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ABSTRACT. For any fixed # with 0 < 8 < 1, G. G. Lorentz recently showed
that bounded sequences {Zg, cxcn@ (X1 + 0¥}2, of incomplete poly-
nomials on [—1, +1] tend uniformly to zero on closed intervals of
[—1, A(9)), where 282 — 1 < A(@) < 260 — 1. In this paper, we show that
A(f) = 282 — 1 is best possible, and that the geometric convergence to zero
of such sequences on closed intervals [;, #,] can be precisely bounded above
as a function of £; and 8. Extensions of these results to the complex plane are
also included.

1. Introduction. At the Conference on Rational Appxoximation with Emphasis
on Applications of Padé Approximants, which was held December 15-17, 1976
,in Tampa, Florida, Professor G. G. Lorentz introduced new results and open
questions for sequences of incomplete polynomials. In the proceedings of this
conference, Lorentz proved the following result, which, for convenience, we
state for the interval [— 1, +1].

THEOREM 1.1 (LORENTZ [3)). For any fixed 8 with 0 < 8 < 1, there exists a
8 =6(8) with —1 < 8@8) < 1, with the following property. For any infinite
sequence of complex incomplete polynomials

{w,.(t) = X a1+ t)k} , im n, = + o0, (1.1)
On; <k <n; i=1 i—o0

which satisfy (w(8)] < M forallt € [—1, +1]and all i > 1, then
w,(t) = O uniformly in [ -1, 8]. (1.2)

o]

Lorentz’s construction [3] of his § even shows that any sequence {w{f)}:2,
satisfying the hypotheses of Theorem 1.1 converges geometrically to zero on
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164 E. B, SAFF AND R. S. VARGA

[—1,8]1ie,
lim sup |w,(£)]'"/" <1 foreachtwith —1 <<, (1.3)

i—00
where w; is a polynomial of degree at most n, (cf. (1.1)).
One of the questions which arises naturally in the discussion of such
incomplete polynomials is the relationship between # and 4. In this regard, if

A(8) = sup{8: Theorem 1.1 is valid for 8 }, (1.9
then Lorentz [3] also proved

THEOREM 1.2. For any 8 with 0 < 0 < 1, then
20— 1< A(f) <20 - 1. (1.5)

Concerning the second inequality of (1.5), we remark that C. FitzGerald
and D. Wulbert were the first to show that A(3) < 0.

The main purpose of this paper is to sharpen (1.3) and (1.5) for sequences
of incomplete polynomials. In particular, in our first main result, Theorem
2.1, we show that

A(8) =267 — 1, (1.6)

so that Lorentz’s lower bound in (1.5) is, in fact, sharp. In our second main
result, Theorem 2.2, we obtain a sharp improvement of (1.3) which gives the
geometric convergence to zero in (1.3) as a function of 7 and 8. This theorem
also provides an independent proof of the first inequality of (1.5) of Theorem
1.2,

One interesting consequence of (1.6) is the following. In Lorentz [3], the set
of all incomplete polynomials for a fixed § (0 < # < 1) is said to have the
Weierstrass property on the interval [ag,, 1] if, for every continuous function f
on [a,, 1], there exists a sequence of incomplete polynomials of the form (1.1)
which converges uniformly to f on [g,, 1]. Evidently, from (1.6) and Theorem
1.1, a necessary condition for the set of all incomplete polynomials for a fixed
8 to have the Weierstrass property on [a,, 1] is that 20> — 1 < g, < 1.

The outline of this paper is as follows. In §2, we state our new results, and
in §3, we give the proof of Theorem 2.1. In §4, we develop some needed
estimates for Jacobi polynomials, using the method of steepest descents. In
§5, we give the proof of Theorem 2.2, its corollaries, and Theorem 2.5. In §6,
we study the behavior of incomplete polynomials at the endpoints of the
maximal interval of convergence to zero, and in §7, we give an extension of
Theorem 2.2 to the complex plane. For the remainder of this section, we give
necessary background and notation.

For real numbers « and B with « > — 1 and 8 > — 1, P{*AX¢) denotes
the classical Jacobi polynomial of degree n. As is well known, if
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Kot = | = 9o+ 0 (PEBD)) d, (17)
-1

then the sequence of polynomials { P&A(£)/\h{*F) }%_, is orthonormal with
respect to the weight function (1 — )*(1 + )’ on[—1, +1]:

[ = 05+ P (PO NP (PP NP ) de = 8,
-1

(1.8
forallm,m =0, 1, ....Itis also known (cf. Szegd [6, p. 68]) that
27BN+ a+ DI(n + B+ 1)
Qn+a+B+DTn+Dn+a+B+1)
Next, for the statement of Theorem 2.2, we need the following. For
0 < 8 < 1, the quadratic equation
A+ -2+6)5+(1—-8+200)=0 (1.10)
has roots { *(¢, 8), given by

) ={r+80x/A0 -2 - 1-0) }/(1+06). (L1

For any ¢ < 2% — 1, we note that these zeros are real and distinct. With
(1.11), we then define

G (no)y -1
G(r,0)={ 2] $7(n6) —¢

A =

(1.9)

[4

1A+ )E (18 -1
1+0¢ (no)-1

fort < 202 — land?# —1;

0, fort=—-1. (1.12)

3

Next, it can be verified from (1.12) that for any ¢ with ¢ < 1, limy | G(¢, ) =
|1 + 1]/2. Thus, we extend the definition of (1.12) by setting
G(t, )= |1+ 1/2, fort <1 (1.12)
With the definitions of (1.12) and (1.12’), it can be verified that G(z, #), as a
function of real ¢, is continuous on (— oo, 202 — 1] for any # with 0 < 8 < 1,
and that
G282 - 1,0) =1 forallfwith0 <@ < 1. (1.13)
Similarly, it will be shown as a consequence of Lemma 4.2 that there is a
unique #(#) > 1 for which
G(—r(0),0)=1, forallfwith0 <8 <1 (1.14)
Finally, as usual, 7, denotes the set of complex polynomials of degree at

most », and, for any continuous function f defined on a compact set K of the
complex plane,

Wik = max{|f?)|: : € K}.
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2. Statement of new results. Our first main result is
THEOREM 2.1. For any @ with0 < 8 < 1,
A(f) =202 - 1. @20

As previously mentioned, this shows that Lorentz’s lower bound in (1.5) of
Theorem 1.2 is sharp. For our second main result, we have

THEOREM 2.2. For any fixed § with 0 < 8 < 1, let

{w,-(t>= S a,()(1 + t)"]w

ks, im1

be any infinite sequence of complex polynomials for which

lim m, = +o0 and liminf (s/n) > 6. 2.2)
i—00 I—00
Setting
. +1 23 —1/2 2 .
M, = f (1= & 2w de foralli > 1, (2.3)
-1
assume that
lim sup M;'/™ < 1. 24)

Then,
lim w,(¢) =0, uniformly on every closed subinterval of (— r(8), 20% — 1),

(2.5)
where r(0) > 1 is defined in (1.14). More precisely if [ty t,] C (—r(8), 20 —
1), then (cf. (1.12))

llm Sup(”w’."[‘o’n])l/"l < jn-lao)i {G(fj, ] )} <1 (26)
i—00 ,

Furthermore, the conclusions are best possible.

It is evident that any sequence of incomplete polynomials {w,(#)}:2 satisfy-

ing Lorentz’s Theorem 1.1 necessarily satisfies the hypotheses of Theorem 2.2,
but not conversely, and that (2.6) of Theorem 2.2 is a sharpened form of
Lorentz’s (1.3). Moreover, we shall show that the inequality in (2.6) is sharp in
the following sense: for any 4 with 0 < @ < 1, there is an infinite sequence
- {W ()}, satisfying the hypotheses of Theorem 2.2 for which equality holds
in (2.6) for every closed interval [#,, ¢;] C (—r(#), 262 — 1). Furthermore, we
show in Proposition 6.1 that the sequence {w,(?)}%, need not tend to zero at
the endpoints 1 = — r(#) and 1 = 262 — 1 of (—r(#), 267 — 1).

It is important to note in Theorem 2.2 that the hypothesis (2.4) is equivalent
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to the assumption

lim sup (||wifl—1,+ 11)1/"' <1 : 24)
1—00
and that (2.4) and (2.4’) are equivalent to the assumption

im sup [ f* w0 dpt)] " < 1 (24"

for any distribution function dy(r) on [—1, +1] which has the following
property: if {p.(t, ¥)}¥_, are the orthonormal polynomials associated with

(1), then
. 1/k
lim sup ("Pk('7 ‘P)"[—I.H]) <L
k—o0
For a discussion of the above condition, see Geronimus [1].

Our next result is an easy but important consequence of Theorem 2.2,
which can, in turn, be shown to be equivalent to Theorem 2.2.

COROLLARY 2.3. If p,() = 24 _.a(1 + t)* with 0.<s < n and with p, not
identically zero, then

P2 (O] < Palli~1,+ n{ Gt s/7)}" <||Pall— 1,41y @7
Jor any t with —r(s/n) <1t < 2s/n)* — 1.

As another easy consequence of Theorem 2.2 concerning sequences of
polynomials which interpolate a given function f, we have

COROLLARY 2.4. Let f(f) be analvtic at t = — 1. If, for a fixed 8 with
0 < 8 < 1, there exists an infinite sequence of polynomials

{Pi(t)}:;l withp; € =,
Jor all i, with n, <n, < ..., such that

P(=1) = fO(=1) forall 0 <k < s, withs; <n, (2.8)
lim (n,,/m) = 1, liminf(s,/n) > 6, 2.9)
i—0o0 1—00
and
. +1 n—1/2 2 1
lim sup {f (1 — ) Vol <1, (2.10)
i-»00 =1

then f is necessarily analytic at each point of the interval (— r(#), 20% — 1), and
p,(t) = f(t) as i — oo, uniformly on each closed subinterval of (— r(#), 262 — 1).
More precisely, if [ty, t;] C (—r(8), 262 — 1), then

tim sup {Jf = Plgen) " < max {G(s,0)) <1. @11)

Our next result can be regarded as a symmetric version of Theorem 2.2.
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THEOREM 2.5. For any fixed 6 with 0 <8 < 1, let {q(1) = 2} _, a,()1*}2,
be an infinite sequence of complex polynomials for which

lim n,= +00 and liminf (s;/n) > 6. (2.12)
i—o00 =00
If
1/n
lim sup [f+l(l - )"V g(0f di <1, (2.13)
i-—->00 -1

then g(t) — O uniformly on each closed subinterval of (—0, +8). More pre-
cisely, if [15, 1] C (— 0, +8), then

tim sup (lg)" < max {627 - 1,8)}* <1 (214)
i—0 g

Furthermore, the conclusions are best possible.

As with Theorem 2.2, the result of Theorem 2.5 is sharp in the sense that
(— 46, +0) cannot in general be replaced by any larger interval, and for any
with 0 < # < 1, there is an infinite sequence of complex polynomials satisfy-
ing the hypotheses of Theorem 2.5 for which equality holds in (2.14) for every
closed subinterval [1,, #;] of (—8, +8).

It is clear that there are “symmetric” analogues to Corollaries 2.3 and 2.4,
but we leave their statements to the reader.

We note that we have not found an explicit formula in 8 for the quantity
r(8) > 1 such that G(—r(8), 8) = 1 for all 0 < @ < 1 (cf. (1.14)) which enters
prominently into the statements of Theorem 2.2 and its corollaries. It is,
however, easily shown (cf. §4) that 1 <r(8) < 3, r(0+) =1, r(%) =%, and
r(1) = 3. For a graph of 4 vs. r(#), see Figure 7 in §4.

Finally, there are extensions of Theorems 2.2 and 2.5 from uniform and
geometric convergence on real intervals, to uniform and geometric conver-
gence on compact subsets in the complex plane. To describe such extensions,
we now extend the definition of the function G(, 8) of (1.12) to the complex
t-plane, C. First, for each fixed 8 with 0 < 8 < 1, let \/(1 — 1)(20%> — 1 — 1)
denote the branch in the ¢-plane of the square root which is analytic exterior
to the cut

5(8) = {r:20*-1<1<1), (2.15)
" and which is positive at r = — 1. With this (cf. (1.11)),

=) =i+ - @0 -1-1)}/(1+0)
is then defined and analytic on C\ & (8), and from this, G(¢, #) is defined for
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all + € C by means of

HEY =1 1A+6" =01 ospy 1wy
G(1,8) = 5 'ts;‘_—lt T+nE™ =D [’
1, 1e5(8) (2.16)

Note that G(z, 8), so defined, agrees with the real definition of (1.12), and
that G(z, 8) is actually continuous for all 1 € C. Next, we define the level
curve

A#) = {t € C: G(1,0) = 1}, 2.17)
which is pictured below in Figure 1 for the case # = 1. We denote the interior
of A(8) by

A9) = {t € C: G(1,0) < 1). (2.18)
Note that A(#) is a Jordan region which does not include the cut $(#), but
does include (cf. (1.14)) the open interval (— r(6), 262 — 1).

-5/4

—0.5 0 1

FIGURE 1. A(%)

We remark that the function G(¢, 8) of (2.16) can also be equivalently
defined in C as
)

, (2.19)

1= 8w = (14 0)
Gl ) =[] ‘(l+0)w—(1—0)

where

w+w!
2
This follows directly from (2.16) upon making the substitution {~ = 8 +
(@ — Dw. This equivalent formulation was also found by Professor G. G.
Lorentz (personal communication).
We can now state the generalizations of Theorem 2.2 and Corollary 2.3 to
the complex plane.

t=02+ (92 — 1)( ) for all |w] > 1. (2.20)

THEOREM 2.6. Under the hypotheses of Theorem 2.2, then
lim w,(f) =0, uniformly on every closed subset of A(8).  (2.21)
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More precisely, for any closed subset K of A(B ), then
lim sup (Jwi )™ < max {G(4,0)} < 1. (222)
i—»00 tek
Furthermore, the conclusions are best possible, in the sense that equality can
hold in (2.22) for any compact subset K of A(8), and that there are polynomials

{wi()}2. | satisfying the hypotheses of Theorem 2.2 which do not tend to zero for
any t exterior to A(@).

CorOLLARY 2.7. If p, () = 2% _.a, (1 + £ with 0 <s < n and with p, not
identically zero, then

12, (D] < |Palli=1,+1{ G(t, s/M)}" <||Pll{-1,+11 (2.23)
for all t € 1°\(s/ n).

The extensions of Corollary 2.4 and Theorem 2.5 to the complex plane are
similar, and are left to the reader.

3. Proof of Theorem 2.1. To begin, for any fixed # with 0 <8 < 1, let
{(n;, m)}%. | be any infinite sequence of pairs of positive integers for which

% > l—ﬂ—o foralli > I, ‘11210 %‘=1—f5, llirg’ n, = ’11210 m; = oo,
(3.1)
Then, set
W(t) = (1 + )P V/22m=V/D(y) foralli > 1. (3.2)
Note that W, € =, ,,, and that the first condition of (3.1) implies that each

W,(?) is an incomplete polynomial of the form (1.1) with n, replaced by
n + m.
LeMMA 3.1, For each i > 0, W(¢) satisfies
(1= 2w/ (0) — W/ () +[Qt + 1)/ A+ D] W) =0, (33)
where
A= (m +n)Y 7= (m, + n,v)2 —2m? + m, i» L (34)
PROOF. It is known (cf. Szegd [6, p. 60]) that y(r) = P{~'/22m=1/3(s)
satisfies
(1= 2y +[2m; ~ 2m; + D)t]y + n[2m + n]y =0. 3.5)

With (3.5) and the definition of W,(¢) in (3.2), (3.3) follows immediately. [J
Next, as suggested by Szegé [6, p. 165], define

50 = W) + g(t)- (W, (0))", (36)



SHARPNESS OF LORENTZ’S THEOREM 171

where
gi(t) = [(1 - tz)(l + ')}/O‘,t + "'i)- (3-7)
Note that g has a pole at —7,/A, = — [(m; + n)* — 2m? + m]/(m; + n),
which lies in (— 1, +1), and that, with (3.1),
lim (—7./A) =20% — L. (3.8)

LeMMA 32. f/(1) < O for any t €[ 1, + 1] witht # — 7;/A.

ProoF. From the definitions of (3.4), (3.6), and (3.7), a short calculation
utilizing Lemma 3.1 shows that

J@) = m(1 = 2m)(1 = AYWOY/ Nt + 1), 1 # —/N, (39)
for every i > 1. Thus, since m; > 1, f/(f) < 0 for any r €[—1, +1] with
t# —7/Nforalli > 1.

LeMMA 33. Let § = minfp: W/(u)=0 and p# — 1. Then, § €
(—7/A, Dand
[WEN = Willi=1,+1p foralli> 1 (3.10)

PROOF. As is well known, the Jacobi polynomial P*f)(¢) has n simple zeros
in (=1, +1). Thus, by Rolle’s Theorem W/(r) of (3.2) has n; zeros in
(—1, +1), and its remaining m; — 1 zeros at t = — 1. Hence, & € (—1, +1).
First, suppose that —1 < § < — 7,/A,. Because f/(f) <0 in [-1, —7;/A)
from Lemma 3.2, then f(—1) > f(§). Now, W/(§) = 0 by definition, and
hence f(§) = WA(), even if & = — 7,/A. As f(—1) = 0, then fi(— 1) > £(&)
implies that 0 > W), or Wi(£) = 0. Next, from (3.3), it follows that
W) =0, and repeated differentiation of (3.3) shows that W () =0, a
contradiction. Thus, we have that

- /A <& (3.11)

Now, let p. be either any other zero of W/(¢) in (—1, +1}, or let p = 1. By
definition § < p, and thus, with (3.11),

-n/A<E<p< .
From the monotonicity of f; in (—7,/A;, 1] from Lemma 3.2, we again have
W2E) = fi(&) > f(w) = W2 (p),

or |[W(&)| > |W (). Since W(—1) = 0, then | Wi&)| = | Will_y,yp the de-
sired result of (3.10). 3

We illustrate the result of Lemma 3.3 by graphing W(8)/||W||;~y 4y in
Figure 2 below, for the case (cf. (3.2)) m; = 5and n; = 10.
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10 _— —_— — -
{— - T -]
|
l
|
!
|
|

| ne=——e—=

—1.OJ___J___I___L~_L___L__L___L_1
0.0

FIGURE 2. Wi(t)/IIW,-II[_l,H’ for m; = 5, n; = 10

o

Now, let o; denote the smallest zero of P{™'/%2m~1/3(s). Then Wy(—1) =
W(o;) = 0 implies § < o; by Rolle’s Theorem. Thus, with (3.11),

- 7/\ <§ <o, foralli > 1, (3.12)
and we are interested in the behavior of o; as i — 00. More generally, this
raises the question of the hehavior of zeros of Jacobi polynomials of the
special form P{*f(¢), where lim,_,, 8,/n = b. Results along these lines were
simultaneously obtained independently by D. S. Moak and the present
authors. Because these particular results may be of independent interest, they
have been gathered in the preceding note [4]. For our purposes here, we
simply state the special case a = 0 of {4, Corollary 1] as

LemMa 3.4. Let r, and s, be respectively the smallest and largest zeros of the
Jacobi polynomial PP)(t), where o, > — 1 and 8, > — L. If

nli_r)rolo a,/n =0, nlig‘xo B8,/n=48, (3.13)
then
2
lim r, = 2B 1 and lim s, =1 (3.14)
n—o0 (2 + B)z n—oo
Applying Lemma 3.4 to the case (cf. (3.2)) where &, = — 1 and B, =2m;

— 1, it follows from (3.1) that 8 =26/(1 — ) in (3.13), so that o, the
smallest zero of P{™'/>2%~1/3({), from (3.14) satisfies

lim o, =202 — 1. (3.15)

i—o0
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Hence, with (3.8) and (3.12), then
lim § = lim o; = 202 — 1. (3.16)
1->00 {—>00
Proor oF THEOREM 2.1. For 0 < @ < 1, consider now the sequence of
polynomials

{v0(0) = W()/| Wi||[—1,+11}:°=1, (3.17)
where W, is defined in (3.2). By definition, {v,(¢)}?2., satisfies the hypotheses
of Theorem 1.1. Evidently, from (3.10) of Lemma 3.3, we have that |v,(£)| = 1
for all / > 1, and from (3.16) that lim,_, & = 202 — 1. Thus, {v()}2, does
not tend uniformly to zero in [—1,2682 — 1 + ¢] for any € > 0, so that
§<2682—-1 and (cf. (1.4)) A(@) < 282 — 1. But, as A(f) > 262 — 1 from
(1.5) of Theorem 1.2, we have the desired result

A(8) =262 -1 (3.18)
of (2.1) of Theorem 2.1 for 0 <8 < 1. For the remaining case # = 1, it
suffices to similarly consider the sequence of polynomials {((1 + #)/2)*}%.,.

g

It is also useful to point out the following. For any fixed i > 1, consider the
infinite sequence {(0,(1)Y = (W)/|Will(-1,+1) };= 1, where W(7) is defined
in (3.2). This sequence obviously satisfies Theorem 1.1 with 8, = m,/(n, +
m;). But as |[v/(£)] = 1 for allj > 1, then evidently

A(m,/ (n, + m)) < ¢ foralli > L
Thus, with (3.12) and (3.18),

2[m/ (n, + m)}* — 1 <o, foralli>1, (3.19)

where o, is the smallest zero of P{™1/22™~1/2(1). As a consequence of this
result, we have the following which may be of independent interest.

COROLLARY 3.5. For any positive integers m and n and for all a and B with
—1<a< —Ltand B > — 1, all the zeros of PL**BX¢) lie in (2(m/(m +
m)? =1, +1).

PROOF. All the zeros of P(7'/22m=V2(1) liein 2(m/(m + n))* — 1, +1)
from (3.19). However, using a result of Szegd [6, p. 121] on the monotonicity
of the zeros of P*#)(t) as a function of & and B, it follows that all the zeros
of P?m+A)(y) also lie in the same interval if —1 <a < — 3 and if 8 >

— % O

4. Asymptotic estimates for Jacobi polynomials. Consider the infinite
sequence {P,&¥r/(=O+B)(f)y  of Jacobi polynomials, where «, #, and 8
are fixed real numbers satisfying o« > — 1,0<8 < 1,and 8 > — 1. As is
known (cf. Szegé [6, p. 70)), P*¥/(=+E)y) has the following integral
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representation:
P'Sa,20n/(l -8)+8 )(t)

1 §2_1 n 1 - ¢y 1 f 20n/(1-0)+8 d{
=2—vr7fr(2(§—z))(1—t)(1:t) -1 @1

where we assume that ¢ # =+ 1, and that the integration above is about a
closed contour T, in the positive sense, enclosing ¢ = ¢ but not the points
{ = = 1. We write the above integral representation in the form

Psla,ZBn/(l——0)+ﬁ)(t) ___fenh(f)g(‘(:) &, (42)
T
where
M=k ,0)=m(?-1) -2 —In¢ -9
+ (72 ma + ) —ma + 0} @3
and where |
1 1—{“.1+§ﬂ. 1
g(§)=g(§’t>0)'_ 7'”—1(1__’) (1+t) (g“'t) (44)

Differentiating # with respect to { gives

vy = (L 0)8% — 202+ 8)¢ + (1 — 0 +261)
R($) 1-0)E*-1DE -9 ’

(4.5)
and
2
=2l 1 2
(-1 @G- (A-00+%)

The saddle points { =(¢, #) for A(S), defined as the zeros of A'({), are, from
(4.5), the roots of a quadratic equation (cf. (1.10)), which are given explicitly
by (cf. (1.11))

(=L 0)={t+0y(1-0Q0*-1-1}/Q+6). (47

For any ¢ < 282 — 1, these two saddle points { *(¢, §) are, from (4.7), real
and distinct, and, in addition, satisfy

(4.6)

—1<t < (4,0)<20-1<¢7(1,8) <1 for —1<1<20%—1,
(4.8)
and

$T(e)<r< —1<E*(1,0) <1 fort < —1. 4.9)
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From (4.6), it can also be verified that
R (20— 1,8)) = 0. (4.10)
With the above expressions (4.5)+4.9), the following result can be readily
established.

LEMMA 4.1. For all t < 20% — land t #+ — 1,
A({(t,8)) >0 and R ($*(1,0)) <O. (4.11)
We now apply the steepest descent method (cf. Henrici [2, p. 416} and Olver
[S, p. 136]) to the representation (4.2) to determine the asymptotic behavior of

P@26n/(+0+8) 1) for fixed t with t < 202 — 1, t # — 1, as n— oo. First,
note from (4.3) that

Re h(¢) = In[¢? = 1]~ In 2 — Inf{ — f|+ {1 1+¢

EOLGEET, l} (4.12)
This shows that Re A({) —» — oo only if { — = 1, while Re 4({) - + oo only
if{ > torif |{| > + co.

Case 1: —1 <t < 20%— 1. With (4.11), the steepest descent curves (i.e.,
the curves in the {-plane where Re A({) decreases most rapidly) through
¢ (1, 8) are necessarily perpendicular to the real axis at { (¢, #), and
similarly, the steepest ascent curves through { *(¢, #) are perpendicular to the
real axis at { *(z, #). In addition, both sets of curves are symmetric about the
real axis. It is next easily seen that the steepest ascent curves through { *(¢, 8)
cannot pass through { = ¢, so that from the discussion following (4.12), these
steepest ascent curves through ¢ *(¢, #) must tend to infinity. Thus, as the
steepest descent curves through { ~(z, #) do not intersect the steepest ascent
curves through { *(¢, ), it follows that the steepest descent curves through
$7(1,8) must tend to { = — 1. The steepest descent and ascent curves
through { “(¢, 8) are illustrated in Figure 3, the arrows there indicating the
direction for increasing Re h({). We now modify the steepest descent curve
through { ~(¢, #) by replacing the small portion of it near —1 by a small
circular arc, as shown in Figure 4. The resulting contour T taken in the
positive sense, can then be used in the integral representation of (4.1), for all
n>0.

- < > <~
t £ (t.9) ¢+t 1

FIGURE 3. -1 <1< 26% —1
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)

r

FIGURE 4. Contour for —1 <t <202 -1

Case 2. t < — 1. For t < — 1, a discussion based on (4.9) and (4.12)
similarly gives the behavior of the steepest descent and ascent curves through
$ *(¢, @), and these curves are illustrated in Figure 5. The modified contour T
for use in (4.1) is illustrated in Figure 6.

£(t.0)

FIGURE 5. t < -1

¢ () .

Ficure 6. Contour for + < -1

Because of the above construction of the contour T for Case 1, g({) is
analytic in a neighborhood of all points of the contour I', and a straightfor-
ward application of the steepest descent method (cf. Henrici [2, p. 416] and
Olver [5, p. 136)) to the integral of (4.2) gives, for any fixed ¢ with —1 <¢ <
26% — 1, that

P'('a.29n/(l—9)+ﬁ)(t)
27 172
~ exp[nh(§ (1, ) + in/2]8({ (¢, 0)) - {m} ’
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as n — oo. Using the definitions (4.3), (4.4), and (4.7) and taking nth roots,

this implies that
20/(1-8)

- 2
lim [P/ =00+ ()" = (o) -1

_ J1+87(9)
2 (t,0)— 1) '

1+1¢

(4.13)

for any fixed ¢ with —1 < ¢ < 2% — 1. Next, it can be verified that the
steepest descent method applied to the integral of (4.2) for any fixed ¢ with
t < — 1 gives precisely the above asymptotic behavior, whence (4.13) is valid
for any fixed ¢ with r+ < 202 — 1, t # — 1. From (4.13), we can further
deduce that

: 8n/(1=8) p(a,20n/(1-8)+ By |1~ 9/ "
Jim |(1+ ) P{e2on/ )
o
, (4.14)

G0y - 1] 12671 8) - D1 + (1, 0))
267(1,0)— 1 (=8~ 1)1 +1)

for any fixed ¢ with £ < 282 — 1, # — L.

Next, with the representation for A*# in (1.9), a routine application of
Stirling’s approximation for I'(p), ¢ — + o0, coupled with the limit of (4.14),
shows that

_g « _
o {l(l + £)f/(1=8) pa26n/(1 o)+ﬁ)(,)|

1 [hsla,ZBn/(l—G)+,B)

for any fixed # with 0 < # < 1 and for any fixed 7 with ¢ < 262 — 1, where
G(t, 8) is defined in (1.12). As préviously mentioned, G(z, 8), as a function of
£, is continuous on {— o0, 2% — 1]for any # with 0 < 8 < 1.

The result of (4.15) can be extended as follows. Let {(m;, n;)};, be any
infinite sequence of pairs of positive integers for which

m m/n =86/(1 —-8) and lim n = +oo, (4.16)

n—>00

(1-0)/n
} = G(1,0) (4.15)

where 0 < # < 1. Observe that the factor [|1 + ¢|/0=90=0/n = |] 4 ¢ in
(4.15) is unchanged in the limit if it is replaced by [|1 + ¢|™]'/®™* ™) because
of (4.16). Similarly, because of the explicit formula (1.9), replacing the factor
{Hie2on/A =0+ BN =0)/2n in (4.15) by (A2 +AY1/2m*m) makes no change in
the limit in (4.15). Next, a careful study of the previous asymptotic behavior
of P@2n/=0+8) () shows that letting B grow like o(n;) again makes no
change in (4.15). Thus, from (4.15),

lim (1 + gy pE2m B ()| |/

i—o0 Vioam*8)

= G(1, 0), (4.17)
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for all ¢ with ¢ < 282 — 1, where {(m;, n)}3., satisfies (4.16). It can moreover
be shown that, with the complex extension of G(t, 8) of (2.16), the result of
(4.17) is valid for all ¢ & S (9).

We now establish additional properties for G(¢, 8).

LemMMA 4.2. For any fixed 8 with 0 <8 < 1, G(¢, #), as a function of 1, is
strictly increasing on (— 1, 20% — 1), and strictly decreasing on (— 0, —1).

ProoF. From the definitions of { ~(z, 8) in (1.11) and G(1, ) in (1.12), it
can be verified that

9G(¢, 9) 1+¢—-0—068(1,0)

i S B A 4.18

a - o 9){ RDEL Tk “18)

for all ¢+ < 202 ~ 1, t # — 1. Now, as G(t, 8) by definition is positive for all

t # — 1, it can be further verified that
1+t—80-6"(1,8)

1+t

Thus, from (4.18), the sign of 3G(t, 8)/9¢ for t # — 1 is determined by the

sign of { ~(t, @) — t. Hence, from (4.8), 3G(1, 8)/9¢ is positive for all —1 <¢

< 262 ~ 1, while from (4.9), 3G(¢, 8)/0t is negative forall t < — 1. [J

Next, it can be verified that, for each fixed d with 0 < 8 < 1,

27
G(—1,8)~ as T — +o00. 4.19)
( (l + 9)l+0(1 _ 0)1—0
Hence, as G(1, ) —» + o0 as t > — oo from (4.19), and as G(—1, 8) = 0 from
(1.12), the strictly decreasing nature of G(z, #) on (—o0, —1) from Lemma
4.2 gives us the existence of a unique r(#) with r(8) > 1 such that (cf. (1.14))

>0 foralle# —1.

G(—r(6),0)=1 foreachfwith0 <8 < 1. (4.20)
Thus, with (1.13), Lemma 4.2 further gives us that
G(t,0) <1 iff te(—r(9),20%-1). 4.21)

We have graphed @ vs. r(8) in Figure 7.

0
A

1

FIGURE 7. r(f) vs. 0
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We next establish

LEMMA 4.3. For any fixed t with t < 1, t # — 1, G(1, 8), as a function of 6,
on the interval (V(1 + )/2,1) if t> — 1 or on the interval (0,1) if
t < — 1, is strictly decreasing.

Proof. From the definitions of { ~(¢, 8) in (1.11) and G(z, #) in (1.12), it
can be verified that

3G(1, 0) _ A+ ONE (0 -0
99 G(1,8)-In (R (4.22)

forallt < 1,1 # — 1. Fort % — 1, it can be further shown from (1.11), (4.8),
and (4.9) that

A+ (0N (1,9) - t)‘< 1
Q- (opa+o ’
so that its logarithm is negative. But as G(¢, #) is, by definition (1.12), positive
for all t # — 1, then 3G(¢, #) /00 is negative forall ¢t < 1,¢t %= — 1. []
To illustrate Lemmas 4.2 and 4.3, we give, in Figure 8, G(¢, ) as a function
t for several different values of 4.

G(t,0)

p1
/
G(t,.9)

Glt.5) G(t,3)  Glt.5)

L

-2 -1 0
Ficure 8. G(z, 9)

As a consequence of the strictly decreasing nature of G(z, 8) as a function
of § from Lemma 4.3, it can be verified (by taking appropriate subsequences)
from (4.17) that if (cf. (3.2))

{800) = (1 + YA (e) fyfuiam+®) )7
is any sequence having m; > 0n,/(1 — @) for alli > 1, then
lim sup |5,(2)]"/*™ < G(1,8), forallr <202 — 1.

i—o0
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5. Proofs of Theorem 2.2, its Corollaries, and Theorem 2.5. Let {w,(¢) =

Hm @Y1 + 0¥}, be any infinite sequence of complex polynomials
satisfying the hypotheses of Theorem 2.2. From (2.2), it follows that, for every
é with 0 < § < 8, there is a finite i, = iy(#) such that

s/n > 6§ foralli > i, (5.1)
Next, on writing
wi() = (1 + )"q,_, (1), whereq,_ €m,__, (5.2)
it follows that the quantity M,, defined in (2.3), can be expressed as
1
M, = f_*l (1= 071+ Vg, ()] dr. (5.3)

Now, recall from (1.8) that the normalized Jacobi polynomials
{PEFY0) [\ JRE#) .o are orthonormal with respect to the weight function
(=00 + 0% on [—1, +1]. Hence, using a result of Szegd [6, p. 39]
applied to (5.3) gives that

ni—~s;

2 (= 1/2,25 =1/ ;N2 7 3(~1/2,25,—1/2)
n—s; i k ) . B
|gn - (D" < M; 2 (P () /nY / treal.  (54)
k=0

From the kernel representation (cf. Szegd {6, p. 71]) for the right side of (5.4),
it can be verified that (5.4) can be expressed as

2 27PMI(n — 5+ DT(n + 5, + 1)
lqn,—-\‘,(t)' < ; l
(2"; + I)I‘(nl — 5 +5)I‘(ni + §; +i)

XA Ppset(D) Py (1) = Py i) o0}, (55)
where for convenience, we have suppressed the superscript (— 3, 2s; — 1) on
each of the Jacobi polynomials above. Since the derivative of a Jacobi
polynomial can be expressed (cf. [6, p. 63]) in terms of a lower degree Jacobi
polynomial, then, upon multiplying both sides of (5.5) by |l + #|*, we see
with (5.2) that an upper bound for |w,(s)]* is obtained, to which the asymp-
totic estimates of (4.17) can be applied. These calculations, which we omit,
give rise to point-wise estimates of the form

lim sup |wi(1)|'/" < G(t, §)

i—>0
for any ¢ with —1 < ¢ < 202 — 1. With the above inequality and Lemma 4.2,
it then easily follows for [¢,, £,] C (— r(8), 26% — 1) that

lim sup (||w,.||[lo)“])1/n.» < I_rggx‘ {G(tj, é)} <1 (5.6)

But, since # can be chosen arbitrarily close to 8, then (5.6) gives the desired
result (2.6) of Theorem 2.2.
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Finally, because of (4.17), for any # with. 0 < @ < 1, there is an infinite
sequence {w,(f)};~, of incomplete polynomials satisfying the hypotheses of
Theorem 2.2 for which equality holds in (2.6) for every subinterval [z, ¢,] C
(—r8),20°-1). ]

Proor ofF CoroLLARY 2.3. Consider any complex polynomial p,(7) =
ol + £)F where 0 <s < n, and where p,(¢) is not identically zero.

Forming the infinite sequence

{Wi(’) = (pn(t)/”pn”[—l,+1])'}:°=1’ 5.7
this sequence then satisfies the hypotheses of Theorem 2.2 with § = s/n and
n; = ni for all i > 1. Applying (2.6) of Theorem 2.2, with ¢, = ¢, = ¢ directly
gives

2 (O] < Pall- 1,41 { G, 5/ 1)} <|Palli-1,4) (5.8)
forany r with —r(s/n) <t < 2(s/ny* — 1. O
Proor oF CorRoLLARY 2.4. Consider the infinite sequence of complex
polynomials
%) = pin () —p(1), n=12,..., whereq,,, € K (59
From (2.8), we see that ¢®,(—1) = (@~ 1) — FO(~ 1)) — (p®(~1) —
f®(=1) =0 for 0 < k < min(s, s;,;) =: §,,, and, from (2.9), that
lim inf, | (5;/n) > 6. Thus, with (2.10), {g;, (1)}, is seen to satisfy the
hypotheses of Theorem 2.2. Hence, from (2.6), for any closed subinterval
[£o, £,] of (— (8), 282 — 1), and for every £ > 0 sufficiently small, there is an
io sufficiently large such that

n+1 . .
(ARG PR (jrgoaxl {(G(1,0)}) + e) =:y%*t' <1 foralli > i,
(5.10)

This geometric convergence, as is well known (cf. Walsh [7, p. 80]), implies
that

F(t) = p(0) + § (5 (D) = £, (1) (5.11)

is analytic at each point of the interval (— (@), 262 — 1), and that p(f) —»
F(f) as i — o0, uniformly on each closed subinterval of (—r(8), 262 — 1).
Thus, as FO(—1) = f®(—1) for all kK > 0, and as f is analytic at —1, we
have F(f) = f(¢) for all t € (—r(#), 282 — 1). Finally, (2.11) follows from
(5.100. O

Proor OF THEOREM 2.5. With the hypotheses of Theorem 2.5, set

Qio(t) = () + a(= /2 Q1) = (g(t) — Qie(t))/t, i3> 1,

(5.12)
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so that every @, ; is an even polynomial in ¢. Then, g(f) can be expressed as

‘Ii(t) = Qi,O(t) + tQi,l(t)' (5.13)
Setting

Wty =0, (VO +1/2), j=01i>Lt>-1 (514)

it is easily verified that the two sequences { W, (£)};2, and { W, (¢)};Z, each
satisfy the hypotheses of Theorem 2.2. Hence, from (2.5) of Theorem 2.2,
W, (H)—>0as i—oo for —1<t<20%~1, ie, Q(1)—>0 as i—> oo for
0 <t <8. Since Q(¢) is even, then @, (1) >0 as i —» o0 for —8§ <t <4,
Jj =20, 1, the convergence being uniform on each closed subinterval of
(=0, +8). Consequently, from (5.13), we have that g,(f) >0 as i — o0 on
each closed subinterval of (—#, +#). Similarly, the geometric convergence
rate (2.14) of Theorem 2.5 follows from (2.6) of Theorem 2.2. [

The sharpness of Theorem 2.5 follows by suitably modifying the sharpness
examples of Theorem 2.2,

6. Endpeint behavior. With the hypotheses of Theorem 2.2, we have from
(2.5) of Theorem 2.2 that lim,_ w,(f) = 0, uniformly on every closed subin-
terval of (—r(), 26% — 1). However, there remains the possibility that
pointwise convergence to zero could hold at the endpoints t = — #(d) and
¢t =20% — 1 of this interval, for every infinite sequence {w,(#)}2, satisfying
the hypotheses of Theorem 2.2. By means of an explicit calculation, again
using steepest descent methods, we show in Proposition 6.1 that this is not
true in general.

First, when ¢ = 262 — 1, 0 < 8 < 1, it follows from (4.7) that { *(28? -
1,8) = 28 — 1. We know that #~'(28 — 1) = 0, and from (4.10) that 2”28 —
1) = 0, but a short calculation shows, on differentiating #”({) in (4.6), that

(1+8)

D20 - 1) = - ————
( ) 40°(1 — 0y’

FIGURE 9. t = 262 — 1
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-1 20-1
r

FIGURE 10. Contour for ¢ = 20% — 1

Because of this, the corresponding steepest descent and steepest ascent curves
through 28 — 1 are as shown in Figure 9, where again the arrows indicate the
direction for increasing Re A({) along these curves. The modified contour I'
for use in (4.1) is illustrated in Figure 10. Note that these steepest descent and
ascent curves through { = 26 — 1 are separated by angles of = /3.

Again, a straightforward application of the steepest descent method gives
that

P'Sa,lﬁn/(l—ﬂ)+ﬁ )(202 — l)

' g6 -1) 6 Vi1 _ A
~ 3 P00 — D) I‘( 3 )exp{nh(20 1)+ 3 },

as n — 00, and on evaluating these coefficients from (4.3) and (4.4),

M\(8)
ni/3g20n/(1-8) ’
where M () # 0 is independent of n. Next, as (1 + 7)?/(1-9 = (292)?/(1-6)
since t = 262 — 1, then

'P’(.a,20n/(l—0)+ﬁ)(202 - 1)|~ asn— oo,

n/(1-0) p(a 20n/(l——0)+ﬁ). 2709
{|(1 + 1) Pl (0”1:202-1"‘_"73“—1”1(0)’ as n — co.
Finally, from (1.9), we deduce that
229n/(l~0)M2(0)

hga,20n/(l—9)+ﬂ) ~ __n—___*_ , asn-— oo,

where M,(8) # 0, so that
{J(l + t)9n/(l—0)P’('a,29n/(|—o)+3)(t)|}’=202_1

1 ’h&a,Zﬂn/(]—0)+ﬁ)
6.1

where M,(8) # 0 is independent of n. Now, the sequence of incomplete
polynomials

1 + o/ Q=Ol+1p(-1/2,26n/0-6)~1/23(py |~
w1 = L2 " @) 62)
\/h(—l/2,20n/(1—0)—l/2)
n n=1

~ n'/SM(#), asn— oo,
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can be shown to satisfy the hypotheses of Theorem 2.2 (where [ ] denotes the
integer part of ) for each # with 0 < 8 < 1, but from (6.1),

[%9,(20% — 1)~ n'/M,(8), asn— oo, (6.3)

where M,(8) # 0 is independent of n. In a similar and easier fashion (because
h”(§ ~(r(8), 8)) # O from Lemma 4.1), it can be shown that

|W,(—r(0))|~ Ms(8), asn— oo, (6.4)
where M,(8) # 0 is independent of n. This gives us

PROPOSITION 6.1. For each @ with 0 < 8 < 1, there is a sequence of incomplete
polynomials {W, (1)}, satisfying the hypotheses of Theorem 2.2 for which

Jim |%,(—r(0))]| = Ms(8) + 0; Jim |%,(26% — 1)| = + 0. (6.5)

7. Complex extensions. We now sketch the complex extensions of Theorem
2.2 and Corollary 2.3, given as Theorem 2.6 and Corollary 2.7 in §2. As in §4,
consider the infinite sequence { P2/ +O+B) 1y} of Jacobi polynomials,
where «, 8, and f are fixed real numbers satisfyinga > — 1,0 <8 < 1, and
B > — 1. With the integral representation of (4.1), now for any —1 #¢ €
C\ &(#), we again write this integral representation as (cf. (4.2))

Pr/ Q0 0)(1) = [ MO dt, .0
T
and the saddle points { *(¢, @) for h({) are given by (cf. (4.7))
) ={1+0xy1-020°-1-0) }/(0+8). (12

As noted in §2, these saddle points are analytic in f in C\ 5(8).

Now, to the integral of (7.1), we again apply the steepest descent method,
though in a form different from that of §4. Specifically, for any —1 ¢ € C\
&(8), consider the level curves T which separate the hills and valleys of A(¢)
with respect to { ~(¢, 9), i.e.,

T:= {{ €C:Reh({) =Reh(§ (¢, 8))} (7.3)
Next, as in §4 it can be shown that h"({ (¢, 6)) # 0 for all —1 #¢ € C\
& (). Thus, these level curves intersect at right angles at { ~(¢, ), and these
level curves are separated by angles of 7/4 at { ~(¢, 8) from the steepest
descent and steepest ascent curves through { (¢, #). Moreover, for any
—1 %t in A(8) (cf. (2.18)), the level curves T consist of a simple loop about
¢ = + 1, and a compound loop through { ~(z, #) which are pictured by the
solid lines in Figure 11. In this case, Re h({ 7 (¢, 8)) < Re A(¢ * (¢, 8)). Note
from Figure 11 that the region enclosed by the inner loop of the level curve T
through ¢ ~(¢, @) contains { = ¢, and is a hill for h({). On the other hand, the
region between the inner and outer loops of the level curves T through
¢ 7(t, #) contains { = — 1, and this region is hence a valley for h({). This
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further implies that descent curves through { ~(#, 8) can be found in this
valley, which are then used to define a contour I" through { ~(¢, ), as shown
by the dotted lines in Figure 11.

FIGURE 11. Level curves T for —1 #¢ € K(G)

~(t,8)

(/

FIGURE 12. Level curves T for ¢ outside A(9)

For ¢ outside of A(#) (cf. (2.17)), the level curves T are pictured in Figure
12. In this case, Re A({ (7, 8)) > Re h({ * (¢, 8)). Again, the region enclosed
by the inner loop of the level curves 7 through ¢ ~(z, #) contains { = ¢ and is
a hill for A({), while the region between the inner and outer loops of the level
curves T through { (s, 8) contains { = — 1 as well as { = + 1, and is a
valley for h({). As before, there are steepest descent curves through {7 (¢, 8)
and { = — 1 in this valley which are used to define a contour T through
$ 7 (1, 8), as shown in Figure 12.

Finally, making use of these newly-defined contours T in this complex
extension, it can be similarly shown, after some calculations, that (4.17) is
again valid, i.e.,

i [(1 + )™ pie2m+BI(4)]|

i—c0 1 ,hS,a,2m,+B)

Vemtn) = G(1, 9), (74)
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for any 1 € C\ §(0), where {(m;, n)}%2, satisfies (4.16), and where G(¢, 9) is
defined in (2.16). Thus, as in §5, (7.4) can be used analogously to establish the
complex extensions, Theorem 2.6 and Corollary 2.7.
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Added in Proof. The question discussed in §1 concerning the Weierstrass
property for incomplete polynomials of type # has been resolved by the
authors; the property holds on every closed interval [A, 1] with A > 202 — 1.
(See Internat. J. Math. and Math. Sci. 1 (1978), pp. 407-420.) More recently
M. v. Golitschek obtained a different proof of this fact.

The authors have also found alternate proofs of the fundamental limit
property (4.17) and its complex extension (7.4). These new proofs utilize a
normal families argument instead of the steepest descent method of the
present paper (cf. Numerische Methoden der Approximationentheorie, Band 4,
pp. 281-298, ISNM Vol. 42, Birkhiduser Verlag, 1978). Lorentz and Kemper-
man have obtained an alternate proof of Corollary 2.3 and its complex
extension Corollary 2.7 by using a Bernstein type inequality.

Generalizations of the results of the present paper to incomplete polynomi-
als vanishing at both endpoints of the interval have recently been found by
the authors together with Mr. M. Lachance.

REFERENCES

1. L. Ya. Geronimus, Orthogonal polynomials, Consultants Bureau Enterprises, New York,
1971.

2. Peter Henrici, Applied and computanonal camplex analysxs, Vol. 2, Wiley, New York, 1977.

3. G. G. Lorentz, Approximation by ir te poly Is (probl and results), Padé and
Rational Approximations: Theory and Appllcauons (E. B. Saff and R. S. Varga, eds.), Academic
Press, New York, 1977, pp. 289-302.

4. D. S. Moak, E. B. Saff and R. S. Varga, On the zeros of Jacobi polynomials P (x), Trans.
Amer. Math. Soc. 249 (1979), 159—-162.

5. F. W. J. Olver, Asymptotics and special functions, Academic Press, New York, 1974,

6. G. Szego, Orthogonal polynomials, Amer. Math, Soc. Collog. Publ,, Vol. 33, 4th ed., Amer.
Math. Soc., Providence, R. L, 1975.

7. J. L. Walsh, Interpolation and approximation by rational functions in the complex domain,
Amer. Math, Soc. Collog. Publ, Vol. 20, fifth ed., Amer. Math, Soc., Providence, R.1., 1969.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH FLORIDA, TAMPA, FLORIDA 33620

DEPARTMENT OF MATHEMATICS, KENT STATE UNIVERSITY, KENT, OHI0 44242



