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Abstract

We explore the connection between supports of equilibrium measures and quadrature identities,
especially in the case of point sources added to the external field Q(z) = |2|2P with p € N. Along
the way, we describe some quadrature domains with respect to weighted arca measure |z|*Pd A, and
complex boundary measure |z|~2Pdz.
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1. Introduction

The purpose of this article is to analyze the connections between the supports of equilibrium
measures in the plane C, and domains that exhibit quadrature identities for certain weighted
area and complex boundary measures. We will review the notions of equilibrium measure and
quadrature domain and then discuss how they relate in general. This will serve to motivate
a search for domains that exhibit particular weighted quadrature identities. The result will be
a description of the supports of equilibrium measures in the context of external fields with
additional point sources. For a discussion of several varieties of quadrature domains, see [21].
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1.1. External fields and equilibrium measures

Consider a unit charge placed onto the complex plane that is free to distribute into the
configuration of least logarithmic energy under the influence of an external field. The external
field is given as an extended real-valued function and the unit charge distribution placed into
the plane is conceived as a probability measure.

To be precise, suppose an external field Q(z) : C — R U {oco} is given which is
admissible. This means exp(—Q(z)) is upper-semicontinuous, positive-valued on a set of
positive logarithmic capacity, and satisfies |z|exp(—Q(z)) — 0 as |z] — oo (see |28]). For
any probability measure p supported in the plane, the weighted logarithmic energy of p is

f[ln ] dp(wydp(z) +2 | Qlw)dp(w).
cJc C

lw — z|

In the presence of such an admissible external field, there is a unique energy-minimizing
probability measure o called the equilibrium measure of the system. It can be described
in terms of its logarithmic potential by the Frostman Theorem (see [28] Theorem 1.1.1.3). A
consequence is that the equilibrium measure has constant weighted potential on its support
(quasi-everywhere?). The physical interpretation is that a potential difference would induce a
current which would redistribute the charge. Mathematically, for some constant C, and letting
So = supp(po) be the support of the equilibrium measure, the following holds for z € Sgp
(quasi-everywhere):

f In #du.Q(w} + Q(z) = Cyp.

c  |w—2z|
The weighted potential is also at least Cy outside Sp. These conditions on the weighted
potential in fact characterize the equilibrium measure.

We are especially interested in the case of a smooth subharmonic admissible external field

(Q(z) to which additional point sources are added, say at z;,22,...,2, € C of positive
intensities gy, g2, . .., g,, respectively. Setting g = x:;:] qj, we consider the new external
field

V(@) =(1+9)Q@) + ) gq;Inlz—z;|".
i=1
With Sy = supp(ig) and Sy = supp(uy), we would like to characterize the equilibrium
support Sy and see how it compares to Sg.

Adding the point sources causes an outward flux that tends to displace the support of the
equilibrium measure. The factor (1+4¢) in V(z) is chosen to compensate for this with a greater
inward influence from infinity. We will see that this choice is natural insofar as Sy will take
the simple form S\ f2 for an open set {2, when the point sources have low intensity and are
placed inside Sy.

The equilibrium problems being considered here also have a connection to Hele-Shaw
flow of a fluid trapped between close parallel plates. In this setting the point sources would
correspond to sources or sinks of the fluid. Using Q(z) = 1z*” (as we do below) allows for
the interpretation that the flow occurs on a branched Riemann surface. See [15,19,20].

Since guadrature domains will play an important role in our approach to these problems,
we briefly review their essential features.

2 A property holds guasi-everywhere if the set of points where it does not hold has capacity zero. A set has
capacity zero when f [In|x — vyl Vel w(x)d ¥) = +oa for every probability measure p supported on the set.
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1.2, Quadrature domains

A classical quadrature domain 2 for a given test class of functions is a domain in C such that
for all functions f in the test class, integration over the domain is equal to a linear combination
of point evaluations of the function and its derivatives. In other words the following holds:

N Ry
j; f@dA, =) cufP), (1.1)

j=1 k=0

where d A; is Lebesgue area measure, the z; are points in {2 and the c;; are constants that do not
depend on f. When the variable of integration is understood we may drop the subscript from
the area measure and write dA. Formula (1.1) is known as a quadrature identity. Common
choices of test class include the space .A'(f2) of integrable analytic functions, the space of
integrable analytic functions with primitive, harmonic functions, the Hardy space H>({2), and
the Bergman space A?(§2) of square-integrable analylic functions. For more on the foundations
of quadrature domains, see [1-3,6,8,14,17,31] Here and throughout this article, ‘analytic’ will
be taken to mean complex analytic.

Quadrature domains whose quadrature identity involves just a multiple of a single point
evaluation have been dubbed ‘one-point’” quadrature domains (see, for example, [7,18]). Usually
the term implies that the point evaluation involves a function value, and not a derivative value.
We will keep that convention here.

In this article we admit the following generalization: integration on the left side of the
quadrature identity will occur with respect to modified measures. We will especially be
concerned with the complex measure |z| >’dz along the boundary of the domain and with
the positively weighted area measure |z|*’d A, p € N. For simplicity our domains will always
be C* smooth and bounded. The default test class for quadrature identities shall be A™({2),
the space of analytic functions on (2 that are C* smooth up to the boundary. By density this
test class will allow us to appeal to the Hardy and Bergman spaces when convenient (e.g. [8]
first paragraph of Chapter 4, Theorem 6.2, and Cor 15.1).

The assumption of smoothness (and sometimes simple-connectedness) is made to keep
the focus on an elegant connection between equilibrium and quadrature. Classical quadrature
domains are always algebraic and admit only certain boundary singularities [2,14,30]. On the
other hand, general questions of ‘regularity’ for equilibrium problems are nontrivial [19]. In

Theorem 11, we see an example of a conclusion obtained under assumptions of smoothness

that can be verified directly from Frostman’s Theorem.

In case of quadrature with respect to weighted area measure, there is an interpretation in
terms of ‘quadrature Riemann surfaces.” For example, our Theorem 3 has the interpretation
that the disc, an unweighted one-point quadrature domain, is covered by pth roots of the disc
under the map z > z”. These preimages are weighted one-point quadrature domains. See for
example [15,20,29].

1.3. Outline

In Section 2 we show the relationship between supports of equilibrium measures and
quadrature identities in the setting of a smooth and subharmonic admissible external field with
additional point sources.

In Section 3 we identify one-point quadrature domains with respect to the measures we
mentioned above. This will occur in three stages. We first consider domains that exclude the

3
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origin. Then we examine domains containing the origin, considering separately those where
the origin is and is not the quadrature node.

In the final Section 4 we apply our results to the case of the admissible external field
Q(z) = |z|°”, p € N, in the plane with additional point sources. We include a connection to
quadrature properties of Cassini ovals pointed out in Exercise 22.3a of [21]. We also examine
more generally the case of what will be termed a cavity.

2. Equilibrium and quadrature identities

Suppose Q(z) is a smooth subharmonic admissible external field in the complex plane. The
equilibrium measure g in the plane in the presence of Q(z) will have compact support Sy (see
e.g. [19,24,28]). On the interior of Sy the equilibrium measure has the form (27) TAQdA.

To proceed we assume Sy is the closure of a smooth bounded domain, and that g =
(2m) 'L’;de‘\“J (without singular part on the boundary). Under these assumptions we can
describe S¢ in (icrms of a conformal mapping of its exterior. (For a detailed discussion of
smoothness in equilibrium problems, see [19].)

Let S5 == (I:‘\SQ be the exterior of Sg, and let « be an interior point of Sg. Frostman’s

Theorem says that for z € Sp,

1
— AQ(w)In
2 So

|dAu. +0@)=C

lw —z

for some constant C. Indicating holomorphic differentiation by 9 and antiholomorphic differ-
entiation by d (when convenient we also indicate the variable of differentiation by a subscript),
recall that AQ = 493Q. So in the equality above, we differentiate in z to obtain

s w —z

1 [ 99
—f 0W) 1 90 =0, 2 € int(Sp).
So

By the Cauchy—Green Formula (e.g [8]. Theorem 2.1), this means
| 0w Q

— ——dw = 0.
2mwi #85g w—2z
Now change variablcs‘conf{)rmally vm t = ﬁ, = ﬁ, and let S, and (S{,)* be the images
of Sp and S, respectively under this change:
1 9, Q1™ t
— Mdr —0.
2ni Jasy, ¢t

Since Sp and S7, have the same boundary but with opposite orientations, we rewrite this as

19, 0!
/ 190U+ ) o re in(S)
asy)* t—¢

By approximation with rational functions (e.g. as in Theorem II of [32]) we can pass [rom this
equality by uniform convergence to

f 19, 0t " + h(t)dt =0
HSH)*

for all A € A®((S5)").
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Shaded: Sy Unshaded: (S5)"

Fig. 1. Left: Diagram of Sy for V(z) = Clzlzf’ +gln|z — zo|_1 when Sy is simply connecled.
Right: Conformally mapped exterior of support.

In summary, upon mapping the exterior of Sp viaz — 1 1= (z — «)”! the resulting (5"
has the property that complex boundary measure ¢ 3, Q(t ' + «)d¢ annihilates A functions.

The above can also be applied to certain cases when the external field Q(z) is perturbed
by point sources. Consider the external field V(z) = (1 + ¢)Q(z) + Z;zl gjln|z —zjl_',
where point sources are added at locations z; € C with intensities g; > 0. Assume that
the equilibrium measure support Sy in the plane in the presence of V(z) is the closure of
a smooth bounded simply connected domain. Following the reasoning above for V(z) in place
of O(z), the In|z — z; |~" terms will differentiate into Cauchy kernels. These will produce point
evaluations when integrated. Thus (S7,)* in this case will be a quadrature domain with respect
to ¢ & Q(t~' +a)dt, with quadrature nodes at the points (z i o). For illustration, a diagram
of the mapping used above is found in Fig. 1 for the case of a single point source added to a
field Q(z) = |z|*".

On the other hand, when point sources of sufficiently small intensity and are placed into the
interior of an existing equilibrium support, we expect by partial balayage [16,27] that the new
equilibrium support will exclude neighborhoods of the point charges. (In other words, the point
sources ‘sweep clean’ a region of charge in their vicinity.) We will call these swept-clean voids
in the support cavities (see Fig. 2). For examples see [23] where the cavities corresponding
to point sources on the sphere are proven to come from quadrature domains; or [5], where
for external field |z|* the cavities are explained to be quadrature domains for Lebesgue area
measure. On the sphere, quadrature domains have also appeared in [11,25,26] in the context
of vector equilibrium problems and of fluid dynamics. The effect of monomial terms added to
a background external field was studied in [22].

Given the admissible external field Q(z), let again Sy = supp(ito) be the support of the
equilibrium measure in the plane in the presence of Q(z). Then add point sources of intensity
q; > 0, j = 1,2,...,n at points zy,23,...,2, € C respectively, and set g = Z'j-:, q;-
Consider the external field V(z) = (1 + ¢)Q(2) + Z'j-:, qjln|z — zjl_l. If the z; are interior
points of Sp and if the g; are sufficiently small, then by balayage the support Sy of the
equilibrium measure in the plane in the presence of V(z) will be Sp\ {2, for {2 an open set. In
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Fig. 2. A cavity in Sy for V(2) = 22 |z[* 4 gln|z — 2z ", ¢ =.1995, 29 = V0.2.

fact ]TJ;E Jo AQ(2)dA. = g and %‘1 fsQ AQ(2)dA, = (1 + g). In other words Sy is formed
by spreading a total charge of (1 4 ¢) over the set Sp, then deleting an open set amounting
to a charge of ¢. In this setting we will call the components of {2 cavities. Recall that the
factor (1 + g) in V(z) is introduced so that the cavities are taken from Sp. (Otherwise the
point sources would tend to expand the outer boundary of the support in addition to forming
cavilies).

In this situation, we can prove that {2 (the union of all cavities) is a ‘quadrature open set,’
namely an open set that has a quadrature identity but which is not necessarily connected.

By Frostman’s condition for equilibrium measure (¢,

1+q
2

AQ(w)In | dAy + (1 +¢)0(2) = (1+49)Cq

So w — Z|
for a constant Cy, valid for z € Sg. Likewise Frostman’s theorem applied to the equilibrium

measure iy in the presence of V(z) .= (1 + q)Q(z) + Z’}zl gjln|z — Zjl_] yields

Ttqg
23751:

AQ(w)In ———d Ay + (1 +9)0() + > gjln =Cy

1
—zl = lz =zl

for a constant Cy, valid for z € Sy.
Differentiate these equalities with respect to z and subtract one from the other. We see for

z € Sy that
1+q[ 90 0(w) I g
dA, — =Y —_—o.
T Jo w-—z Zsz—z

J=1
6
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In other words

"

LR T
o w—z 2(1 {q)j 172

“

Using an approximation theorem of Bers [10], we see by taking limits that
)
AQ)h(w)dAy = —— ) q;h(z;),
./;) |+q ; JIL g

for all h € A'(£2), where A'(§2) is the space of integrable holomorphic functions on 2. We
conclude that (2 is a quadrature open set for weighted area measure AQdA.

But Q(z) is subharmonic, and the interior of Sy is in the region where AQ = 0. Thus if 2
had a component (2 that did not contain any of the z;, then with test function £(z) = 1 on that
component and A(z) = 0 on all others, we would have fQ“ AQ(z)dA, = 0, which contradicts
the positivity of AQ.

So each component of {2 contains at least one of the z;, j = 1,2,...,n and is in fact
a quadrature domain using weighted measure AQd A, with quadrature nodes at locations of
point charges. We also note that in this case there was no assumption of boundary regularity,
though implicitly we have assumed that 3.5, has Lebesgue measure 0, which is true for smooth
enough Q(z) [19].

We summarize this as our first theorem.

Theorem 1. Let Q(z) be a smooth subharmonic admissible external field in the plane. Let

V() = (1+¢)0(z) + Z’; vgiInlz —z;] ' and set g = Z'} 1 4;- Let Sp be the support of

the equilibrium measure [Lg in the plane, and Sy the support of the equilibrium measure jLy.
We assume that g and juy do not have singular parts supported on the boundaries of Sy and
Sy, respectively.

(i) If z1,22,...,2, are interior points of Sg and if q1,q2,...,q, are small positive
intensities, so that Sy = So\{2 for an open set {2 C Sp, then each component O of (2 is
a quadrature domain for weighted area measure AQdA. The quadrature nodes are all the

points among the z1, 22, .. ., 2, that lie in O,

(ii) Suppose Sy is smooth and simply connected with z,, za, ..., Z, in the exterior of Sy.
Let a be an interior point of Sy. Let §y, = (IAJ\SV be the exterior of Sy, and let (SY,)* be the
image of Sy, under the conformal mapping z +— t = (2 — «) 1. Then (Sy)* is a quadrature

domain with respect to boundary measure 19,Q(t"" + a)dt. The quadrature nodes are the
points (z; —a)~', j=1,2,...,n.

3. Quadrature domains for modified measures

In anticipation of describing some equilibrium supports as above using the particular external
field Q(z) = Clz[*’, C > 0, we now identify quadrature domains for the corresponding
measures mentioned in Theorem 1. In this case AQ(z) = 4p?|z|*’ > and 3Q(z) = pzP~'7".
So let us focus on quadrature domains with respect to the weighted area measure |z|*?d A, and
the complex boundary measure |z| >Pdz. In this section we treat such domains in their own
right. In the next section we will make the connection again to equilibrium measures.

The first thing to note is that quadrature domains with respect to these measures are related
by Green’s theorem.
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Theorem 2. Let p be a natural number, and 12 a smooth bounded domain in the plane, 0 ¢ 912,
such that for some constants cji, and points z; € 2, the quadrature identity

Noonj
%da: > etV

202 12 o1 k=0

holds for f € H*($2). Then 12 is a quadrature domain with test class A>({2) with respect to
the weighted area measure |z|*"~*d A.

Proof. For [ € A™({2), rewrite the right hand side of the quadrature identity using the Cauchy
formula. Then note that there exists a rational function R on {2 which is smooth up to the
boundary with poles located at the z; (with order n;) such that

f(@)

|2p

dz = [ R(z)f(z)dz
Joo |z Jan
for all such f.
Such f are dense in the Hardy space. The structure of the orthogonal complement of the
Hardy space on a smooth bounded domain (see [8]) ensures there is an H € A™({2) such that
1
m — R(z) = H(z), z € dfl. (3.2)
2
Thus |z|*” has the same boundary values as does a meromorphic function smooth up to the
boundary of {2. This means that faﬂ f@|z|*Pdz is equal to a linear combination of evaluations
of f and its derivatives (the same linear combination for all f) by the Residue theorem. For
brevity, let £ : A®(£2) — C denote this linear combination of evaluations, and
f@lzPdz = L.
a0

By Green’s theorem
1
f@zPz"'dA = —LF.
) 2ip

From here we consider separately the cases where 0 € 2 and 0 ¢ £2.
First, suppose 0 ¢ 2. Then
1 f@

f@IzP2dA = f @zf’zﬂ—'m =—L
Jo n Z 2ip z

which is a quadrature identity.
In case 0 € 12 we have
(z)— f( 1 (z)— f(0
[ ¢~ roneprran= [ FOIOrzran - o FOID
Q Q 4 2ip 4
Hence we see
I (@)—f@
| r@iepran=kro+ 5o HEOIE,
2 2ip z
where k = f_Q |z|>”2d A. This is a quadrature identity (which may introduce evaluations of
derivatives of fatz=0.) [
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Remark. In the proof we used the orthogonal complement of the Hardy space of a smooth
domain to establish (3.2). A similar technique will occur a few more times in this section.
Instead of smoothness and orthogonality in the Hardy space, one could appeal to the so-called
‘Silva—Kothe—Grothendieck duality’ (see e.g. [13]).

3.1. One-point quadrature domains whose closures exclude the origin

For unweighted planar Lebesgue measure d A, it is well known that the only one-point
quadrature domains for integrable harmonic functions are discs [12]. With the measures we
are now considering, other possibilities arise.

We will consider separately the cases where the origin is in the domain or outside the
closure. By a pth root of a disc, we will mean a set { {/z : |z —a| < r} for a given complex
number @ and a positive number r, r < |a|, and where {/z denotes an analytic branch of z'/7
defined on the disc |z — a| < r. Recall that unless stated otherwise, the test class for quadrature
identities is A4,

Theorem 3.  With p a natural number, let 2, 0 ¢ £, be a smooth bounded one-point
quadrature domain with respect to the weighted area measure |z|*? *dA. Then ) is a pth
root of a disc.

Proof. By hypothesis there exists a complex constant ¢ and a point z; € 2 such that for all

[ e A%,
[ f@\zIP7?dA = cf (z0).
Ja
Since the origin is excluded from the closure of the domain, f(z)/z”~' is analytic and so

—_ 4 Z
f(2)z? IdA:f %mzn 244 —
7] 0z

C

- F(z0)-

}'}
Zp

Now use Green’s theorem, rewrile the right hand side using the Cauchy formula, and collect
the terms to obtain for a new constant C
f@@E" — ydz = 0.
a0 Z—20
Similar to (3.2) we conclude that there exists H € A™({2) such that

z € df2.

On setting G(z) :== H(z)(z — zp) + C, we have
G -
¥ = ﬁ z€e N
Z— 20

Let T(2) := Lf []] zP! -fz[’; and observe
G()T(z) _p

7 o',
J L

zedf?

EP_ZEJP —

Clearing the denominator,
|z — 2 |2 = h(z), zean
where h(z) .= G(2)T(z) — 20" (z" — &,{;) is analytic and smooth up to the boundary of 2.
9
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From here, the imaginary part of 4 is 0 on the boundary of 2, and by the maximum principle
h must be a positive real constant throughout 2, say h(z) = K2 > 0. Thus on the boundary
of {2

27 —zi| = K.

For each z on the boundary of {2, z” is on the circle of radius K about z{’;. If K = |Z::|, then
the union of all values of branches of the pth roots of the points on the circle would comprise
the boundary a single bounded domain, which would contain the origin. Then {2 would be
this very domain, which is impossible since 0 ¢ £2. Similarly if K = |z})| then 0 would be a
boundary point of {2 which is impossible.

Thus K < Iz{’;l, and taking pth roots of points on the circle of radius K about z{; gives
a union of closed smooth curves, one for each branch of the root. One of these must be the
boundary of 2. In other words, {2 is a pth root of a disc. [J

Remark. The cavity in Fig. 2 is a root of a disc.

The case of boundary measure |z| >’dz can be reduced to the theorem which was just
proved.

Corollary 4. If 12 is a smooth bounded one-point quadrature domain with respect to the
boundary measure |z| *Pdz, and if the origin is outside the closure of 2, then 12 is a pth root
of a disc.

Proof. For some constant ¢ and point zy € {2 we have for all f € A®({2)
f(z) :
——dz = cf(z0).
a0 |2I*?
So there is H € A™(f2) such that

= H(2) + z €09

|z|*” 2mi(z — zo)’

By the Argument Principle, since the left side exhibits no winding of argument around the

boundary of {2, the meromorphic function on the right side has as many roots as poles (namely

one) in {2. So for some nonzero & # zy and nonvanishing function g € A>({2),

2 _ 2mic(z — zp)
8@z —8) "

Since z = 0 is outside the closure of {2, we write

z €.

z]

p—lzp _ 23—-”((4. - ZU)
g2z — &)z
By the Residue Theorem there is a constant C such that for all f € A™({))

z € dfl.

f@z"'7Pdz = Cf (&), z €912
a0
Use Green’s Theorem on the left hand side:

f F@I2PP2dA = 2Cif @),
12

In other words, {2 is a one-point quadrature domain with respect to weighted area measure
1z|*P?d A, and we appeal to Theorem 3. []

10
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3.2. Quadrature nodes at the origin.

Now we consider one-point quadrature domains which contain the origin. In this case, if

the origin is the quadrature node and the measure for quadrature is |z|>’d A, then the domain
must be a disc.

Theorem 5. If £2 is a smooth bounded one-point quadrature domain with respect to weighted
area measure |z|*"d A whose quadrature node is the origin, then 12 is a disc centered at the
Origin.

Proof. We have in this case for all f analytic and smooth up to the boundary

f@z”PdA = cf(0).
12

Let H holomorphic and smooth up to the boundary of 2 be such that

¢
2’7" = H(z) 4 S z €00
oLz
Just multiply by z and get
¢
PP =2H@+ S~ zedf.
ol

Now |z|*"*? must be a real positive constant on the boundary of £2. []
The corresponding case for boundary measure |z|~2”dz will reduce to the case of weighted

area measure, but with quadrature node away from the origin.

Proposition 6. Let {2 be a smooth bounded one-point quadrature domain with respect to
boundary measure |z| *"dz, whose quadrature node is the origin. Then 2 is a one-point
quadrature domain with respect to weighted area measure |z|**~2d A, with quadrature node
away from the origin.

Proof. The proof is very similar to that of Corollary 4, with 0 in place of zg, using the
Argument Principle, Green’s theorem, and the Residue Theorem. [J

3.3. Domains containing 0, with quadrature node away from (.

We turn to the case of a one-point quadrature domain with respect to |z|>?d A which contains

the origin, but whose quadrature node is not the origin. For this case, under the assumption of

simple-connectedness we will be able to describe the domain via a Riemann map.
So let §2 be a smooth bounded simply connected one-point quadrature domain with respect
to |z|*”d A. Assume 0 € {2, but the quadrature node is zo 7 0. For some constant c,

f@IzPPdA = cf (20)
2
for all f analytic and smooth up to the boundary. Notice that the [unction

" —1 g :
@ = Y L5000

Jj=0 !
ZP
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is analytic and smooth up to the boundary. Thus

p—1

S 100 {)
| e )— NEAA = kf(z0)— 3¢ F0),
i j=0
for some constants k,(.},,(.’.,“.,(:p_.. But now move the integrations of the terms un-
der the summation sign to the right side and conclude that for some (different) constants

’C,d{},d],...,dp 1
p—1

[ f@zPdA = Kkf(z0) + Y _d; f9(0).

j=0
Since this quadrature identity will hold in the Bergman space, and since the left hand side
is the Bergman space pairing (f(z), z”}), we have

p—1

w? =k Kp(w, zg) + Zd

J=0

3 Ko(w, z)

az/

, (3.3)
=0

where K (w, z) is the Bergman kernel function of 2.

Let ¢ : I — {2 be a conformal map which takes 0 > 0. We use ¢ to denote points in .
By the Bergman kernel transformation formula [8,9] the above equality can be pulled back to
the disc, in the form

p—1

) 3 Kp(t,©)
(D9t = aKp(t, to) + Y bj——i—|
=0 ac’ ;=0
for some constants a, by, by, ..., ,b,_1. Since we know the Bergman kernel of the disc to be

K s =,
n(t, &) (0 — 127

we have now for some constants «, By, Bi. ..., Bp-

p—1

(oY = = c{,}? Z{;ﬁ;ﬂ
i
That means
P(1)
ptl — -
(1) -,

for some polynomial P(t) of degree at most p + 1 such that P(0) = 0. Notice that the
denominator has no roots in the disc, and the meromorphic function on the right must have an
analytic (p + 1)-th root. The origin must be a root of order exactly p + 1, and consequently
for some constant C and appropriately chosen branch for the root, we have
Ct
)= —————. (3.4
YO gy )

Theorem 7. If {2 is a smooth bounded simply connected one-point quadrature domain for

measure |z|*"d A whose quadrature node is not the origin, then §2 is the conformal image of

the unit disc under a map of the form (3.4) with & # 0.
12
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Fig. 3. A one-point quadrature domain for |z|?dA containing 0, with node away from 0.

Remarks. In view of Proposition 6, Theorem 7 applies to smooth bounded simply connected
one-point quadrature domains for boundary measure |z|72?~2dz whose quadrature node is the
origin. In Fig. 3 we see an example of such a quadrature domain.

Lastly we come to smooth bounded one-point quadrature domains for the boundary measure
|z]~*Pdz, with quadrature nodes away from the origin. It will again be possible to describe such
domains using conformal mapping under the assumption of simple connectedness.

Let {2 be such a domain, for which

TQ 4o — etz

bl
a0 |z

for some constant ¢ and point 0 # zo € 2, and for all f € A*(f2). We conclude there are
g € A®(12) nonvanishing and & € 2, & # z;, such that
=y
g2z — &)
We now distinguish two cases, where & # 0 and & = 0.
In the first case, the boundary equality

|Z|2ﬂ _

z € 042

7 7
-r _ L <0

gz —&)zP’

together with Green’s Theorem gives

z€df?

p—1

[ r@itan=as@)+ 00 (35)
12

=0

for some constants &, B;, j =0, 1,..., p—1. But now zP~! is a linear combination of Bergman
kernel functions, similar to what occurred in (3.3). Letting ¢(¢) be a conformal map from the
unit disc to §2 taking 0 — 0, we have on the disc

k Lata
Do) ' = ——— + Y dit,
o' (D) 0oty g ;

13 of 19 7/11/2022, 9:08 PM



Firefox

14 of 19

INDAG: 865

P.D. Dragnev, A.R. Legg and E.B. Saff Indagationes Mathematicae xxx (xxxx) xxx

where k, d; are constants. And so for a polynomial P(z) of degree at most p + 1 vanishing at
the origin,
Pt
() = (}_ .
1 =18,
For the right side to admit an analytic pth root, we need P(t) = at” +bt"*' for some constants
a, b with |a/b| = 1. And so we determine

a—+bt .
[)=t|—— .
o) =1(— gu)
Now, consider the case where & = (). The argument begins the same way, using & = (; but
now instead of (3.5) we get

(3.6)

P
f f@2" A =af @)+ Y B fP0)
2 —
Jj=0
for some constants «, ; (note the upper index on the sum has changed). Now use the Bergman
kernel with similar reasoning as above, to conclude that a conformal map from the unit disc
to {2 taking 0 — 0 will be of the form
a+ bt + ct? \/p
I =18

for some constants a, b, ¢ such that the roots of the quadratic function in the numerator have
modulus greater than 1.

w0y =1 ( (3.7

Theorem 8. If £2 is a smooth bounded simply connected one-point quadrature domain for
the boundary measure |z| >Pdz, with O € (2 but 0 not the quadrature node, then 12 is the
conformal image of the unit disc under a map of form (3.6) or (3.7).

4. Applications
4.1. The case of Q(z) = C|z|**

On the plane with external field Q(z) = C|z/*” with C > 0, the support So of the
equilibrium measure jtp is the closed disc Dg(0) centered at the origin with radius R =
(2pC)~V?7 (see [28] Theorem IV.6.1).

The equilibrium support Sy in the plane in the presence of V(z) = (1 + g)Q(2) 4
qlIn|z — zg| ' will depend on zg and ¢. If zg is internal to Sp and if ¢ is small enough, then
a cavity will form. On the other hand, if g is large or zy is far from Sy, then a cavity does not
form.

Theorem 9. Consider the external field Q(z) = C|z|*” in the plane, C > 0, p € N. Let

V(z) == (1 +¢)0@) +gln|z—z0| ", where ¢ > 0 and zo € C. Let Sy := supp(uy) and

So = supp(iLg) be the supports of the equilibrium measures Ly, Lo respectively. Then Sy is
1

the closed disc centered at the origin of radius R = (2pC) Zr. We have
AQ
dpg = —dA|, ,
Heo 27 ‘ |5Q

_ (4940

dpy 5 dAl .
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The support Sy is described as follows:

(i) If a cavity forms so that Sy = Sp\I2 for an open set {2 C Sg, and if O ¢ (2, then () is
a pth root of a disc.

(ii) If a cavity forms so that Sy = Sp\12 for a smooth open set 2 C S, where O € {2, then
{2 is a conformal image of the unit disc under a map @ : D — 12 of the form @(t) = “_f‘;ﬁ
with A a constant and ¢y # 0.

(iii) If zo = 0, then Sy is an annulus.

(iv) If Sy is smooth and simply connected, and if 0 € Sy is an interior point, then let
Sy = @\SV be the exterior of Sy. Let (S},)" be the image of S\, under the conformal mapping

z >z Then (S5)* is the image of the unit disc under a conformal map ¢ : D — (S5)* of

P

1 . . .
it ) ”’, where P(1) is a polynomial of degree at most 2.
0

the form @(t) =t (

A few remarks are in order. Note that (iii) is a consequence of ([28] Section 4.6). In (iv),
if 0 ¢ 12, then use instead the mapping z — (z — a)~', where « is an interior point Sy, and
analyze as in the previous section. Finally, we emphasize the assumptions of smoothness and
simple connectedness. In the next subsection, we show how the case (i) can be verilied by
direct computation.

If instead of a single point source we add several to the background field Q(z), then
we can draw some conclusions about what happens in case a cavity forms. For the next
theorem, consider the external field Q(z) = Clz|*” in the plane, C = 0, p € N. Let
V() = (1+q)Q@)+>_}_ g;In|z —z;| ' whereg = }_}_, g;. Hereq; > 0, j = 1,2,....n,

and |z;| = (2pC) 12p j = 1,2,...,n. Sel rj = ##ﬁ;q}_) and define f2; to be that

component of {z € C : |z — zfl < r;j} which contains z;. (Note that f2; is a pth root of

a disc.)

Theorem 10. With definitions as above, suppose that Sy is of the form So\{? for an open
set 2 C Sg.

(i) 2 is a union of quadrature domains for weighted area measure |z|*""*dA. The
quadrature nodes involved are the points z;.

(i) If for each j =1,2,....n we have rj < |z;|" and |2}| +r; < 2pC)~'2, and the 12;

are mutually disjoint, then 2 = \J;_, (2;.

Part (i) is immediate from part (i) of Theorem 1. Part (ii) says that for sufficiently weak
point sources in the interior of Sy, the cavity is a union of pth roots of discs around the point
sources. This can be verified by computing from Frostman’s theorem similar to what will be
shown in the next subsection.

Khavinson and Lundberg in [21], Exercise 22.3a, point out that Cassini ovals Oy := {z € C :
|z2 —1] < T}, T = 1, are two-node quadrature domains for weighted area measure |z]?d A.
One can show that such Oy are the cavities that occur in the support Sy of the equilibrium
measure in the presence of V(z) = (1 + 2g.a)(7|z|4 +qgln|z — 1+ gInlz + 117", when the
constant C is small enough and ¢ is large enough. In slightly more generality, we have the
following.

Example. Consider the external field Q(z) = C|z|*” in the plane, where C < 1/2p. The
corresponding equilibrium measure support Sy, is the closed disc centered at the origin of radius
(2pC)~'?P Let w = exp(27i/p), and place point sources of equal intensity ¢ > 0 at the pth
roots of unity. So consider the external field V(z) = (1 + pg)Q(z) + g Z;’_{; In|z — (uf|_'_
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g=0.0415 q=0.04545

Fig. 4. Above: Sy for V(z) = %Izl4 +qgln|? — I|_I with given ¢.
Below: Sy for Vi(z) = %"Izlﬁ +gln|z’ — I|_] with given ¢.

Denote T := T(g) = fm and O :={z € C: |z’ — 1] < T}. Then for all g > 0 such
that 1+ T(g) < (2pC)~'/?, the equilibrium support Sy is So\Or-.

Notice that for 0 < g < 2C/(1 —2pC), O is a union of pth roots of discs around the pth
roots of unity. When ¢ = 2C/(1 — 2pC), the closure of Or becomes connecled as the rools
of discs meet at the origin. For all values g > 2C/(1 —2pC) such that T(q) < 2pC)~'/? —1,
the set Oy is a lemniscate which generalizes the Cassini ovals pointed out in [21] Exercise
22.3a; see also [4]. If ¢ is large enough so that T(g) = (2pC)_"’2 — 1, then Sy is no longer
determined by a cavity (since Oy is no longer compactly contained in Sg). Fig. 4 demonstrates
the cases of p =2, 3.

This example is related to the fact that polynomial lemniscates are quadrature domains
with respect to (unweighted) equilibrium measure on the boundary of the lemniscate. One
interpretation of the cavity above is that for the lemniscate Oy, the unweighted equilibrium
measure on the boundary matches the balayage ol the weighted area measure '2—+E‘1AQdA| or
onto the boundary dO0y. (See [21,28].)

4.2. Cavity by direct computation

Although we have assumed smoothness above, in the case of a cavity our result can be
verified by directly computing the weighted potential and using Frostman’s theorem. In fact
this can be done in a more general setting which we now describe.

16
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Suppose that Q(z) is an admissible external field, and that ¢(z) is a complex analytic
function such that Q(z) = C|e(z)|*” for z near z,, where z; is an interior point of the support
So of the equilibrium measure pg. Assume furthermore that 0 # do? /dz|.—.,. (Here ¢”(2)
designates the pth power, and not p iterations of the function.)

Note that ¢” is univalent in a neighborhood of zj, and so has a local inverse ¥ defined in

a neighborhood of ¢”(zp). Let r == Km, and let ¢ be small enough so that v is defined

on the disc D,(¢”(zy)) of radius r centered at ¢”(zp), and so that 2 = ¥ (D.(¢”(zp))) is
compactly contained in Sp. We contend that for small g = 0, the equilibrium measure gy in

the plane in the presence of the external field V(z) = (1+¢)Q(z)+¢gIn|z zo|~" has support
Sir,r = SQ\.{J
To proceed, define a weighted potential /(z) as in Frostman’s Theorem:
1+
F@) = —2 | AQ@w)m dAy + (1 +9)0E) +gn .
2 Jsy, [w —z| |z — zol
Write F(z) = F\(z) + F2(z) where Fy, > are defined as
. 14+¢ . . .
Fi(z):=—— | AQ(w)n dA, +(1+q)0(2),
2 Js, lw —z]
1 1 C
F>(z) :==gIn _U+a) f 4p’|p” '(w)(}r)*(w)|2 In dA,
|z — zol 2m ) lw — z|

By Frostman’s theorem, Fi(z) is a constant C; for z € Sy and Fi(z) = C, elsewhere
(quasi-everywhere). As for F5, we need to compute the potential occurring from (2. Observe
that pzlcp*”"(1,[:)(,9’(11,')|2 is the Jacobian determinant of the map w +— ¢”(w). By changing
variables the integral over {2 occurring in F, is

4C(1 + 1
acd +aq) m— g
2 DygPzgy V() — 2]
When z is outside (2, this can be evaluated by the harmonic mean value property, yielding
gn|z — zo|”". When z is in the closure of {2, we rewrite the integral as
4C(1 + t— Pz 1
ﬁ( In M(m: | f In———dA,).
27 Drerizgy V() — 2l Dwrey 1T — P (D]
The first term can be calculated by the mean value theorem. The second term represents the
potential formed by a disc of uniform charge, which is well known. This gives

Alr.

l@”(z0) — @ (2)] 1 q lo"(z0) — (@I
In 20 TN | - gy — 219120 Z 9TROT
am |ZU <.| +Q(2 n(r)) 2 r?
Hence
0, 2¢ 0

@ er T L ST

From here it can be verified by calculus that F5(z) = 0 for z € 2. That means F(z) is itself
equal to the constant Cy; on Sy, and F(z) = C, for all z ¢ Sy. We conclude by Frostman’s
theorem that py = ';QAQdA“Q\Q, and indeed Sy = Sp\{2.

Theorem 11. Let Q(z) be an admissible external field and let the support of the equilibrium
measure in the plane in the presence of Q(z) be Sp. Let zy be an interior point of Sp and
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assume that in a neighborhood of zy, Q(z) = Cl(2)|’? where ¢ is a complex analytic function
such that @(zy) and @'(zy) are nonzero, p is a natural number, and C > 0. Setting r =
Vg /2C( + q), we have that for all g > 0 sufficiently small, the support Sy of the equilibrium
measure in the plane in the presence of the external field V(z) = (1+¢)0(z)+q In |z — zo| " is
Sy = So\f2, where §2 .= (D, (¢"(20))), with D, (9 (z0)) being the disc of radius r centered
at pP(zy), and  being the (local) inverse of ¢?.

Remark. In Theorem 11 ‘sufficiently small’ means small enough such that i exists on
D (¢”(z0)) and ¥ (D, (¢"(zp))) is compactly contained in Sp.
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