros on [ — 1, + 1], and would, consequently, be identically
zero, contradicting the fact that p is monic. Thus, there are precisely m + 1
distinct alternation points satisfying (3.3).

With the existence of Q, ,, ,(x) for each triple of nonnegative integers, we
define :

Qs s m(x) Qs..s ) m(x) :
L2 = SR 34
“Qs,,s;,m”[*l.l] Esx.s;.m ( )

to be the (normalized) constrained Chebyshev polynomial of degree s, + s3
+ m associated with the set n(s,, 85, m) on the interval { -1, 1]. Let T,(x)
denote as usual the classical Chebyshev polynomial (of the first kind) of
degree n, given by

T samlx) =

T,(x) = cos n0, x = cos {).

We now summarize some special cases and properties for certain triples
{sq, 52, M) in
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Proposition 3.2.  Set x,,:= cos(n/2m) for m > 0. Then,
(l) Q‘.\';.sh m(-\‘) = ( - l)sl et mQM.Sz.m( - x);
(“) Q0.0.m(-‘:) 2—m+ ! 7:11('\.),

Eo 0.m = 27",
5 m—n ,
S,(jo,o.m) = COS((———mJ)—>a i=0,1...,m
. 2 v ! ~ N+ 1 + X t
(i) Qg .mlx) = A+ x0T T,..HR 7 + 2,..+ ol
2
Eo\m = s
0.1, (1 +xm+l)m+l

. 1 (m— n ‘
=20, 1,m _— - 2 o8| ——22= —
= ( + .\',,,H){ Cm[ g 1| T me tp

i 2
(l\’) Ql, l.m(-\') = (;V—);17 Tm+2(,Y,'I+2 . x),
' ~tm+2
2
E " =
1.1, TN GE
: ! m+1—jn
(. 1.m .
> Ty CoS|———"=5"—| = . N
N Non+ 2 © [ m+ 2 J=01...,m

v) QO aolx) =(x — 1) (x + 1)'%, s, + 5, >0,

. 25, \"( 25, \*
53,82, 0 - ) )
Sy + Ss Sl -+ Sy
) Ny — 8
(31,52, U) 2 1
&0" * =

Sy oy ’
(Vl) Qs.x. l(-\.) = ~\'(-\'2 - l)s,

E 2 ) { 172

) \ ] o l 172
:_:\.A. — (_ 1V ——— \ j= 01 Iw
N

1|

i) Qo anl) = (=2)7 770y (1 = 242).
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The proofs of the above statements follow easily from the fact (Proposition
3.1) that Q; , .(x) is a monic polynomial and from the existence of the
requircd alternation set.
We now deduce a domination property for T, ,(x) (cf. [8, Proposition
4.
Theorem 3.3.  Let pe n(sy, s,, m), and let
M 2 max{|p(&fvsemylj=0,1,..., m}.

If x £ 35 ™ orif x 2 &™), then

[P = MIT,, 5, (0} (3.5)
Moreover, for each positive integer k and x real,
PPN = MITR,, W01, for x|z L (3.6)

Proof.  First, define the polynomial h(x) by means of
h(x) = (x — 1)(x + 12 [](x — &foosemy,
j=0

Using the Lagrange interpolation formula, it follows from the definition
of h(x) that

{"; h(x) p()) 67

P = j=o (x — fj) F@,

and

n kG (=1t
T oo mlX) =
.u.;z.m(‘c) j;o (x-— C}) _ h,(éj)

where &; = fvs+™ j =0, 1, ..., m. Thus, with the hypothesis for M,
(3.7) implies that

, (38

“ [h()]
[P EM Y ———
PONEM g W)
Next, noting that {8, Proposition 4] establishes the case s, = 0 of this
result, we may assume s; > 0, which implies £,, < 1. For x e (£, 1), we
have. by definition, that |h(x)| = (— 1)**h(x) and that

(WD = (=1 T

Conscquently, the rig.ht-hand side of (3.9) is equal to (— 1) - M - T, 5, ml(X)-
Hence, from (3.9) we have

(3.9)

'

1P S MIT,y om0 for X e (G, 1)
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Arguing similarly for x € (— a0, &) and x € (1, ), the first part of this
theorem is proved. The second portion can be obtained for real x, | x| 2 1, by
differentiating the formulas (3.7) and (3.8) k times.

We may now improve the inequality given in (2.25). Let p € rn(sy, 55, m)
with m > 0 and with p # 0, and suppose that |p(&)| = [pll{~1,1; where
Ee[—1, 1] Then, as a consequence of Theorem 3.3,

g £ & g g, (3.10)

As an application, consider any pe n, with p £ 0 and p(—1) = p(1) =0,
so that pen(l, 1, n — 2). Then, from (3.10) and Proposition 3.2 (iv), the
points S in [ =1, + 1], with [ p(E} = IIplli= 1, + 1 satisfy

16l < co‘s(n/n)
} cos(n/2n)

e

(cf. Schur {10. Scction S]).
Concerning the behavior of E, , ,,. we have the following generalization
of {8, Proposition 8]. ‘

Theorem 3.4, Let (0,, 0,) be fixed in Q [cf. (2.14)], and let
{(s1,i> $2,00 M)},

be any infinite sequence of ordered triples of nonnegative integers for which

limn; = o0 (npi=sy ;4 s, +m, iz 1), (3.11)
and for which
I . Sy
lim — = 0, and lim == = 0,. (3.12)
i-c I i M
Then.
A= AW 0,):= lim (E,, o om)™

= 10+ 0T = ) T+ T =TT, (3.13)
where pi= 0y + 0y and vi= 0, — 0,.

Proof.  We first introduce the sequence of modified Jacobi polynomials
()2 defined by

J() = (3 = D 4 1y pEsieds(x) / [2-"'-(2"'”, izl (3.14)

m;
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We note that these polynomials are, from (2.10), monic for all i = 1. More-
over, from the discussion in Section 2 of their properties the following
incqualities are valid for cach i = 1:

1 1
| 0 462 [ o) S UE ) B9
-1 =1

Next, on expanding the polynomial J(x) in its Legendre polynomial expan-

sion, it follows that (cf. Szego [11, p. 182])

3 (”i + 1)2 ! .

adli-1 e S e (J,(eN? dx, iz,
~-1

whence, from (3.1),

) 2 pd1
(Bopsnion® S WA oy 5 B2 f P dy, izl (16)
-1

Thus, from (3.15) and (3.16),

+1 1/2n;
A = lim (Esl_,.sz_i.mi)”"i = lim (f (J00))? dx) .

i i~ o0 -1

From Eq. (2.8) and the definition of J,(x) in (3.14), we therefore have

2n;\" 2 VEXY
A = lim 22"" h(zsl.hzsz,l)
mi .
i ny !

With the definition of h{*# in (2.9) and an application of Stirling’s formula,
we obtain the value of A stated in (3.13).

As a consequence of the inequalities (3.15) and (3.16), upper and lower
bounds for E, are

27U < < (4 DLAS2, (3.17)

where

2n - (281, 2520y1/2
(hm‘l. 32) ’
!

L= L(s,5,,my:= 2"‘(
f

ni= %, + s, + m, and where h{25 252 ig given in (2.9).

m

Theorem 3.5, Let (6, 0,) and {(s;_;, 52,10 M)} 1 be as in Theorem 3.4.
Then. for z e C*\[q, b],

hm IQ&:.‘.Sz,i.m.’(z)l e = A(Ulv 02) ) G(:; 017 {)Z)’ (318)

{=x
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where A(0,, 0,) is defined in (3.13) and where G(z; 04, 0,) is defined in (2.16)
and (2.17). Furthermore, this limit holds uniformly for any compact subset
not containing the interval [a, b).

Proof. As in Saff and Varga [8], we use a normal families argument.
First, for cach i = 1, set”
nii= 8, + S+ mg, 0= sy, 0;,i:= 5, i/n;.

Setting y;:= 0, ; + 0, ; and v;:= 0, ; — ), ;, define g; and b, from (2.12),
and let ¢(z) be deiined from (2.15) for cach i 2 1. Furthermore, set

Api= Al 0, 5)
LIRS TR R ) B S N R AR G IE ' R A = 8

{

and .
K:=C* [u h] and K;:= C*\[«;, b;] for i=1,

and, foreach i 2 1. set
1
“i(:) = ';— llesL."sz‘.-.m.'(z)Iv
i

Pi(z) — o)
o Dpi(z) — 1

r(z):=InA; + Inle(z)| + 0y ; In ’

pz) — @(—1)
o= Do) — 1}
We remark that both the functions 1(z) and v(z) for i fixed are harmonic

in K, with the exception of the points == -1,z = +1,and z = 0. Ina
neighborhood of = = 1, we can write

+ 0,.;In

u(z) =0, ;Injz — I{+ hy (2)
and
t2) = 0, ;Inlz — 1| + h, (2),

_where it can be verified that the functions i1, (z)and h, (z) are both harmonic
atz = 1 foralli 2 1. Furthermore, an analogous representation is true in a
neighborhood of - = — 1. Near, z = o, we have

u(z) = Injz| + g{=), (3.19)
and

v(z) = Inlz] + §i(=2). (3.20)
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In (3.19) and (3.20), both g,(z) and J,(z) are harmonic at z = oo and
giloo) = 0 = gy(c0).

Next, forcach i 2 1, set
di(2) = uz) — v(2).

Note that d(2) is harmonicin K;,evenforz = —1,z="1,and z = c0. As z
tends to [u;, b)) in K;iwe note that v,(z2) tends to In A, whence
i

limsupdi(z) ! InE, ,sppm — N4 3.21)
2 =lui byl n o '
26k,

From (3.13) and (3.21) it follows that on any closed subset of K, the harmonic
functions d;(z) are, for i sulliciently large, uniformly bounded from above.
Hence, the di(z) form a normal family on K, If d(z) denotes a limit function
of this family, then from (3.12) and (3.21) we have d(z) £ 0 for all z in K.
However, since d(x) = gy(xc) — g(oo) =0, i 21, we conclude that
d(2) =0in K. Since lim;.,  t4(2) := ©(2) uniformly on any compact subset of
K\{=1, 1, 0} we have lim., u,(z) = v(z) uniformly on a compact set of
K\{-1, 1, oc}. Henee, '

'Qs.,..s;,g.ml(:.)l b = e“‘(i) - el’(l) = A(OU 02) ‘ G(Z; Ul’ Ul)t

as i tends to infinity, uniformly on any compact set omitting the interval
[a.b]). 1

In closing this scction, we establish the sharpness of Theorem 2.5 in a
.certain limiting sense. Let (0, 0,) e Q and let {(sy,;, 53,5, 1)}/%, be any
infinite sequence of ordered triples of nonnegative integers satisfying

immy =% (y=s_,+s,+m izl),
i~x
.8 .85,
lim = =9, and lim 24 = 0,.
i-c I t=oc

For the normalized Chebyshev polynomial
T2 =T, a0 ml®) (3.22)

associated with the set ai(s, ;, s,,, m;) defined in (3.4), we apply inequality
(2.23) of Theorem 2.5 to obtain

7)™ = (EA Y 11 G(z3 sy s20/m) = G(z5 sy 4/ny, $24/m).
Letting i tend to infinity yields
lim sup|.7 (=)} "™ £ G(z; Oy, 0,).

i~
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But, recalling the definition of A in Theorem 3.4, the result of Theorem 3.5
applied to the nermalized Chebyshev polynomiiuls gives
i

lim .7 (=)™ = G(z: 0, 0y), (3.23)

IBX-

for all = ¢ [a. b], so that the inequality (2.23) of Theorem 2.5 is sharp in this
- limiting sense. We also remark that the sequence .7 (2) satisfies the hypothesis
of Corolliury 2.6, und, by (3.23), .7 (=) diverges for z extertor to the level curve
G(z: 0y, t1,) = 1. Thus, Corollury 2.6 gives the largest possible open set of
' convergence to zero.
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