POLYNOMIALS OF INTERPOLATION AND
APPROXIMATION TO MEROMORPHIC
FUNCTIONS(*)

BY
E. B. SATF

L. Introduction. The obhject of the present paper is twofold: (1) to establish
some general results concerning the convergence and divergence of certain sequences
of polynaomials which interpolate to a meromorphic function, and {2) to deduce
from these results some properties of the polynomials of best uniform approxima-
tion to a meromorphic function.

Throughout the paper £ shall denote a closed bounded point set in the z-plane
whose complement X {with respect to the extended plane) is connected and regular
in the sense that K possesses a classical Green's fupetion G(z) with pole at infinity.
We let ', (p>>1) denote generically the locus G(z)=log p, and denote by E, the
closed interior of I',. Furthermore we set H(z)= — G (2) +iG (2).

Suppose the function f(z) is analytic on E, (p> 1) except for a finite number of
poles on T', and let r be the highest order of the poles of f(z) on T',,. Let P,(2) be the
polynomial of degree # of best uniform approximation to f(z) on E and set E,(f)
=[max |f(z)—P(2)|; z on E]. In §2 and §3 we show that if the point set E has a
smoath boundary and f(z) has a pole of order » at some point of T, which is not
a critical point of the Green’s function G(z), then there exist constants A4,, A, such
that

) 0<A En "o E(f) S Ay <0, n>0

Inequalities (1) were established by Sewell [4, p. 178] for the special case where E
is bounded by a single analytic Jordan curve. However, for this configuration G(z)
has no critical points and consequently Sewell's methods cannot be applied to the
more general point sets E which we shall consider in this paper.

For the case where the function f(z) has poles in critical points we show in §4
that the inequalities (1) are valid if the exponent of » is replaced by an integer A
which depends on the arders of the poles of f(z) and on the multiplicities of the
critical points of G(z).

Presented to the Society, April 29, 1968 under the title Iaterpolation te meromorphic
Sfunciions; received by the editors January 27, 1969.
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Furthermore, we extend to the geometric setting described abave some results
of P. Dienes [2, §114] on the divergence of the Taylor expansion of 2 meromorphic
funetion. In particular, we deduce that the best approximating polynomials P,(z)
can converge in at most a finite number of points exterior to [',.

2. Interpolating polynomials, It is known [l, p. 74] that with the geometric
conditions imposed on the point set E there exists a sequence of polynomials
w,(z) which have respectively #+ 1 zeros and which satisfy for some A (>0)

@ lim [wn(2)|" = Aexp GE),

uniformly for z on each closed bounded set in K. Concerning interpolation in the
roots of such w,(2) we prove

THEOREM 1. Let E, K, G(2), and H(z) be as described in §1, and suppose w,(z) is
a sequence of polynomials having respectively n+ | zeros and satisfying (2). If s, ,(2)
is the polynomial of degree n which interpolates to the function (z—e«)™" in the B4 1
roots of w,(2), where r is a positive integer and a (# o) lies in K, then

3 [Lm no's, e} = H(a)|r!.

Proof. We note that as a consequence of (2) the w,(2) have no finite limit point
of zeros in K, and hence for » sufficiently large no point of interpalation coincides
with «.

It is clear from the definition of s, (2) that

4 (2= ) "= 5,,(2) = w(2)pa {2){(z—a),
where p, (z} is a polynomial of degree r— 1. The equivalence of (4) with
(5) Sn..r(z) = m,,(z)(ﬂn(z)—pm,(z}}j(z—a)',

where 8,(z)= 1/w,(2), implies (since s, (2) has no finite pole) that p, ,(z) interpolates
to 8,(2) in the point « considered of multiplicity r. This property of interpolation is
also possessed by the polynomial

r—%
Gar(2) = 3, 6P,

and since both p, .(2) and g, (2) are of degree r—1 we have p, (2)=g, (z). From
(5) it now follows that
(6) (rDn=7s, {o) = 877w (o) 80 ().

To evaluate the limit as # — oo of the right-hand member of (6) we first note that
equation (2) implies

7 ILm A tap(2)8,(2) = — H(2),

uniformly ont each compact subset of K.
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If we assume that for some positive integer v

® lim n~%,()00(2) = H(z)",

uniformly on each compact subset of K, then the convergence of the derived
sequence implies
lim =21 Y, (2)88* D (2) + 1Y (2)80%z)] = 0.
Since
lim (1™ wn(2)0u(2))n ™V (2)83(2)) = — H(z)*"?,
we thus abtain
GBm 1Y law,(2)88+1(2) = H(z)**,

n—»a

uniformly on each compact subset of K.
From (7) it easily fallows that equation (8) holds far v=1, Hence, by induction,
it holds for v equal to any positive integer and so (3) is a consequence of (6) and (8).
Concerning the degree of approximation to (z—e)~7 on E we have

CoROLLARY 1. If |w,(2)/w, ()| Se, for z on E, then for each positive integer v
there exists a constant A independent of n such that

9) [(z—e)~"—s$, (2)] & AW ey, zon E, r> 0.

Proof. From equation (4) we have

r—1
(2=0) " —50,4(2) = [wn(2)we()] Z (@) (e)(z— @) o,
and from (8) there follows
10) Jeua(@)85%a)| £ Agn™ 2, v=01,...,r—1

Hence (9) is a consequence of (10) and the triangle inequality.

It is interesting to note from (4) that the polynomial s, ,(z), uniquely determined
by the condition that it interpolate to (z—«) " in the #+ 1 roots of a,(z), also inter-
polates to (z—«)~" in the roots (if any) of p, (2). Regarding the behavior of these
additional points of interpolation we prove

COROLLARY 2. Suppose H(e)#0, fe., « is not a critical point of the Green’s

Sunction G(z). Then for n sufficiently large each p, (2) has precisely v — 1 zeros, and

as n becomes infinite these zeros approach respectively the point c.

Proof. From (8) and the representation
r=1

“’n(a)pn.r(z) = z mn(a)ﬂgl‘”(a)(z-—a)”/y!,

=0

we deduce

(10 lim a1~ (@)p,, (2) = Hla) “Hz—ay "Hfr— ),
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uniformly for z on each compact subset of the plane, Since the right-hand member
of {11) is not identically zero, Hurwitz’s Theorem implies that for # sufficiently
large each p, {(z) has at least, and hence precisely, r—1 Zeras; and these zeros
approach the point « considered of multiplicity r—1.

Equation (11} is also useful in establishing the following result cancerning the
divergence of the s, (z) (compare [2, p. 480]):

COROLLARY 3. If @ lies on T, then

o Sp2efe) — H(a)y !
12 Sm e T D)

uniformly on each closed set exterior to Ty,

Here and below we interpret H(«)® as unity.
Proof. Let p <7<, and nate that (2) implies e (e}fw,(z) — O uniformly for z
on I'.. Hence from {11} and the equation

S, (Z)ewn(«) _ (o) _ w(e)p A2 )’
W le(2) w2 T (z—af AT z-e)

we deduce that (12) holds uniformly on I',. Since the functions which appear in
(12) are analytic exteriar to T';, even at infinity, the limit is uniform as well for z
exterior to I, and so the corollary follows from the arbitrariness of .

Theorem 1 easily extends to polynomials which interpolate to a meromorphic
function of the form

£2) = g2 + 2 Bu(z—a)*,

where « lies an I'; and g{z} is analytic on E,. For suppose that the polynomials
w,(z} of Theorem 1 have no limit point of zeros exterior to £, and let L.{f; z) and
L.(g; z) be the polynomials of degree # which interpolate respectively ta the
functians f(z) and g(z) in the roots of w,(z). Then clearly

Lu(f:2) = Li{g; z)+k2 Bisui(2),
=1

and since the sequence L.(g; «) canverges [1, p. 154), we deduce from Theorem 1
that
lim 27 "Ly(f; &) = BH(e)jrl.

n—a

To study the case where f{2) has a pole in more than one point on I', we make
the additional assumption that there exists a constant M such that

(13) [w(2)ewnt)] = Mfp", zonE tonT,.

It is known [3] that with certain smoothness conditions on the boundary of E,
which are discusse’ in §3, w,(z) exist satisfying both (2) and (13). In particular
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such w,(2) exist if £ is a finite line segment or if £is bounded by a finite number of
mutually exterior analytic Jordan curves.

THEOREM 2. Suppose thar the polynomials w,(2) of Theorem 1 sarisfy (13) and
have no limit point of zeros exterior to E. Let the function f(z) be analytic on E,
(p>1) except for a finite number of poles on T, and let v be the highest order of the
poles of f(z) on T',. Then for the polynomials L (f; 2) of respective degrees n which
interpolate to f(2) in the roots of w,(2) we have

(14) [f(2)~L(f; 2)| £ A~ Yp*, zonE
Furthermore, if « is a point of ", at which f(2) has a pole of order v, then
(15) lim #~"L(f; @) = BH(a)[r!,

where B=lim,_,, (z— &)f(2).

Here and below constants 4 are independent of # and z and may change from
one inequality to another.

Proof. Let e=ay, ay,..., o, be the distinct poles of f(2) on [, and write
J@) =g(2)+ 3% Si(2), where Si(z) is the singular part of the pole «;. Let L.(g; 2),
LS5 2), ..., L,{(Sn; 2) be the polynomials of degree n which interpolate respec-
tively ta the functions g(z), $i(2), ..., Su(2) in the roots of w,(2). Since g(z) is
analytic on E, we have [I, p. 154]

|a(z)—Lu(g; )| £ Alp",  zonE,
and from (13) and Coarollary 1 there follows
(16) 18:(2) —L.(Si; 2)] & An g, zon £, k=1,...,m

Hence the linearity of the interpalation operator together with the triangle in-
equality imply (14).
To prove the secand part of the theorem we first note that by the remarks
preceding the statement of Theorem 2 we have
lim n"[Lg; 2) +L(S1; 2)] = BH () |rl.

It is clear from (16) that
(z— ) Si(2)— (2— o, ) LS Z)I £ An'"Hp?, z on E,
and since the function whose absolute value appears in the last inequality is a
polynomial of degree n+ 7, the generalized Bernstein lemma [1, p. 77} implies that
|G — )" Sile) — (@ — e YL (Ss )] £ An' L.
Thus far k=2, ..., m we deduce n "L (S, ; «) =0, and so (15) follows.
We remark that the second part of Theorem 2 generalizes a result of P. Dienes

{2, p. 479) concerning the divergence of the Taylor expansion of a meromorphic
function.
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An extension of Corollary 3 is given in

THEOREM 3. With the hypotheses of Theorem 2, let v, ay, . . ., &, be the poles of
f(2) on T, which are of order r. Then the sequence L(f, Z)w(a))n " ‘w,(2) forms a
normal family in the exterior of T, and each limit function of the sequence is of the
Jorm

(17 =By H(ey '~ )‘kBkH(“k)'_lj
r—Dz—e;)) S Dlz—a)

where B,=lim sy (2— ) f(2) and the set of possible constants A, is bounded.

Proof. Let o, 4, %42, ..., ¢, be the poles of f(z) on ', which are of order less
than r and write f(z)=g(2)+ >i=1 Si(2), where S(z) is the singular part of the
pOle [+ I7

Let p < r < o0, and note that since g(2) is analytic on E, there exists a constant p,
p<p <, such that the interpolating polynomials L,(g; z} are uniformly bounded
on I',. Thus from the fact [1, p. 67] that T';,=(I",),, and the Bernstein lemma we
have |L(g: 2){ £ Ar™/u"™ for z on T',. There now follows from (2)

lim sup (max |L.(g; 2)wdlea){n’ " *wa(2){; z on T 1¥" < pfu,
and since 7 (> p) is arbitrary we have L,(g; 2)w, (o)) /0" "L, (2) — O uniformly for

z on each closed set exterior to I',.
It is clear from Corollary 3 that

lim Ln(Sk; Z)wn(ak) = "-BkH(ak)'—l .
toa M rwe(Z) (r—1z—w,)

and since (13) implies that [w, (e, )fw,(2)| £ Mp for z on T',, we also have

k=1,2,...,v

lim Ln(Sk; Z)wn(al) = 0

k=v+i,...,m;
n—+ n”‘w,,(z) 4 ' L

the limits being uniform an ecach closed set exterior to I',.
Now given any increasing sequence of positive integers we can extract a sub-
sequence u; such that

hm wn((“l)ll"-'n((ak) = Ak k=2.. ca ¥y
and thus

lim Ly {(S; 2)wn o) - = Ao B He) ™ 1,
{— e n2~lwﬂ‘(z) (r_ I)!(z—a‘k)

k=2...v,

uniformly for z on each closed set exterior to I',. Hence from the linearity of the
process of interpolation it fallows that each subsequence of L,(f; 2)w, (e )/n " w,(z)
possesses a subsequence which converges uniformly on each closed set exterior ta
T, to a function of the form (17), where the constants A, are bounded by Mp.
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It is easy to see from the proof of Corollary 3 that if r> 1 and |w.(a)fw,(2)] £ M,
for z on T, then the limit (12) also halds for each z (#¢) on [',. Hence a slight
modification of the proof of Theorem 3 shows that if ¥ > 1, then every subsequence
of Lo(f; 2)ewq(e)f0 " o(2) possesses a subsequence that converges at each point z
on or exterior to I',, z nat a pole of f(z) on I, to a function of the form (17).

CoROLLARY 4, Suppose, in addition to the hypotheses of Theorem 2, that «, is the
only pole of highest order v of f(z) on U',. Then

i Ll 2)osn() _ =By H(an) ™

pma W lafz) (= Dl(z—a)

uniformly for z on each closed set exterior to T',,

3. Approximating polynomials. We now apply the results of §2 to deduce
properties of certain sequences of polynomials that approximate a meromorphic
function an the point set E. Such applications will be justified if we assume that the
boundary of E consists of curves of the type described in the following

DEerINITION. A Jordan curve is said to be of class A if it can be represented
parametrically in terms of arc leagth s by x=x(s), y=y(s), where x(s) and p(s)
possess second derivatives with respect to s which satisfy a Lipschitz condition of
some positive order in s.

THEOREM 4. Let E be the closed interior of the mutually exterior Jordan curves
C., Cay ..., Cn, where each C, is of class A. Suppose f(2) is analytic on E, (p> 1)
except for a finite number of poles on T', and let r be the highest order of the poles of
J(z) on T',. Then there exists a sequence of polynomials p,(z) of respective degrees n
which satisfy

(18) | A2 —pu(z)] £ An"Yp»,  zon E, n>0.

Furthermore, if e € I, is a pole of J(2) of order r and p,(2) is any sequence of
polpnomials of respective degrees n which satisfy (18), then

(19) lim 2™ pa(a) = BH(e)'[r],
where B=1im,.., (z—«)f(2).

Proof. Walsh has shown [3, Theorem 1] that for such a point set E there exist
polynomials w,{z) which have respectively n+ | roats and satisfy

(20) !"Jn(z)l .S— Mleﬂg> zom E:
2 [G(2)+g—n~"tlog [waz)| | £ Man™1,

for z on each compact set exteriar to E, where ¢° is the capacity of E. The raats of
the w,(z) are chosen sa as to be partitioned among the C; and equally distributed
on each C,.
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It is easy to see from (20) and (21) that the w,(z) satisfy both (2} and (13) and
hence, by Theorem 2, the polynomials L.(f; z) which interpolate ta f(z) in the
roots aof w,(z) satisfy (18).

To prave the second part of the theorem assume that polynomials p,(z) of
respective degrees » satisfy (18). The triangle inequality implies

(22) |pl2)—Lo(f; 2)| £ A"~ Yp",  zon E,
and so from the Bernstein lemma we abtain
[pa(@) —Lo(f5 )| £ Ay’ 2,

Thus #~"p.{(e)— 1~ "L,(f; ) — 0, and so (19) follows from (L5).
As a consequence of Theorem 3 we establish

Taeorem 5. Let E, f(z), and r be as in Theorem 4 and let K, denote the set of
points which lie on or exterior to I',. Suppose the polynomials p(2) of respective
degrees u satisfy (18). If r> 1 and if f(2) has a pole of order ¢ at some point «; on 1",
which is not a critical point of the Green’s function G(2), then

(i) Excepr for a finite number of points the inequality

- lpu(2){p”
(23) llt,l}_.sgp mm >0

holds for each. zon K,
(i) There exists a neighborhood A of e such that

T | p(2)]p" ;
(24) hiﬂﬂlﬁlfm—mj‘} > 0, zin AN Ka'

The p.(z) need not be defined for every u.

Conclusion (i) implies that the set of points z in K, for which the sequence p,(z)
converges is finite, and conclusion (ii) implies that p(z) - o for zin AN K,

Proof. As in the proof of Theorem 4 let L,(f; z) denote the polynomials of
respective degrees # which interpolate toa f(z) in the #+1 roots of the polynomials
w.(z) which satisfy (20) and (21). For x> 1 we abtain from (20), (21), and (22)

[wi(oe)fw(2)] £ Mop™{p", zon T,

{pu2)—LAf;2)] & Ay 'p*fp",  zon T,
and so for z on or exterior to T, the sequence (p.(z) —L.(f; 2)Jew o)/ " tw,(2) is
uniformly bounded, and thercfore forms a normal family in the exterior K of E.

Thus by Theorem 3 the sequence p(2)w, (e }fn” ~tw,{z) forms a normal family in
the exterior of I, and each limit function of the sequence is of the form

BH(e) b & ABH(w)
@3) M)~ DG may ™ 2, G D=
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where h(z) is analytic in K, and e, «g, . . ., e, are the poles of f(z) on T', which are
of order ».

Now consider any such limit function ®(z). Since B, H(e,)#0, $(z) has at most
a finite number of zeros in K,. Furthermore by the remarks following the proof of
Theorem 3 there exists a subsequence p(z)w e, )ff’ ~ta,(z) which converges ta O(z)
in K,—{poles of f(z) an T',}, Thus if z € K, is neither a pole of f{z) on T', nor a
zero of @(z), then

| piz)wer) ; |2} Ap?
O T | = I e GO

which proves (i).

Tt is easy to see from (25) and the proof of Theorem 3 that there exists a neigh-
borhood A of «, and a positive constant ¢ such that all limit functions D(z) satisfy
|D(z)| 2@ for z in A, If we assume that «, is the only pole of f(z) on T, which lies
in A, then for fixed z (#¢,) in A N K, we have for n sufficiently large

[ pa(2)wnle)i " twf2)| 2 af2 > O,

which implies (24). It is obvious from equation {19) that (24) also holds for z=«,,
and the proof is complete.

We now show that under certain canditions the degree of approximation indicated
in (18) is best possible.

THEGREM 6. Let E, f(2), and r be as in Theorem 4 and let P,(2) be the polynomial
of degree n which is of best uniform approximation to f(z) on E. If r>1 and if f(z)
has a pole of order v at some point of T, which is not a critical point of G(z), then

(26) T E(f) 2 A >0,  u>0,
where E,(f)=[max | f(z)—P(2)|; z on E].

Proof. Assume to the contrary that there exists an increasing sequence of integers
J for which j>~"p’ELf) — 0. Let ¢(z) be the manic polynomial of smallest degree
such that g(z)f(2) is analytic on E,, and let m(z) be the polynomial of degree n
which is of best uniform approximation to ¢(z)f(z) on E. From the inequality

lim sup [max |q(z)/(z)—mu(2)] s 2 on E]" < Ufp,
it is easy to see that
|g(2)PL2)—=f2)| £ ayj"~fp!, zonE
where o; — 0. Hence the lemma. of Bernstein implies
|g(2}PL2y—7f2)| € Ao,jr~ ]pd, zon Iy,

and so if we choose 7> p so that the m(z) are upiformly bounded on T',, there
follows
|PL2)|pfT~1a? £ Aya;+ Agp'lf 17 (—0), zan T,
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But by Theorem 4 the sequence j' ~"p’ ELf) is bounded from abave and so the last
inequality contradicts canclusion (i} of Theorem 5.

It can be proved directly that if »=1, then inequality {26) holds without any
restrictions on the location of the poles of f(z} on T',. We shall include this result
as part of a generalization of Theorem 6 which is proved in the next section.

4. Poles in critical points. Theorem 6 suggests that the degree of approximation
indicated in (18) may be improved if the poles of highest order of f(z) coincide
with critical points of the Green’s function G(z). That this is indeed the case follows
from a closer look at inequality (21).

LEMMA L. Let the set E be as in Theorem 4 and suppose the point o in K is a v-fold
critical point of G(z), i.e., « is a zero of order v of H(z). Suppose that ,(z) is a
sequence of polynomials which satisfy (21) for z on each compact subset of K, and let
8.(2)=1]w,(z). Then for each fixed nonnegative integer t we have the inequalities
Q@27 [ @)l ()| & Anr,

(28) |n()8Po)| = An?,
where A={r{(v+1)] is the greatest integer less than or equal to t{(v+ 1).

Proof. In order for (21) to hold we make the tacit assumption that the o.(2)
have no zeros in X, and hence the quantities whose absolute values appear in (27)
and (28) do indeed exist.

We now praceed by induction on 7. For ¢=0 inequalities (27) and (28) are
obviously valid, so assume they hold for each integer ¢ strictly less than the pasitive
integer s.

In arder to prave that (27) holds for 7=s we estimate the terms on the right-hand
side of the identity

s—1

@) @0 = @@ 3 (1] @,

t=1

It is clear that in some closed disk N(«; &) with center « and radius § (>Q) the
function whose absolute value appears in (21) is the real part of an analytic function
f-(2) whose derivative is — H(2)— 1~ lwp(2)8,(2). From (21) we obtain

0 < Ay = |exp (f(2))| = A;, z in N{e; 8),
and hence from Cauchy’s inequality there follows
Aan|fa(z)| £ |ufi(z) exp (Wfu(2))| S Ay, zin Ma; 3(2).
The last inequalities imply
|H(2)+ 1t (2)8,2)] £ Ain™Y,  zin Ne; 8/2),
and so for fixed =0 we have

(39 | H %)+ 0~ Yewife)8(a))®] < An~t,



1969] POLYNOMIALS OF INTERPOLATION 519
Now since H®(a)=0 for k=0, 1,...,v—1, there follows

[(wn(@)8£a))®] < M, 0gkgv-1,

[(@wi(e)Ou(e)™| £ Mn, v 2k,

A

and hence if A={s/(v+1)] we have |(w(«)8,(«)) Y| £ Mn*,

Ta estimate the remaining terms on the right-hand side of (29) we let 1 £igs—1
and set A ={[(s—)/(x+ 1)1, da=[i/(v+1)]. Then by the induction hypothesis we
have

|l = 8] = |~ N @)8ulo)] faon(@)i(e)| S ArPsP2 £ A,

and so (27) follows for t=35.
It is aobvious from the identity

31 (0)BPNa) = —wﬁf’(m)@n(a)—-:zl (“;)wgg-ﬂ(a)asy(a),

that (28) also holds for r=s and the lemma is proved.
From inequality (28) and the methods used to prove Corollary 1 and Theorem 2
we obtain

TueOREM 7. Let E be the closed interior of a finite number of mutually exterior
Jordan curves of class A, and let the sequence of polynomials w,(z) which have
respectively n+ | roots satisfy (20) and (21). Suppase the function f(z) is analytic on
E, except for poles in the distinct points wy, e, ..., ay on T, Let v, be the order of
the pole of f{2) at a, and suppose G(z) has a v, (Z0)-fold critical point at «,. Then
the polymomials L (f; 2} of respective degrees n which interpolate to f(2) in the roots
of w(2) satisfy

/@ ~Lf2)| £ Arlp",  zonE,

where A=max {[(r.— D/ +1)]; k=1,..., m.
To obtain an extension of Theorem 3 we prove

LemMa 2. With the hypotheses of Lewma 1, let p=v+1 and set e, v, )=
(e = 1) Vs B )Y (ke — 1)WY t)*. Then for each pasitive integer k we have

(32) lim 7~ *a®()8,(c) = (— 1)*Te, v, k),
A~ o
(33) lim. 1% (a)8%e) = T(e, v, k).

Proof. We praceed by induction on k. Lemma 1 implies that |w$ ~2(2)8P(e)| £ 4
far i=1,...,v, and from inequality (30) we have n™ '(wy(e) B () — — HYe).
Hence from the identities (29) and (31), with s replaced by p, it follows that (32)
and (33) hold for k=1.
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Now suppose the lemma is valid for k=1, 2, ..., r— 1, and cansider thz ilentity
(29) with s replaced by ru. If i=ju-+q for some integers j and g which satisfy
05j<r—1, 1 2q<v, then Lemma | implies that [ef*~He)0O(e)| £ 4”2, and so

lim n~ e~ e (a) = 0,

If i=ju, where 1 £5=r—~1, it follows from the induction hypothesis that

lim #™ e  Y(a)8ie) = (= 1) T(e, v, ¥ =) (e, v, j).

n—a

Therefore since inequality (30) implies that # ™ "(an(e}8,(c))™  » — 0, we deduce
from (29)

r-1 .
G4 lim e @)ie) = — 5 (—1)r—f(”}# l)[‘(a, vy r— )T, v, 7).
A =1
From the casily verified identity

(" e w, =it m ) = (7)),

we see that the right-hand side of (34) reduces to (—1)T(«, », #), and so (32)
holds for k=r.
It follows from (31) that

lim 7w ()60 a) = (— 1Y *3Te, v, r)

ot yon
- ~1f~1(.)1‘ v, F— Yy v 1),
,Zl( Y~ ) T v, =) v, )
and so from the identity

(:::) Dle, v, r =)Te, 0,0) = (;)I‘(a, v, r)

we deduce that {(33) also holds for k= and the lemma is proved.

THEOREM 8. With the hypotheses of Theorem 7, let 1,2, ..., s be the values of k
Jor which A=[(r,— D, +1)], and write r—1= My, +1)+q,, where 02g, Zv,.
Then the sequence g.(2)=L,(f; 2)w (o)t w, (2) forms a normal family in the exterior
of U,, and each limit function of the sequence is of the form

— Bl(a4, vy, A) < A o Aw
35 2L - < )
@3) TS e P ooy PP
where B=lim, ., (z—a,)1f(2) and the set of possible constants A, is bounded.
Furthermore if > Q, then each subsequence of g,(z) possesses a subsequence which
converges to a function of the form (35) at each point 7 on or exterior to T, 2 not a

pole of f(z) on T',,.
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The proof of Thearem 8, which follows from Lemma 2 and the methods used in
§2, is left to the reader.

Since the first term of expression {35} is not identically zero, the reasoning used
to establish Thearem 5 yields

TueoreM 9. Let E, f(z), and X be as in Theorem T and let D, denote the exterior
of U,. If the polynomials p(2) of respective degrees n satisfy

(36) | f(2)—pa2)| £ ArPp",  zon E,

then
(1) Except for a finite number of points the inequality

. |22 p"
lira SUp - ip (G~ ©

holds for each z in D,.
(i) If for the integers v, and v,, which correspond to the pole «,, we have A=
[(r— Df(vi + 1)1, then there exists a neighborhood A of o, such that

liminf 252" 6 smanD,
new M XD (nG(z)}
Furthermore if >0, then conclusion (i) holds with D, replaced by D,+T',, and
conclusion (i) holds with D, replaced by D,+T,—{a,)}.
The p,(z} need not be defined for every n.

We conclude with a result which states that the degree of approximation in-
dicated in (36) is best possible.

TeaeoreM 10. Let E, f(2), and X be as in Theorem 7, and let
E(f) = [max | f(z)-Pu(2)]; z on E],

where P, (z) is the polynomial gf degree n which is of best uniform approximation to
f(2) on E. Then there exist constants A, and A, such that

0 < Ag En 2 p"E(f) £ A, < o, > 0.

The fact that the sequence z,=n"*p"E(f) is bounded from above follows im-
mediately from Theorem 7. To establish that £, = 4,0 one shows that the con-
trary assumption would violate conclusion (i) of Theorem 9.

We remark that the results of §3 and §4, which apply to the polynomlals of best
approximation in the Tchebycheff norm, can be extended so as to apply to poly-
nomials of best approximation in other norms, such as the gth power line integral
norm taken over the boundary of E. These extensions are reserved for another
occasion.
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