EXTENSIONS OF D. JACKSON’S THEOREM ON BEST
COMPLEX POLYNOMIAL MEAN APPROXIMATION(Y)

BY
J. L. WALSH AND E. B. SAFF

Sufficient conditions for the uniform convergence of polynomials P,(z) of best
gth power approximation to a given function f(z) of a complex variable on a
smooth curve I' were presented in an early paper by Jackson {1]. Although his
theorem has found frequent application in approximation theory (see [2]), only
slight extensions of the result are to be found in the literature. The present paper
gives sufficient conditions for the convergence of the P, (z) to f(2) in the mean of
order p>g on I' when convergence in the mean on I' of order p is known for some
auxiliary sequence of polynomials, and so includes Jackson’s theorem as the special
case p=o0. Further extensions of that theorem are given for best approximation by
trigonometric polynomials, rational functions with prescribed and free poles, and
bounded analytic and meromorphic functions.

The method of proof uses standard best approximation arguments together with
a recent result of Walsh [3] which we state as

THEOREM 1. Let 1" be a Jordan curve of type B and let P(z) be an arbitrary poly-
nomial of degree n (>0). Then for 0 <q<p=co we have for line integral norms on T'

(1 1P@l, = Lnta=?|P(2) ],
where L is a constant independent of n and z.

A Jordan curve I' is said to be of type B if it is rectifiable, and if there exists a
fixed number &, (>0) such that through each point of I' there passes a circle y of
radius 8, whose closed interior lies in the closed interior of T

Qur basic result is

THEOREM 2. Let T be a Jordan curve of type B and f(z) a function of class L, on T'.
If P(2) is a sequence of polynomials of respective degrees n of best qth power ap-
proximation to f(z) on T and p,(z) is an arbitrary sequence of polynomials of re-
spective degrees n, then for 0<q<p= o,

@ /@ ~Pu@)p = An 7| f(2) —pa(2)] -
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In particular, a sufficient condition for the P,(z) to converge to f(z) in the mean of
order p on I is ‘

nte 2| f(z)~pu(2)|, — 0 asn - oo.

Here and below constants 4 are independent of n and z and may change from

one inequality to another.
For p=oco we interpret the norms in (2) and below as Tchebycheff (uniform)

norms on I,
We set S.(2)=f(2) —pu(z), m(2) =p,(2)~Py(2), whence f(z)—P,(2)=S,(z)
+m,(2), and set £, ={.Su(2) |5y ptn = |7a(2)],-
By Theorem 1 we have
) po S Lt 10|y (2)] .
Also, by the extremal properties of the P,(z), we have

lma@la = Al f (@)~ Pu@] o+ |Su(2)] 4]

) < 24:|Su@)]a S Azen;

the last inequality follows from the lemma (proved by Hélder’s inequality) that,
except for a suitable multiplicative constant depending on I', the norm is mono-
tonically increasing with respect to increasing order. The constant 4; above may
be chosen equal to 1 if g =1 and equal to 219~ if g < 1.

From (3) and (4) we have the equivalent of (2),

”f(Z)—P"(Z)”p = A3(5n+l‘*n) = A3(8n+A2Ln1/q—1m6n) = Anllq_llpsn'

It is worth noting that Theorem 2 holds for arbitrary sequences of polynomials
P.(z), p.(z) provided merely

If@=Pu@s = [ /(@ —pu2)e forn=1,2,....

Also Theorem 1 is valid not merely for a single Jordan curve I of type B but for a
finite number of mutually exterior such curves, so the extension of Theorem 2 to
this configuration follows.

A recent theorem [3, Theorem 11], which is more general in that it applies to
arbitrary rather than extremal sequences of polynomials, also yields sufficient
conditions for the convergence of the P,(z). For purposes of comparison we state it
as

THEOREM 3. Let I' and f(2) be as in Theorem 2 and suppose q,(z) is a sequence of
polynomials of respective degrees n (> 0) such that

||f(z)_qn(z)”q = oy, g > 0,0,—0,

where o, is monotonic nonincreasing for n sufficiently large. Then a sufficient condition
Jor the convergence in the mean of order p (>q) of the sequence q,(2) to f(z) on T is
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n'o, — 0 plus the existence and boundedness of (2™~ *<n<2™)

2mig, 4 2Rt Drg m 4 Qlm Drggmet4 -+

3
Ho,

(5)
@ryrop+Q2n ) obn + (2" ) on er - - - -

pr__p
nP’o?

where r=1Jg—1/p. If that condition is satisfied we have

”f(Z)‘qn(Z) “p < An'o,.

Theorem 3 states sufficient conditions for the convergence of a sequence of poly-
nomials in the mean of order p on I' when degree of convergence of the sequence
is known in a lower order mean. The hypotheses of Theorem 2 imply

I/@=P.@le = /@ ~P@0 £ 41/@) P2, = Aoy,

and hence Theorem 2 is a consequence of Theorem 3 if the o, satisfy the conditions
of Theorem 3. However, these conditions are not necessarily satisfied for an arbi-
trary sequence o, with n'o, — 0. Indeed, take p=2, 0<g<2, r=1/g-1/2,
I': |z]=1, and

& 2 1 r
= K 2 — N
(6) J@) = 22 apz”, |a k27+1[10g3 k+10g2 k]

If p.(2) is the sum of the first n—~1 terms of the series in (6), then p,(z) is the poly-
nomial of degree n of least squares approximation to f(z) on T', and

o = | fD-pDE = 20 > |

n+

=

Settirig

2 It r
gx) = X2 +1 [log3 x+log2 x]’

we have by the integral test

w

g(x)dx = z || = f g(x) dx = 1/n? log? n,
1 n

n+1

1(n+1)* log? (n+1) =f

n+

whence A,/n"lognr=o,<A,/n"logn, for some positive constants A,, A,. The
series in (5) thus diverges like a harmonic series and so Theorem 3 yields no in-
formation about the mean square convergence of the polynomials P,(z) of best
qth power approximation to f(z) on I'. Theorem 2, however, does guarantee con-
vergence in this case.

If the origin lies interior to a Jordan curve I, and both I' and its image under the
transformation w=1/z are of type B, the analogue of Theorem 1 holds [3] for an
arbitrary polynomial P(z, 1/z) in z and 1/z of degree n (>0). We therefore have by
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the method of proof of Theorem 2

THEOREM 4. Let T have the properties just described and suppose f(z) is of class
L,on . If P,(z, 1/2) is a sequence of polynomials of respective degrees n in z and 1/z
of best qth power approximation to f(z) on T, then for 0<g<p=c0

/@) = Pulz, 1/2)]|, = An¥*=Y%] f(2) = pu(z, 1/2)]l,s

where p.(z, 1/z) is an arbitrary comparison sequence of polynomials of respective
degrees n in z and 1/z. ’

Theorem 4 has immediate application to approximation by trigonometric
polynomials, since any polynomial p,(z, 1/z) of degree n with z=¢" is a trigono-
metric polynomial in 8 of order n. We have the

COROLLARY. If F(0) is a function with period 2z and F(6) € L,[0, 2n], then for
0<g<p =00 and norms on [0, 27]

1F(8) = tu(0) ]|, = An*'*= | F(8) —s5.(0) |,

where t,(0) is a sequence of trigonometric polynomials of respective orders n of best
qth power dpproximation to F(0) on [0, 27), and s,(0) is an arbitrary sequence of
frigonometric polynomials of respective orders n.

The analogue of Theorem 2 for approximation by rational functions of degree »
is _

THEOREM 5. Let [" and f(z) be as in Theorem 2 and let K be a closed point set of the
extended plane exterior to T'. Call a rational function admissible if its poles lie on K,
and for n=1,2,... let R(z) denote an admissible rational function of degree n of
best qth power approximation to f(z) on T'. If r.(2) is an arbitrary sequence of ad-
missible rational functions of respective degrees n, then for 0 <gq<p=<oo

|/ = Ru(@)l» = AV~ 7| f(2) = ra(2)] -

The proof is immediate from a generalization of Theorem 1 which is left to the
reader. Compare [4] and [5, p. 231).

Theorem 2 may be further extended to include approximation by sequences of
rational functions of types (n, v) for constant v, i.e., rational functions of the form

v

dpz"+az" " - - +a,
b02v+b12v—1+ .. _I_bv’ }0: Ibkl # 0,
provided the finite poles of these rational functions have no limit point on I'. Such
is the case in
THEOREM 6. Let E be the closed interior of a Jordan curve U of type B and suppose
f(2) is meromorphic with precisely v poles in the interior of E and is otherwise finite
and continuous on E. If R,,(2) is a sequence of rational functions of respective types
(n, v) of best qth power approximation to f(z) on U and r,(z) is an arbitrary sequence
of rational functions of respective types (n, v), then for 0 <q<p=<co we have

Q) 17@ = Rus@)|» = An=7]f(2) = 1uf(2) |
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The proof requires two lemmas.

LeMMA 1. Let f(z) and E be as in Theorem 6 and suppose f,(z) is a sequence of
Sfunctions each meromorphic interior to T' with at most v poles there and otherwise
finite and continuous on E. If

® lim |f)-£@] =0, 0<rz o,

then for n sufficiently large each f,(z) has precisely v poles in the interior of E, which
approach respectively the v poles of f(z) in the interior of E.

Let g,(z)=z"s+ - - - +a, denote the polynomial of the form indicated having as
its zeros the poles of f,(z) in the interior of E. By assumption 0 < u, <v, and hence
the sequence ¢,(z) is uniformly bounded on E by the constant max [(diam E)*, 1].
A well-known application of Lagrange’s Interpolation Formula thus implies that
the ¢.(z) form a normal family in the finite plane and each limit function of the
family is a polynomial of degree v. '

Let g(z) be such a limit function and g,(z) a subsequence which converges
uniformly to g(z) on compact sets of the plane. We note that g(z) is monic for iiiere
is an integer A (0= A=v) such that infinitely many of the g,,(z) are of the form
qM(Z):ZA”}' s+l

Now let Q(z)=z"+c¢,_ 12"~ 1+ - -+ +¢, be the polynomial of the form indicated
having as its zeros the v poles of f(2) in the interior of E. We show ¢g(z) = Q(z).

The functions F(z)= Q(2)q(2)f(2), Fi(z)=0(2)q./(2)/f.(2) are analytic in the
interior of F and from (8) and the uniform convergence of the g,,(z) on I satisfy

lim |F(2) - F(2)], = 0.

Hence [5, §5.5, Lemma extended] the Fi(z) converge uniformly to F(z) on closed
sets in the interior of E, and so the ¢,,(2)f,,(z) converge uniformly to ¢(z)f(z) on
each closed set in the interior of E which contains no pole of f(z). The analyticity
of the functions ¢,,(2) f,,(2) thus implies that g(z) f(z) is analytic in the interior of E.

Note, therefore, that if « is a pole of f(z) of order £, then « must be zero of q(2)
of order at least k. But since ¢(z) is of degree v and f(z) has precisely v poles in the
interior of E, g(z) can have no zeros other than the poles of f(z) and the order of a
pole of f(z) must equal its order as a zero of ¢(z). Since ¢(z)} and Q(z) are monic,
it follows that ¢(z) = Q(z), and since ¢g(z) is an arbitrary limit function of the ¢,(2),
the g,(z) converge uniformly to Q(z) on compact sets of the plane. Hurwitz’s
Theorem then implies that for n sufficiently large the g,(z) have at least, and hence
precisely, » zeros in the interior of E, which approach respectively the zeros of Q(2).

LeMMA 2. With f(z) and E as in Theorem 6, let t,,(z) denote rational functions of
respective types (n, v) of best rth power approximation to f(z) on I'. Then

li_’m (@) -2, = 0, 0<r= o
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The function Q(z)f(z) is analytic in the interior of £ and continuous on E, and
so [5, p. 36] there exists a sequence of polynomials p,(z) of respective degrees n
such that

[max |Q(2)f(z) —pu(2)|; zon '] = b, -0
as n — oo. Hence,

[max | f(2) —pu(2)/ Q(2)]; z on I'] = bn/m,

where m, >0 is a lower bound for Q(z) on I. Since p,(z)/Q(z) is a rational function
of type (n, v), we have

/@ =t(@D; £ |f@—Pul2)/ Q@) = Aiba/mo — 0.

Proceeding with the proof of Theorem 6, we note that it suffices to prove in-
equality (7) for the case where the r,(z) are rational functions of type (n,v) of
best pth power approximation to f(z) on I'. With this assumption we set

T+ v,2v(Z) = rnv(z) - an(z)’

and prove the analogue of inequality (1). Clearly =, , , 2,(2) is a rational function of
type (n+v, 2v), and the above lemmas imply that for » sufficiently large the finite
poles of the 7, , 2,(2) all lic on a closed set £’ interior to I'. Thus if d,(z) =z"4- - -
+a, (0=v,=<2v) is the polynomial of the form indicated having as its zeros the
finite poles of =, , 2,(z), we have for » large enough

0 <m 2 |d(2)| £ M, < 0, zonT,
Hence,
[7nsv,2@) s S du@)m0 s v,20(2) ] o/m1
S Ln+v)"0 12| do(2) 70y y,00(2) || of 1
My Lont 1= 1P |y 4y 0(2) |-

The remainder of the proof of Theorem 6 now follows from the argument of
Theorem 2.

It is of some interest to note that Lemmas 1 and 2, whose conclusions are similar
to those of J. L. Walsh [7], can be used to extend many theorems on polynomial
approximation to approximation by rational functions. These extensions shall be
reserved for another occasion.

Further extensions of Theorem 2 for best approximation by bounded analytic
and meromorphic functions require

IA

LEMMA 3. Let I' be a Jordan curve of type B contained in a simply connected
region D of the z-plane and suppose f,(z) is a sequence of functions analytic in D
which satisfy | fu(z)| SAR", z in D.

Then for arbitrary but fixed p (>0) and 0 <q <p= o0 we have for norms on T’

1£2@]s £ Lon**= 17| fu(2)]| o+ O™,
where Ly is a constant dependent only on p, I, and the sequence f,(z).
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From the study of bounded analytic functions [6, §2.2] there exists for each nand
N a polynomial P, y(z) of degree N such that
| fu(@—Pox(@)| < ARYRY, zonT,R; > 1.
We choose a positive integer A so large that R/R} = p, < p, whence
|/2) = Puan(2)| < ApB,  zonT.

Thus the inequalities

/2@ = Puan(@o = Bipl,
[£a(2) =P an(2)]q < Bapl,
1Purn(@lp £ LAWY Py ja(2)]lg S Lan =2 P an(2) | o
imply the following:
/2@ = Bsll[Prra(2)]o+ pb]
S B[Ln' 7| Py 5n(2)] o+ P8
S By[Lint =2 2(By | fu(2) ||+ Bset) + pi]
£ Lenta= 22| fi(2)]| o+ O(0™).

IA A

We have established the result needed for the proof of

THEOREM 7. Let I" and D be as in Lemma 3 and suppose f(z) is of class L, on T,
Let a sequence M, (z20) (n=1, 2, ...) be given which satisfies M, < B,R" for some
constants R>1, By>0, and for each n=1,2, .. ., let f,(2) be a function analytic in D
which among all functions h(z) analytic in D with |h(z)| S M,, for z in D, minimizes
| f(2)=h(2)|4 Then a sufficient condition for the f,(z) to converge to f(z) in the mean
of order p, 0<g<p=Zoo,onlis

1| f(2)— g (2], >0 asn—> o,

Sfor some sequence of functions g,(z) analytic in D with |g,(2)| = M, for z in D.
Moreover, for arbitrary but fixed p (O<p<1)

/@) —fuD)] £ Ant =7 f(2) = gu(2) o+ O(p").

To study approximation by meromorphic functions of bounded type we first
give the

DEFINITION. A meromorphic function F(z) is said to be of type (M,v) in a
domain D if F(z) is of the form F(z)=/h(z)/q(z), where h(z) is analytic in D with
|A(z)] £ M there and q(z)=z"+a,.1z" "'+ - +a, (0ZpuZw).

We suppose a function f(z) is defined and continuous on a rectifiable Jordan
curve I' contained in a bounded domain D. It follows that for each M =0 and in-
tegral v=0 there exists a meromorphic function of type (M, ») in D of best gth
power approximation to f(z) on I'. We briefly indicate this fact. Let

b=inf|fD-F@[, 0<g=oo,
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taken over all functions F(z) of type (M, v) in D and let F(z) be a sequence of
functions of type (M, v) in D which satisfy

1f(2)—F{2)|,—~b ask-—co.

Write Fy(z)=hy(2)/q,(z) as in the above definition. For fixed k let oy, . . ., o; be the
zeros of ¢,(z) which lie at a distance greater than one from the closure of D and let
Bis ..., B; (iSv) be the remaining zeros of ¢g,(z). Then F(z) has the representation

Fyz) = H(2)/Q(2),

where Hy(z)=h(2)[(z—c1) - (z—e), Q2)=(z—~B1)--(z—B)) and |[H(2)|=M
for z in D. We have thus shown that it suffices to assume that the zeros of the ¢,(z)
are uniformly bounded.

With this assumption, the 4,(z) and the g,(z) are uniformly bounded in D, and
hence it is possible to extract a subsequence ®,(z) from the Fy(z) which converges
uniformly on closed sets of a domain D’ obtained from D by the omission of at
most v points. If Fy(z) denotes the limit function of the ®,(z), it is easy to see that
Fy(z) is also of type (M, ») in D and the reasoning of [5, §12.5] implies

b= |f(@~Fo@.

THEOREM 8. Let E, I" and f(z) be as in Theorem 6 and let D be a bounded simply
connected domain containing I in its interior. For each n=1,2, ..., let F,(z) be a
meromorphic function of type (M,, v) in D of best qth power approximation to f(z)
on T', where M, — co and M, < B,R" for some constants R>1, By>0. Then a suffi-
cient condition for the F,(z) to converge to f(z) in the mean of order p, 0<g<p=c0,
onI'is

nllq—l/p"f(z) - Gn(Z)“p - O’ n—- 00,

Jor some sequence G,(z) of meromorphic functions of respective types (M,, v) in D.
Moreover, for arbitrary but fixed p (0<p<1)

/@ —Fu@)ls £ An'*=17| f(2) — Gu(2) ] o + O™

With Lemma 1 and Lemma 3 at our disposal the proof merely requires an
analogue of Lemma 2. Let T,(z) denote a sequence of meromorphic functions of
respective types (M, ») in D of best rth power approximation to f(z) on I'. We need
to show

lim |f@)-T,@)|-=0, 0<r=oo.

Let m,=[sup |p.(2)|; z in D], where the p,(z) are the polynomials in the proof of
Lemma 2. We have shown that for each >0 there exists an integer i such that

/@) =pd2)/Q@)]: < e.
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Now choose an integer N so large that M, = m, for n= N. The extremal property
of the T,(z) then implies
lf@=T.(2|, < e fornz N.
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