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on_Incomplete Polynomials

by

E. B. Safffand R. S. Varga**

In [2], G. G. Lorentz recently raised interesting new questions
concerning the uniform approximation of continuous functions on [0,1]

. n

by sequences of polynomials of the special form z akxk, 6 fixed with
k=[6n]) .

0<9 <1, narbitrary, n = 0. Some convergence properties of sequences

of such incomplete polynomials were studied by the authors [6], and by
" Kemperman and Lorentz [1] In this present paper, we investigate the

analog of the classical Chebyshev pc’alynomials for this new approximation

problem,
For notation, for each nonnegative integer n, let i denote as usual

the set of all complex polynomials of degree at most n. Then, for any

<

nonnegative integers s and m, the set LA of polynomials. is defined by
. :

a my = {x® q,(): q € ﬂ;}.

and, clearly, Ts,m SMem A polynomial p in ns,m is called an incomplete

polynomial of type (s,m). Next, for any continuous function g on a compact

set K in the complex plane, we further set

flelly:= max{{g(e)| : € € K}.

Concerning the location of points where p € T m attains its maximum
?

absolute value in [0, +1], we have proved

Proposition 1. (Lorentz [2], and Saff and Varga [6]). Let Oréperrs o
N ’
- where s +m >0.
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1£ [p®)] = llellpg 4 with £ € [0,1], then

() /(s+m)? <€ <1.

Furthermore, the first inequality of (2) is best possible in the followiné

sense: K For each fixed 6 with 0 < 6 =1 and for every infinite'sequence of

8
o _ -
ordered pairs [(si, mi)'k=1mm E;n; (s + mi) = o and iin; e 9, there
@ o
exist polynomials [p1}1=1 with 0 # Py € nsi’mi, and points[§1}1=1 in [0’13,
= h .
with |pi(§i)‘ "p1"[0,1]’ such that .
2
(3) limE, =18".

je®
We remark that the first inequality of (2) is a simple consequence
of a result of G. ¢ Lorentz [2], and that the sharpness of this

inequality is proved in [6], using a suitably modified sequence

of Jacobi polynomials.

We now study an analogue of the classical Chebyshev polynomials for

the set n
s,m

Proposition 2. For each pair of nonnegative integers (s,m), there exists

a unique monic polynomial Qs o in s m of exact degree s + m such that
td 2

) ”Qs,mnfo;l] = inf{“xs+m - g"[O,l]: g € ns,m-l}:=.Es,m’

(where T m-1 denotes the set {0} if m = 0). Furthermofe, for s +m> 0,
bl

Qs o has an alternation set in [0,1] of precisely m + 1 distinct points
bl
§§s,m), 0<3j<m with

®) (/e g™ <™ <
for which

©® o &™) = ()™, osys<n
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Moreover, for s + m > 0, there are no points in [0,1], other than the

gj(s,_m), for which [q, (x)| = "Qs,m"[o,lj - Ey o

Proof. As Proposition 2 is clearly true 1£ 8 = O or {f m = 0, assume

8> 0 and m> 0, and let p* € s m be any monic polynomial of degree
b4

8 + m for which

@ "P*"[o,lj = Es,m'

Expressing p*(x) as p*(x) = xs+m - g¥(x), g* € LU m;l’ then Proposition 1
. 2

shows that p* also solves the extremal problem

® Nelpy, 1y = 1oel™ - allpy 1y 8 €y

2
where A:=(s/(s+m)) > 0. As g 1 is a linear space of dimension m which
s = .

satisfies the Haar condition on the interval [x,1], it is well-known

(cf. Meinardus {2, p. 20]) that g* (and hence p*) is unique, and has an
associated alternation set for the difference xS-Hn - g% = p¥*, consisting

of at least m + 1 distinct points in [A,1].. If, however, ‘p*(x)] attains
its maximum in more than m + 1 distinct points of [0,1], then the derivative
of p*, which belongs to "s-l,m’ would vanish in at least s + m points of

[0,1] and would, consequently, be identically zero, contradicting the

fact that p* is monic in e’ Thus, there are precisely m + 1 distinct

points in [0,1] where |p*(x))lattains its maximum. A similar argument
can be used to prove that gés’m) = 1.

From the unique monic polynomials QS o of Proposition 2, we then
t

define

@ 1, = G/l g 19 = Qo E

to be the (normalized) constrained Chebyshev polynomial of degree s + m
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associated with the set w, _ on {0,1]. Now, in the following special
4
' - (s,m)
case m = 0, the quantities Qs,m(x)’ Es,m’ §j , and Ts,m(x) can easily

be determined:
v

(x) = = x5 aq. e(8:0)
(10) Qs,O(x) Ts,O(x) X3 Es,o 1; §0 1.
Next, if Tn(t) = cos[n cos-lt:] for ]t‘ < 1 denotes the classical Chebyshev

polynomial (of the first kind) of degree n, then for s = 0, we similarly

easily deduce that

Qa@ = Tyx - /2P 5 a6 = Cx - 1)
(11)

g =2l Ej(o’m)=[1-cos(jﬂ/m)]/2 , 0<j<m

Thus, ‘the constrained Chebyshev polynomial T0 m(x) for o.m °° [0,1]
2 H
reduces to the (translated) classical Chebyshev polynomial Tm(Zx-l).

For the special cases s = 1 and m = 1, we have

Proposition 3. For any m =2 1, set X i -cos(y1/2m). Then,
\ 3

= m-1 . _opl-m -m
Ql,m-l(x) - Tm[ a - xl,m)x + xl,m]/2 (1_x1,m)m’ El,m-.‘l."2 (l-xl,m)

(12) -
cos[ (‘l——}l—i)ﬂ] - X

10 = Thﬁ(l-xl,m)x+x1,m]; §§1,m-1)= L 0<i<m-1.

T. .
1,m- .
’ 1 xl,m

Similarly, for any s > 1, let ag be the unique positive root of

o (s - 1)5-1
s

(13) +a-~1=0.
s .
Then,
_ .58=1 . - _ .
Qs-l,l(x) a x\ G - cx's) > Es—l,l 1 O é
(14)

(s-1,1) _ 1%

Ts-1,100= xsq(",' o)/ - a); & ot -



-
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Proof. By definition, X o is the least (simple) zero of Ih, so that

’ .
T [(1 X, )x+x1 Je€ -1’ The rest of (12) follows frpm well-known

roperties of Chebyshev polynomials (cf. Rivlin [5]) Next, for s > 1,

(13) has a unique positive root, a_, by Descartes' ‘Rules of Signs, and,

moreover, o, < 1. To determine QB 1, 1(x), we note from Proposition 2

-1,1
that its alternatlon set consists of two points, 0 < g(s -1,1) ¢ §<s ).

Hence, on writing Qs-l 1(x) = xs-l(x - o), we find that Q;_l’l(x) = 0 only
: ]

if x =0 or if x = %X =a(s-1)/s. Setting Qs-l,l(;) = -Qs-l,l(l) gives
the rest of (14) follows.

We remark that, using (13) and (14), it can be shown that

1
K+1 1
1 +-(T)'+8’(;—2—)

, 858 § = ®

(15) g(s -1,1) _

where K is the unique positive root of the equation Ke = 1 (so that

Y

K + 0.278 465).

Next, we show that, outside the interval (Eés m), 1), the polynomials

(x) dominate the growth of polynomials inmw_ .
,m , s,m

Proposition 4. If p € T and if M 2> max{lp(gés,m))l: 0<k<nj, then
(16) ]p(f)] SH|T, )]

(s,m)

for 311 real x outside the interval (§ » 1). Furthermore, for any

positive integer v, .

an pPw)| =< M|Ts(";(x)| for all x § (0,1).
' ' n (s,m)
Proof. First, set h(x):= x° 1 x - EjS’T ). Then, by means of the Lagrange

5=0

interpolation formula (applied in the points g§s,m)) and the alternation
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property of Qs n in Proposition 2, it follows from (6) and (9) that
»

E)hx) =m m-k,
- m -k - -1 x .
18 Tg,n® qu R E) G- o h () (k- §)

‘

vhere, for convenience, we have omitted the superscript (s,m) on the points

§k. Now, for p € "s,m’ we also have

19 »e0 : ;5 P(E) h(x)
px) = TV7F NTo . F N ?
yeo B G &-E)

so that, by hypothesis,

|p(§ )| |re| = [h
20 = = z %) 144
@0 @] B e x- Y N R I LI PR N
m
For 0< x S g, then |n' ()| = |s2 T € -8 = -1k h' (), and
=0
j#k

‘h(x)‘ = (-1)m+1 h(x), so that, from (20),

' m m+]
@) |pe]su & —L h() for 0
k=0 (1" '), - %)

But from (18), the sum on the right side of (21) equals l'l‘s m(x)], whence
2
(22) ‘p(x)‘ < MlTs,m(x)‘ for all 0 < x =< §0.

Similarly, (22) holds for x < 0, as well as for x = f:I,m = 1, which establishes
(16). Finally, to establish (17), simply differentiate the equation in

(19) v times, and argue as in the first part of the proof.

As an immediate consequence of Proposition 4, we can give a sharpened

version for the first inequality of (2) of Proposition 1.
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Corollary 5. For any s 2 1, let us,m be the unique negative value of x
for which |Ts’m(x)‘ =1, 1If0¢# P € ﬂs,m‘and if
‘P(g)‘ = ”P”[O 1) with § real, then either

’ .

(23) gsu, ,or £2505™.

Note that the second inequality of (23) of Corollary 5 asserts that,
among all ¢ # p € T m with s +'m > 0, the constrained Chebyshev
polynomiél Ts’m(x) attains its maximum absolute value on [0,1] at the
least point in [0,1]). This observation, when coupled with the second

part of Proposition 1, gives

Corollary 6. For each fixed 6 with 0 < @ < 1, and for every infinite
s

-4 .
sequence of ordered pairs «si’minFQWiﬁ‘1im(si+mi)==m and lim =0, then

h ) e i i

(

(24) lim Eo
1o

We remark that, with the definition of r(8) in [6], the same hypotheses

s, ,m,)
S S

of Corollary 6 similarly yield (cf. (23))
(25) limp = (1 + r(8))/2.

. s,,m

i 1774

Further properties of the are given in

gés’m)

Proposition 7. For all s 2 0 and m > O,

(s+1,m-i)

26) g™ < g ,

and for all s > 0 and m > O,
@ g < Eés’m) for all k > 1.

Thus, for all s > 0 and m > 0, the first inequality of (5) can be sharpened to

(28) (s/ (stmn)? < g{5™.
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- +1,m-1 ,
Proof., By definition, m ., . ; & Ts,m* 5° that §és m-1) = gés m) by.

the remark above following Corollary 5. Now, the monic polynomial

Qs+1 'l(x) has, from Proposition 2, precisely m alternation points in

s

[0,1], while Q. , has, on the other hand, m + 1 alternation points in
. o I !

Using a slight variation of the perturbation argument given in

[o0,1].
Rivlin [5, p. 26), it can however be shown that [Qs+1'm_1(x)+xxstm(x)1efk.m.

for suitable cmé n and small A, attains its maximum absolute value in

ésfl,m-l)’ whence gés,m) < gés+1,m-1)'

[0,1] in a point € with § < §
. . k A : .

Similarly, if p € T m? then p is an element of ks, km for any k > 1,
and, moreover, p and pk attain their maximum absolute values in [0,1] in

the same points, say §£§ The above perturbation argument again shows that

géks,km) < §‘ for any £, whence, on choosing p = Qs,m’ then géks,km)<i§ék,m).

To indicate the actual values of gés,m) for some small values of s

and m, we give below in Table 1 the values of §és’m)(rounded to three

decimal places) for all g + m < 8.

N 1 2 3 4 5 6 71 8
0 0
1 0 i
2 0 |.414 1
3 0 |.19 | .59 1
A 0 |.113 | .355 [.693 1
5 0 |.073 | .232 |.465 | .752 1
6 0 [.051 | .163 |.330 | .544 |.792 1
7 0o |.037 | .121 |.245 | .s08 | .603 | .821 1
8 0 | .029 | .093 ].189 ] .316 | .470 | .649 |.843] 1

Table 1: gés,m) for s + m < 8.

Concerning the lfmiting behavior of Es’m = "Qs,m”[o,l] of (4), we

now prove
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Proposition 8. For each fixed 6 with 0 < 8 < 1, and for every infinite

5
-
sequence of ordered pairs {(s,,m)} wthlim (s,4m ) = o and lim = 9
1274 ]l.—-l {ow i1 i-‘wsimi 4
then -
.
s +m 149 1-8
29) lim (5, oyt . (RN 08 .

iew By

Proof. We first compare the monic polynomial Q8 m in T m of Proposition 2
3 ’

with the following modified Jacobi polynomial

s,m

-1
U (x):= [’-“‘:23) xspufo’zs)(Zx-l)

which is also in m, n- It follows from Szegd [7, p. 63, eq. (4.21.6)]

3

that Us m® 5° defined, is also monic of exact degree s + m. Furthermore,
L]

it again follows from Szegd [7, p. 163, Thm. 7.2] that U, m(x) attains
’

its maximum absolute value on [0,1] at x =1, i.e.,

(0,2s) =
LAl (2m+25)1

30) oy Mg 19 = 19, .M = Tamr‘ m
* |

. (0,2s) - : . <
since ‘Pm (l)l_— 1 (c£. [7, p. 58]). Since Es,m = ”Us,m”[o,l] from
(4) of Proposition 2, it follows from the hypotheses and Stirling's formula

that
1 1
s, +m, m,+2s, s,+m, 1+9 1-¢
(31), lim sup (E ) 1 1 e qyim| * * i i ='§1+9) (1-9) .
’ . s . R m, 4
1—® i’ i 1,—46, i

On the other hand,

1

2 2
<
Qs,m(x)dx" Es,m

(32) J': Uz,m(x)dx < jo

because of the orthogonality property of Péo’zs)(Zx—l) with respect to

the weight function x2% on (0,17 (cf. szegd [7, p. 39]). But, from known
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properties of Jacobi polynomials (cf. [7, p. 687),
-2

1

so that from (32), we have similarly deduced

' 148 1-0 .
4y (+0) 4(1"9) <liminf (. ) %
S, ,m
e 127y

Thus, (31) and (34) together imply (29).
The result of Proposition 8 is used in proving

Proposition 9 For each fixed € with 0 <8 <1, let

2 2 -1
(35) z =4§@) = %g—+ ﬂ;—"—l 5,

map the exterior of the circle ]#] = 1 in the w-plane onto the exterior

290

of the interval [82,1] in the z-plane, and let w = ¢(z) denote the inverse
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of §. For every infinite sequence of ordered pairs [(si,mi)]izl with

. i
(36) 1lim (s,4m,) = @ and 1im =9,
fow 1 fam 331y

then
1

s,4m 149 1-9 . . e
i 1 - 1-8 + (1+8
G7 ?r: |Qsi.mi @ t - A8 10(1 = lec)|- élw;g§3+ gl’regi

uniformly on any compact set exterior to [62,1].

Proof. Setting Oi:= si/(si+ﬂ&)’ define as above the maps wi(w) and ¢i(z),

where & is replaéed by ei' Furthermore; set

k= €0\[07,1)  and K := e[6F,1],
where €* denotes the extended complex plane, and set
149 1-61

i
e Paet® 0 G4e)  d-e)
A'— 4 H Ai.-' 4

Recalling the (unnormalized) monic polynomials Qs m of Proposition 2, we
?

now study the functions
68 u @)= oy, @)
i1 i*i

and

. (1-61)¢i(z)4-(1+9i)|
(39) vi(z):= p’"Ai +p’”‘¢i (z)} +0; on (1+ei)¢i or (1‘91)1 .

Since all the nontrivial zeros of Qs m (z)'lie'in [6:,1], each ui(z) is
il

harmonic in Ki’ except at z = 0 and at z = @, Furthermore, near z = 0,

we have

(40) v, () = @, %]z_] + h (2),
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where h1 (z) is harmonic at z = 0, while in a neighborhood of infinity,

we have,
W) u, @) =0z| + g, (),

where gi(z) is harmonic at ® and gi(m) = 0.

We also note that each v1 (z) is harmonic in Ki except when z = ®

and when ¢i(z) = -(1+91)/(1-91), i.e., when z = 0. Furthermore, near z = 0
we have
(42) v (z) = 8y tnjz| + ﬁi(z),
where fli (z) is harmonic at z = 0, and in a neighborhood of infinity we
have
(43) vi(z) =@nlz| + gi(z)!
vwhere 'éi (z) is harmonic at = and §i (=) = 0.
From the above, we see that the functions
(48) di(z):= ui(z)_ - vi(z)

are each harmonic in Ki’ even at z = 0 and z = ®, We also observe from

(39) that as z approaches any point on the segment [ei,l], the function

vy (z) approaches P/nAi, and hence

1
{ < -
@5) lim ;up di(z) < 5y im on Esi’mi on Ai'
z{ei,ll ‘
z € K,
i

3

By assumption (36) and Proposition 8, we have
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m

(46) l:lm[(s ) Ei’i-ﬂani}=0,

and hence, by the maximum principle, the harmonic functions di(z) are, for
i sufficiently large, uniformly bounded from above on any closed set in K;

indeed, since lim Bi~6, such a set must lie in K, for each i sufficiently

f-oo
Hence, the di(z) form a normal family of harmonic functions in K.

large.
i
Letting d(z) denote any limit function of the d (z), it follows from
(45) and (46) that d(z) 0 in K. But as d ®) = g; (=) - gi(‘”) = 0, we

have d(z) = 0 in K. Thus, di(z) ~ 0 uniformly on any closed set in K.
Now, since by condition (36),

| (1-8)0(z) + (140)] . |
47) 1lim v, (z) —-ﬂn A +Im‘cp(z)‘ + 8fn 18)p(2) + (1 9)' = v(z),

{a

uniformly on any closed set in K\{0,®}, we have that ui(z) - v(z) uniformly

on closed sets in K\{0,®}. Consequently,

1/ (s +m.) u_(2)
‘Q (Z)‘ i i = e 1 - ev(Z),

8, ,m,
i

uniformly on any compact set in K, which, with (475, gives the desired
equation (37). '

We remark that by using steepest descent methods, the same limit
function (37) was obtained for certain sequences of modified Jacobi
folynomials [6). The above proof of Proposition 9 can be viewed as

furnishing an alternate proof of this fact.

Our next results concern the m nontrivial (i.e., nonzero) zeros,

gfs’m), of the constrained Chebyshev polynomial T_ m(X)- From the

alternation characterization of Qm s(x) in Proposition 2, it follows that,
E Bt .

for m > 0, these zeros satisfy (cf. (5))

(8)  (s/ (s+m))2 (S W <o {8 <g (Bl e <o (M <glem)
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Lemma 10. For O # p(x) = xsgm(x) in Ty o ™ 0, assume that there
. ?

exist m points Ei,'with 0< EO < 21 < .- Em-l <1 =; Em for which

p'(Ej) = 0 for 0 € }J <m, and for which

“9) sgm pE) +sgnp@ ) =0, 0sy<m,
and

0 |pE| = lellpg 192 PEPLZ -+~ = |p<‘~§m>tf

1*3’—63 denote the m (simple) zeros of 8y 59 that
(51) 5y <Gy <& <G, < <G, <E =1L

1£ lollpg 19 > 1P|, then

(52) oi(s,m) <Ei for all 1 <1 < m.
m
E (x-&'i').

v . . s
Proof. Without loss of generality, we may assume that p(x) =x
i=1

Next, for ¢ » 0 and any i with 1 <1 < m, set

. m
(53) pi’e(x): = xs jzl <x—6j) (X*Ei+€),
j#i

where the product in (53) is defined to be unity if m = 1, By definition,

P is in Tt and is monic of exact degree m + s. For ¢ sufficiently

i,e
small, a perturbation argument shows that the points Ej

[] £ =
f«here pi,e(gj) 0,
0 < j <m satisfy

~

=g

elp &) -
‘ h] ' +8’(ez), as e ~ 0.

O A R -
€0 &)Y

3

Moreover, with Em:= 1, then for all 0 < § < m,’
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69 fpy JEP| = 1pEP| 1 +(?£——} +02 ), 28 ¢ = 0.
3174

Now, consider any 1, 1 £ 1{ Sm, for which \”(Ei-x)l > lp(Ei)l.From the

inequalities of (51), it follows that Eo'-aif---<Ei_1-&'i<o<'§i-51<-..<'§m_ai'
whence, for all ¢ > 0,

(56)

a - <...< (1 - <1< @1+-5 )<.<q
l) F =) ( IE ' a+

151704 1800 1| 15551

But with the inequalities of (50) and (56), we then have

(1p@, 1@ - < o < |pE| @ - A

A 5

(57) §

pEIA + -ty < e < PEI|A + ).
‘ m ] 'gm-oil ‘ i l lgi-oil

\

But since 'p(Ei_l)l > lp(Ei)l, it is clear from (55) that for a suitable
t> { : ~E < N R
¢ > 0 sufficiently small, we have |pi,e(§i_1)| < ‘pi’e(gi)l, 'that Piz

again satisfies the hypotheses of Lemma 10, and that

68 ol g7 - 1€ > llog o 17 - Ipg, s EDI-

In addition, the i-th zero, &'i-E, of Py : is less than the corresponding zero,
L] .

1€

Si, of p, and, by virtue of the construction above, ‘pi,E(Ej-l)lqpi,e

for all 1 < § € m. Thus, this iterative refinement of p can next be

applied to all 1 £ i <m. It is then clear, that this Remez-like iterative

refinement of p can be continued indefinitely and, from the characterization

in Proposition 2, must yield in the limit Qs o’ whose i-th non-~trivial
2

s,m R . ’ . cox
zero, 0( ), is a strict lower bound for the i-th nontrivial zero of any

p satisfying the hypotheses of Lemma 10, which gives (52).
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Corollary 11. For any m > 0, denote the zeros of the Jacobi polynomial

1, 1
("2":25,"'2')
n (t) by ts 1 <41 < m, where -1<t1<t2<°” <tm<1. Then, (cf. (48))
(59 oi(s'“‘) < (g, +1)/2 for all 1 <{<m.
. (32265 .
Proof., The product x Pm (2x-1), an element of T m igs known from
! ’ )

[6, Lemma 3.3] to satisfy the hypotheses‘ of Lemma 10. Thus, (59)

follows immediately from (52) of Lemma 10.

Using basically the same method of proof as in Lemma 10, we
also have
Lemma 12. With the nota.tion and hypotheses of Lemma 10, with

(50) replaced by
©0) |pEY| = llellpy ;7= P& 1= = [pE)],

if ”Pllfo,l] > lp(EO)I, then

(61) a‘i < ai(s'"‘) for all 1 < i <m.

Corollary 13. For any m > 0, denote the zeros of the Jacobi polynomial

(0,2s) hrd <i< “1<t <t. < <t <
P (t) by P 1 <4i<m vwhere 1<t1 t, s <k 1. Then,

(cf. (48))
(62) (~ti +1)/2 < o_fEs,m) for all 1 < i < m.

To illustrate the results of Corollaries 11 and 13, the nontrivial
zeros of the constrained Chebyshev polynomial T2 -Z(X) have been computed
. . 4

to be

01(2’2) £ 0.6070 ; 0_2(2,2) £ 0.9519.
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17
2’5)
((1+t)/2), which are upper bounds for g

The zeros of P2 52’2) from

Corollary 11 are
0.6182 H . 0.9532,

while the zeros of Péo’a)((1+tﬂ2), which are lower bounds for 052,2) from

Corollary 13, are

0.5863 ; ' 0.9137.

Using Corollaries 11 and 13, we establish our final result:

For each fixed € with 0 < 8 <1, and for every infinite

Proposition 14.

s
. s L s Y P s =
sequence of ordered pairs {(si’mi)]i=1 with 1jf;(si+mi) ® and ii:isi+mi 8,

-]
then the zeros of the constrained Chebyshev polynomials {Ts n (x)}:.L=1 are
i’i

dense in [92,1]. -

;
Proof. By means of the Sturm Comparison Theorem, it is shown in Moak,

_1)

s. (-552s,-3
Saff, and Varga [4] that the zeros of {x le 27 a2 (2x-1)}i:1 and
i
Si (O,ZSi) © 2
{= P (2x—1)}i=1 are, from the hypotheses, each dense in [87,1].

i
Applying inequalities (51) and (62) shows that the zeros of {Ts m (x)}izl
. . i1

are also dense in [62,1].
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