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Abstract. We compute the equilibrium measure in dimension d = s + 4 associated to a Riesz s-
kernel interaction with an external field given by a power of the Euclidean norm. Our study reveals
that the equilibrium measure can be a mixture of a continuous part and a singular part. Depending
on the value of the power, a threshold phenomenon occurs and consists of a dimension reduction
or condensation on the singular part. In particular, in the logarithmic case s = 0 (d = 4), there is
condensation on a sphere of special radius when the power of the external field becomes quadratic.
This contrasts with the case d = s + 3 studied previously, which showed that the equilibrium
measure is fully dimensional and supported on a ball. Our approach makes use, among other tools,
of the Frostman or Euler – Lagrange variational characterization, the Funk – Hecke formula, the
Gegenbauer orthogonal polynomials, and hypergeometric special functions.

1. Introduction and main results

In the present work, we determine the equilibrium measure in Rd associated with a Riesz s-kernel
interaction with s = d − 4, and an external field given by a power of the Euclidean norm, namely
γ |·|α, α > 0, γ > 0. The covered cases are (d, s) ∈ {(3,−1), (4, 0), (5, 1), . . .}.

Unlike the Coulomb case s = d−2, our main result (Theorem 1.2 below) reveals that the equilibrium
measure can be a mixture of a continuous part and a singular part. Furthermore, as the power α in
the external field increases to 2, a transition occurs where the support of the equilibrium measure
reduces from a full d-dimensional ball to a d − 1 dimensional sphere. Moreover, for powers α larger
than 2, the equilibrium measure continues to be the uniform distribution on a d − 1 dimensional
sphere with an explicit special radius. In particular, this holds for the logarithmic case s = 0, d = 4
and contrasts with the cases s = d− 2 and s = d− 3 (studied in [12]) and for which the equilibrium
measures are fully dimensional and supported on a ball for α = 2.

It is known that a condensation phenomenon may occur for an equilibrium measure when the
Riesz parameter s passes through a critical value. For example, the equilibrium problem for the
Riesz s-kernel on a disc in R2 with no external field has support which transitions from the full disc
for 2 > s > 0 to the boundary circle for 0 ≥ s > −2, see for instance [6, 7, 20]. In the present work, we
exhibit a new condensation phenomenon that occurs for a fixed Riesz s parameter, when the external
field power passes through a critical value. Our model is relatively simple, multivariate but radial.
For further discussion of equilibrium problems with external fields, see for instance [3, 5, 9, 10, 16, 17].

1.1. Riesz s-energy with an external field in Rd. For all d ∈ {1, 2, . . .}, and x ∈ Rd, we write
|x| := (x2

1 + · · · + x2
d)1/2. We take s ∈ (−2,+∞) and for all x ∈ Rd, x ̸= 0, we define the “kernel”

Ks(x) :=
{

sign(s) |x|−s if −2 < s < 0 or s > 0
− log |x| if s = 0

, (1.1)

known as the “Riesz s-kernel”, and as the Coulomb or Newton kernel when s = d − 2. It is well
known that for all integers d ≥ 1, the Coulomb kernel Kd−2 is the fundamental solution of the
Laplace or Poisson equation in Rd; in other words, in the sense of Schwartz distributions in Rd, we
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have −∆Kd−2 = cdδ0, where ∆ :=
∑d

i=1 ∂
2
i = Trace(Hessian) is the Laplacian and where δ0 is the

Dirac unit point mass at the origin. The constant is known explicitly, namely1

c2 = 2π while cd = (d− 2)|Sd−1| = (d− 2) 2π d
2

Γ
(

d
2
) if d ̸= 2. (1.2)

Let V : Rd → (−∞,+∞] be lower semi-continuous and such that

inf
x̸=y

(Ks(x− y) + V (x) + V (y)) > −∞. (1.3)

In this work, we focus on
V = γ |·|α , γ > 0, α > 0, (1.4)

and we note that (1.3) is satisfied for s ≥ 0 and when |s| < α for s < 0.
Let M1(Rd) be the set of probability measures on Rd. For all µ ∈ M1(Rd), we define

I(µ) = Is,V (µ) :=
∫∫

Rd×Rd

(Ks(x− y) + V (x) + V (y))µ(dx)µ(dy), (1.5)

the “energy with external field V ” of µ. Thanks to (1.3), the integrand is bounded below and thus
the double integral is well defined but possibly infinite.

The function I is strictly convex2 on M1(Rd), see [11, Lem. 3.1] and [7, Th. 4.4.5] for 0 < s < d

and [7, Th. 4.4.8] for −2 < s ≤ 0. Moreover, if we equip M1(Rd) with topology of weak convergence
with respect to continuous and bounded test functions (weak-∗ convergence), then I is lower semi
continuous with compact level sets. In particular, it has a unique global minimizer µeq = µs,V ∈
M1(Rd), called the “equilibrium measure”:

I(µeq) = min
µ∈M1(Rd)

I(µ) > −∞ and I(µ) > I(µeq) for all µ ̸= µeq. (1.6)

The condition s > −2 ensures conditional strict positivity of the kernel, giving strict convexity of I
and uniqueness of µeq, see [6], [7, Sec. 4.4], and [20, Ch. VI, p. 363–]. Note that when s < 0, then
Ks is not singular, and as a consequence we could have I(µ) < ∞ for a probability measure µ with
Dirac masses; in particular µeq may have Dirac masses. In contrast, when s ≥ 0 then Ks is singular,
and I(µ) = +∞ if µ has Dirac masses; in particular µeq does not have Dirac masses.

We consider hereafter only measures µ ∈ M1(Rd) such that
∫

|x|>1 |Ks(x)|µ(dx) < ∞. Then the
potential of µ is

Uµ(x) := Uµ
s (x) :=

∫
Ks(x− y)µ(dy) = (Ks ∗ µ)(x) ∈ (−∞,+∞], (1.7)

which is finite almost everywhere in Rd, see [20, Section I.3]. The equilibrium measure µeq has an
Euler – Lagrange variational characterization known as the Frostman conditions: it is the unique
probability measure for which there exists a constant c such that the modified potential

Uµeq + V

{
= c q.e. on supp(µeq)
≥ c q.e. on Rd.

(1.8)

Here “q.e.” denotes “quasi–everywhere” which means except on a set for which every probability
measure supported on it has infinite energy. These conditions hold everywhere when V is continuous.

Remark 1.1 (Degenerate or special cases). Let −2 < s < 0, d ≥ 1 and V = γ |·|α, γ > 0, α > 0.
• If α = −s and γ ≥ 1, then µeq = δ0 (this holds in particular when α = −s = γ = 1).
• If α = −s and γ < 1 or if α < −s, then µeq does not exist (and (1.3) is not satisfied).
• If α > −s, then µeq ̸= δ0 (and (1.3) is satisfied).

1An alternative non-standard definition of Ks would be Ks = 1/(s |·|s) if s ̸= 0. This gives K0 from Ks by removing
the singularity as s → 0, namely lims→0(1/(s|x|s) − 1/s) = lims→0(|x|−s − 1)/(s − 0) = − log |x|. This produces nicer
formulas in general, for instance cd would be simply equal to |Sd−1| for all d ≥ 1 with this choice.

2If s ≤ −2, then we lose strict convexity and uniqueness, but still it is possible to characterize minimizers, see [6].



THRESHOLD CONDENSATION TO SINGULAR SUPPORT 3

Let us give a brief proof of these statements. We first observe that, for x ∈ Rd, the modified
potential is U δ0(x) + V (x) = −|x|−s + γ|x|α, which for λ := |x| becomes φ(λ) := −λ−s + γλα. We
now use the Frostman conditions (1.8) to treat, in turn, the bullet points above. If α = −s then,
φ(λ) = (γ − 1)λα and the Frostman conditions (1.8) hold when γ ≥ 1. If α = −s and γ < 1 or if
α < −s, then limλ→∞ φ(λ) = −∞ and the Frostman conditions (1.8) cannot hold. Finally, when
α > −s, φ(0) = 0, and φ′(λ) = 0 has the unique solution λ∗ = ( −s

γα )
1

α+s > 0. Now φ(λ) < 0 if and
only if λ < ( 1

γ )
1

α+s , so φ(λ∗) < 0, which contradicts the Frostman conditions (1.8); hence µeq ̸= δ0.

1.2. Threshold phenomena for s = d − 4. Our main result below reveals threshold phenomena,
when d = s+ 4, at α = 2, α = 1, and γ = 1. We use the following notation:

• Sd−1
R := {x ∈ Rd : |x| = R}, sphere of radius R in Rd centered at the origin, and Sd−1 := Sd−1

1 ;
• σR : uniform probability measure on Sd−1

R ;
• md : Lebesgue measure on Rd.

Theorem 1.2 (Main result). Let V = γ |·|α where γ > 0 and α > 0.
(i) Suppose that d ≥ 4 and s = d− 4 ≥ 0.

(a) If 0 < α < 2, then
µeq = βfmd + (1 − β)σR, (1.9)

where
β := 2 − α

s+ 2 , f(x) := α+ s

Rα+s|Sd−1|
|x|α−41|x|≤R (1.10)

and

R :=


(

2s
(α+s+2)γα

) 1
α+s if s ̸= 0(

2
(α+2)γα

) 1
α if s = 0

. (1.11)

(b) If α ≥ 2, then µeq = σR where

R :=


(

2s
(s+4)γα

) 1
α+s if s ̸= 0(

1
2γα

) 1
α if s = 0

. (1.12)

Moreover, when s = 0 this remains the equilibrium measure for all d ≥ 4.
(ii) Suppose that d = 3 and s = d− 4 = −1.

(a) If α = 1, and γ ≥ 1, then µeq = δ0 (this holds in particular when α = γ = 1).
(b) If 1 < α < 2, then µeq is the mixture given by (1.9), (1.10) and (1.11).
(c) If α ≥ 2, then µeq = σR with R given by (1.12).

Theorem 1.2 is proved in Section 3.
Let us give some observations about Theorem 1.2:

(i) If d = 3, s = −1, α = 1 and 0 < γ < 1 or 0 < α < 1, then µeq does not exist and (1.3) fails.
(ii) The critical radius in the case α ≥ 2 is also the critical radius for the equilibrium problem

restricted to spheres, see Lemma 3.2.
(iii) A convex combination of probability measures as in (1.9) is known as a “mixture”. More

precisely (1.9) is a mixture of the absolutely continuous probability measure fmd and the
singular probability measure σR. Note that fmd is itself a mixture, since it is the law of the
product V U where U and V are independent random variables with U uniform on the unit
sphere of Rd and V supported in [0, R] with density r 7→ (α+s)

Rα+s r
α+s−1.

(iv) If s → 0, we do not recover the case s = 0, and R is discontinuous at s = 0. This is due to
our choice of normalization with respect to s of Ks, see Footnote 1.

(v) Theorem 1.2 is in accordance with the numerical experiments depicted in Figure 1. Note that
the case d = 4, s = 0, the range 0 < α < 1 is less reliable numerically than the range α ≥ 1,
since in this case the radial density provided in item (iii) becomes singular at the origin.



4 DJALIL CHAFAÏ, EDWARD B. SAFF, AND ROBERT S. WOMERSLEY

(vi) When d = 3 and s = −1, the interaction is not singular at the origin, but is singular at
infinity, producing long range interactions in the energy.

(vii) If d = 3 = 3 + 0, s = 0, and α ≥ 2, then µeq is no longer supported on a sphere, but rather
on a 3-dimensional ball, see [12].

Remark 1.3 (Behavior of µeq with respect to α in Theorem 1.2). The equilibrium measure µeq in
Theorem 1.2 is “continuous” with respect to α in the following sense (see Figures 1 and 2):

• If α → ∞, then from (1.12), R → 1−.
• If α → 2−, then the continuous part βfmd, where β = (2−α)/(s+2), of µeq in (1.9) vanishes

and we recover the formula for α = 2.
• If α → 1+ and γ ≥ 1, then R → 0 and we recover the fact that µeq = δ0 when α = 1 and
γ ≥ 1.

• If α → 1+ and if 0 < γ < 1, then R → ∞ and we recover the fact that µeq does not exist
when α = 1 and 0 < γ < 1.

• As α → 0+, then from (1.11), R → ∞.

1.3. Numerical experiments for discrete energy. It is natural to approximate a probability
measure µ on Rd by an empirical measure µx1,...,xN

:= 1
N

∑N
i=1 δxi , for a well chosen configuration

x1, . . . , xN of N points in Rd, and its energy I(µ) by

E(µx1,...,xN
) :=

N∑
i=1

N∑
j=1
j ̸=i

(Ks(xi − xj) + V (xi) + V (xj)) (1.13)

= 2
( N∑

i=1

N∑
j=i+1

Ks(xi − xj) + (N − 1)
N∑

i=1
V (xi)

)
. (1.14)

The removal of the diagonal ensures that (1.13) is finite as soon as x1, . . . , xN are distinct, despite
the singularity at the origin of Ks when s ≥ 0. Actually for s < 0, we do not have to remove the
diagonal and we can sum over all i, j, with no contributions from kernel for i = j and 2N

∑N
i=1 V (xi)

for external field.
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Figure 1. Support radius R of µeq and max
j=1,...,N

|xj | for empirical measure with

N = 104 points, when d = 4, s = d− 4 = 0, and V = γ |·|α with γ = 1 and α > 0.
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A local minimum of a smooth unconstrained function can be found efficiently by a variety of
gradient based descent methods, see [23] for example. Here

∇xk
E(µx1,...,xN

) =
N∑

j=1
j ̸=k

∇xk
Ks(xk − xj) + 2(N − 1)∇xk

V (xk) (1.15)

with ∇xk
V (xk) = αγ|xk|α−2 xk, and for k ̸= j,

∇xk
Ks(xk − xj) =

{
|s|2 xk−xj

|xk−xj |s+2 if −2 < s < 0 or s > 0
− xk−xj

|xk−xj |2 if s = 0
. (1.16)
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Figure 2. Histograms of point norms |xj |, j = 1, . . . , N = 104 of empirical equi-
librium measure for d = 4, s = d− 4 = 0, and V = γ |·|α with γ = 1 and selected α > 0.

The number of optimization variables is n = dN for N points in Rd, for example n = 40, 000 for
the experiments in Figures 1 and 3, so a limited-memory BFGS method [8] can avoid computations
with an n by n Hessian approximation. Gradient information is essential due to the highly nonlinear
interactions from the Riesz kernels. Two other notable features of these optimizations problems are
that while the support of the (discrete) distribution is identified quickly (for α ≥ 2), there can be
many local minima corresponding to the density within the support. Thus many different initial points
were used to try to identify features of the equilibrium measure, the global minimum as N → ∞.
The second feature is that the external field V = γ |·|αp has a derivative discontinuity at the origin
for p = 2, α < 2, making discrete optimization for densities with a mass at the origin much more
difficult. Also for p = 1, the external field has derivative discontinuities whenever a component of
one of the points is zero.

We further remark that as N → ∞ the sequence of empirical measures µ∗
N := µx∗

1 ,...,x∗
N

for
minimizers ω∗

N = (x∗
1, . . . , x

∗
N ) of the discrete energy in (1.13) converges in the weak-star topology to



6 DJALIL CHAFAÏ, EDWARD B. SAFF, AND ROBERT S. WOMERSLEY

the corresponding equilibrium measure µeq of Theorem 1.2. Indeed, it is easy to show that thanks to
the growth of V (x) at infinity, the empirical measures are all supported on a compact set independent
ofN and so a standard argument (see for instance Theorem 4.2.2 of [7]) going back to Choquet [13] and
Fekete [15] shows that any limit measure of the sequence µ∗

N is necessarily an equilibrium (minimizing)
measure of the continuous problem in (1.6). Moreover, under the assumptions of Theorem 1.2, this
equilibrium measure is unique.

Figures 1 and 2 illustrate the results of some numerical experiments minimizing the modified
potential (1.13) using N = 104 discrete points xj , j = 1, . . . , N for d = 4, s = 0, V = γ |·|α, γ = 1
and various values for α. Figure 1 shows the strong agreement between the empirical support radius
maxj=1,...,N |xj | of the discrete measure and the theoretical results in Theorem 1.2. Figure 1 also
illustrates the continuity of the support radius at α = 2, as discussed in Remark 1.3. Figure 2
gives histograms of the discrete measure for various α, illustrating the change from α < 2 when
the equilibrium measure is the mixture (1.9) to α ≥ 2 when the equilibrium measure is the uniform
probability density on a sphere of radius R given by (1.12).

2. Remarks and conjectures for general s and d

2.1. More general values of s and d. We could ask about µeq for more general values of s and d.
Here are some remarks about some few other cases, beyond the case d = s + 4 of Theorem 1.2 and
the case d = s+ 3 and α = 2 of [12].

2.1.1. Case s = d − 1. To the best of our knowledge, little is known when s = d − 1. However, if
d = 1, s = d− 1 = 0 , V = |·|α, α > 0, and following [24, Th. IV.5.1] (see [19, Pro. 5.3.4] for relation
to free probability), then the equilibrium measure µeq is the Ullman distribution on R with density

x ∈ R 7→ α

πRα

(∫ R

|x|

tα−1
√
t2 − x2

dt
)

1x∈[−R,R] where R :=
(√

π

α

Γ
(

α+2
2
)

Γ
(

α+1
2
)) 1

α

. (2.1)

When α = 2 we recover a semicircle distribution with density 2
π

√
1 − x21x∈[−1,1]. Note also that the

formula for the radius above has a form similar to the critical radius in the case s = d− 3 in [12].
When d − 2 < s < d, so that the maximum principle holds, then, one can minimize the Riesz

analogue of the Mhaskar – Saff functional (see [24, Chap. IV, eq. (1.1)])

Fs(A) :=
∫∫

Ks(x− y)µA(dx)µA(dy) +
∫
V (x)µA(dx),

where A is a compact set of positive capacity and µA is the equilibrium measure for the Riesz minimum
s-energy problem for A with no external field. Assuming that the support A of µeq is a ball BR, for
which µBR

is known, then minimizing Fs(BR) leads to the following formula for the radius of the ball

R =
(
sΓ
(

d−s
2
)
Γ
(

α+2+s
2
)

αΓ
(

α+d
2
) ) 1

α+s

. (2.2)

To verify this formula one can use the Frostman conditions (1.8). For s = d− 1, d ≥ 2 and α = 2
the radially symmetric semicircle distribution on the ball BR is, with y = rRŷ, r ∈ [0, 1], ŷ ∈ Sd−1,

µR(dy) = M
√
R2 − |y|2 1|y|≤R dy = MRd+1

√
1 − r2 rd−11r∈[0,1] dr σ1(dŷ),

where the normalization constant M satisfies

M−1 = Rd+1
∫ 1

0

√
1 − r2 rd−1dr = Rd+1

√
π

4
Γ
(

d
2
)

Γ
(

d+3
2
) = d− 1

d

π

4 .

Also using the parametrization x = λRx̂, λ ≥ 0, x̂ ∈ Sd−1, and the Funk – Hecke formula of
Lemma A.2 for the integral of the Riesz kernel over Sd−1, gives

UµR(x) =
∫

BR

Ks(|x− y|)µR(dy) = Rd−s+1M

∫ 1

0

∫
Sd−1

|λx̂− rŷ|−s rd−1
√

1 − r2 σ1(dŷ) dr



THRESHOLD CONDENSATION TO SINGULAR SUPPORT 7

= R24d
(d− 1)π

∫ 1

0
(λ+ r)1−d

2F1

(
d− 1

2 ,
d− 1

2 ; d− 1; 4λr
(λ+ r)2

)
rd−1

√
1 − r2 dr.

The Frostman conditions for µR to be the equilibrium measure are that the modified potential φ(λ) :=
UµR(λRx̂) + (λR)2 satisfies φ(λ) = c for λ ∈ [0, 1] and φ(λ) > c for λ > 1. Here c = R2 d

d−1 and
φ(λ) = c is equivalent to, for λ ∈ [0, 1],∫ 1

0
(λ+ r)1−d

2F1

(
d− 1

2 ,
d− 1

2 ; d− 1; 4λr
(λ+ r)2

)
rd−1

√
1 − r2 dr = π

4

(
1 − d− 1

d
λ2
)
, (2.3)

which is [16, Lem. 2.4 with α = 1 − d and ℓ = 1] divided by R2|Sd−1|. Both the Frostman conditions
and the integral identity (2.3), which is similar to those in [12], have been also verified numerically
for d = 2, . . . , 10, noting that the hypergeometric function in the integrand has a singularity at r = λ

for λ ∈ [0, 1]. It is worth noting that when d = 2, then (2.3) boils down to∫ 1

0
K

(
4λr

(λ+ r)2

)
r
√

1 − r2

λ+ r
dr = π2

16
(
2 − λ2) , (2.4)

whereK(z) = π

2 2F1(1/2, 1/2; 1; z) is the complete Elliptic integral of the first kind, (cf. [12, Eq. (1.20)]).

2.1.2. Case s = d− 2 (Coulomb). Let us consider the Coulomb case s = d− 2. From

∆Kd−2 = −cdδ0 (2.5)

we get the inversion formula, in the sense of distributions,

∆Uµ = −cdµ. (2.6)

When V is locally integrable it can be viewed as a distribution and we get, by combining (1.8) and
(2.6), that µeq is equal on the interior of its support, in the sense of distributions, to the distribution

∆V
cd

. (2.7)

Beware that µeq is not necessarily absolutely continuous and may have a singular part outside the
interior of its support. In particular, when V is C2 then the interior of the support of µeq does not
intersect the set {∆V < 0}.

From [21, Prop. 2.13], when d ≥ 3, V = |·|α, α > 0 (so γ = 1) the support of the equilibrium
measure µeq is a ball of radius R, where

R =
(
d− 2
α

) 1
d+α−2

(2.8)

and

dµeq(rx̂) = α(d+ α− 2)
d− 2 rd+α−3 10≤r≤R dr σ1(dx̂). (2.9)

When d = 2, so s = 0, [24, Thm. IV.6.1] shows that

R =
(

1
α

) 1
α

(2.10)

and

dµeq(rx̂) = α2rα−1 10≤r≤R dr σ1(dx̂). (2.11)

Note that when α = 2, µeq is uniform on the ball in Rd with volume cd/(2d), which has radius R.
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2.1.3. Case s = d− 3. It is proved in [12] that when d = s+ 3 and V = γ |·|2, γ > 0, then µeq has a
radial arcsine distribution supported on a ball. It is also mentioned in [12] that an explicit computation
of µeq is still possible when V belongs to a special class of radial polynomials or hypergeometric
functions. On the other hand, when d = 3, s = 0, V = γ |·|α, γ > 0, it is easily proved that for no
value of α > 0 is the support of µeq a single centered sphere; indeed, it is easy to show that this would
violate the Frostman conditions. It is tempting to conjecture that for d = s + 3, s ≥ 0, and for any
α > 0, the support of µeq has full dimension. Numerical experiments suggest that when d = s+3 then
the support of µeq could be a ball when α ≤ 2 and a shell (region between two concentric spheres)
when α > 2.

2.1.4. Case s = d− 2n, n ∈ {1, 2, 3, . . .}, iterated Coulomb. We have the following proposition:

Proposition 2.1 (Iterated Coulomb). For s = d− 2n, the equilibrium measure µeq is equal, on the
interior of its support, in the sense of distributions, to the distribution

∆nV

cdCd,n
(2.12)

where cd is defined in (1.2),

Cd,n := (−1)n−1 (d− 4)!!(2n− 2)!!
(d− 2n− 2)!! , (2.13)

and z!! :=
∏⌈ z

2 ⌉−1
k=0 (z − 2k) is the double factorial (with z!! := 1 if z ≤ 0).

In particular, if V is C2n on an open set O ⊂ Rd, then
• O ∩ int(supp(µeq)) ∩ {∆nV < 0} = ∅ when n is odd (since then Cd,n > 0);
• O ∩ int(supp(µeq)) ∩ {∆nV > 0} = ∅ when n is even (since then Cd,n < 0).

Before we give a proof of Proposition 2.1, we make the following observations:
• 2n = d− s ≤ d+ 1 since s > −2
• Proposition 2.1 with n = 1 is the Coulomb case s = d− 2 of Section 2.1.2
• ∆ |·|α = α(α+ d− 2) |·|α−2 which has the same sign as d+ α− 2 (critical value is α = 2 − d)
• Beware that µeq is not necessarily absolutely continuous and can have a singular part sup-

ported outside the interior of its support, as shown in Theorem 1.2. Indeed, let us consider
the case d = s + 4 = s + 2n ≥ 4, n = 2, and V = γ |·|α, γ > 0. If 0 < α < 2 then Theorem
1.2 states that µeq is equal, in the sense of distribution, on the interior of its support, to

βf = 2 − α

d− 2
α+ d− 4

|Sd−1|
|·|α−4

γ
α(α+ d− 2)

2

{
1

d−4 if d ̸= 4
1 if d = 4

.

Alternatively, for d ≥ 3, n = 2 (noting that C4,2 = −2, C3,2 = 2)

∆nV

cdCd,n
= γ

∆2 |·|α

cdCd,2
= −γ α(α+ d− 2)(α− 2)(α+ d− 4)

2(d− 2)|Sd−1|
|·|α−4

{
1

d−4 if d ̸= 4
1 if d = 4

which matches the formula for βf (including the case d = 3, s = −1 for 1 < α < 2)!
In contrast, if α ≥ 2 then

∆2V = γα(α+ d− 2)(α− 2)(α+ d− 4) |·|α−4
> 0,

and since Cd,2 < 0 we get {∆2V ≥ 0} = ∅ therefore int(supp(µeq)) = ∅, which implies that
µeq is singular. Indeed Theorem 1.2 gives in that case µeq = σR.

• If n > 1, then n ∈ {2, 3, 4, . . .}, n is an integer > 1, ∆nV = ∆n−1∆ |·|2 = 0, and by (2.12),
int(supp(µeq)) = ∅, in particular µeq is singular. Indeed Theorem 1.2 states in particular
that if n = 2 and s = 0 then µeq is supported on a sphere.
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Proof of Proposition 2.1. For u > −2 with u ̸= d− 2, in the sense of distributions,

∆Ku = −cd,uKu+2 where cd,u =
{

|u|(d− 2 − u) if u ̸= 0
d− 2 if u = 0

. (2.14)

The idea is to apply ∆ repeatedly, n−1 times, to pass, via (2.14), by +2 steps, from Ks to Kd−2, and
then to use (2.5). We know that µeq exists and is unique and satisfies the Euler – Lagrange equations
(1.8). Applying ∆n to both sides of (1.8) gives (see [12, Lemma A.1 (iii)])

∆nKs ∗ µeq = −∆nV on supp(µeq). (2.15)

If n > 1, we obtain, iterating (2.14) and using (2.5), then we get, with Cd,n = (−1)n−1∏n−2
k=0 cd,s+2k,

∆nKs = ∆(∆n−1Ks) = Cd,n∆Ks+2(n−1) = Cd,n∆Kd−2 = −Cd,ncdδ0. (2.16)

Recall that s = d− 2n. Moreover Cd,n > 0 if n is odd while Cd,n < 0 if n is even. The formula (2.16)
remains valid for n = 1 (namely the Coulomb case d = s + 2) by taking Cd,1 = 1, and reduces then
to (2.5). By combining (2.15) and (2.16), we get that µeq is equal to (Cd,ncd)−1∆nV on the interior
of supp(µeq). Let us compute the value of Cd,n for n ≥ 2. If s = d− 2n > −2 then d > 2, and

(−1)n−1Cd,n =
n−2∏
k=0

cd,s+2k =
n−2∏
k=0

(s+ 2k)(d− 2 − s− 2k)

= (s+ 2n− 4)!!
(s− 2)!!

(d− s− 2)!!
(d− s− 2n)!!

= (d− 4)!!
(d− 2n− 2)!! (2n− 2)!!.

Note that this formula also gives Cd,1 = 1 for the Coulomb case n = 1, as desired. □

2.2. Different norms. Numerical experiments using different norms, for example V = |·|pp, where
|x|pp := |x1|p + · · · + |xd|p, give intriguing results, in accordance with (2.12). See for instance Figure 3
for p = 4. In this case the support of µeq has the symmetries of the ℓp norm but is still a mystery and
we do not know if µeq is absolutely continuous, singular, or a mixture of both. Note that the uniform
distribution on ℓp balls and spheres in Rd admits remarkable representations and characterizations,
see for instance [4, 25]. Another possibility is to modify the kernel, namely to take |·|−s

p , and the first
question is then the positive definiteness in order to get convexity and uniqueness of µeq.

In Rd with d = 2n, when V = |·|2n
2n, the support of µeq has the symmetries of |·|2n (spherical when

n = 1). Furthermore, since ∆nV = (2n)!d is a non-zero constant, we get from (2.12) that if n is
odd, then µeq is uniform (constant density) on the interior of its support, while if n is even then the
interior of the support of µeq is empty and µeq is singular. If n = 1, then ∆nV is constant (Coulomb
case) and µeq is the uniform law on a ball.

3. Proof of Theorem 1.2

We first consider the equilibrium problem restricted to spheres (Section 3.1). This spherical case
is essential for the proof of the case α ≥ 2 which is given in Section 3.2. We then provide the proof
of the case d ≥ 4 and 1 < α < 2 (Section 3.3), and then the proof of the case d = 3 (Section 3.4).
As in the statement of Theorem 1.2, we have to consider separately the cases d = 3 (s = −1), d = 4
(s = 0), and d > 4 (s > 0), which is done respectively in Lemmas 3.4, 3.6, and 3.7.

3.1. Optimal spheres. We first consider the equilibrium problem restricted to spheres and provide
some simple lemmas that are needed in the proof of part (b) of assertion (i) of Theorem 1.2.

Throughout this section, V = γ |·|α, γ > 0, α > 0, and we use of the fact that for R > 0, Ks∗σR+V
is radially symmetric, and so for x ∈ Rd, x = λRx̂ with λ ≥ 0 and |x̂| = 1, we only need consider

φ(λ) = φσR
(λ) := (Ks ∗ σR + V )(λRx̂), λ ≥ 0, x̂ ∈ Sd−1. (3.1)
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Lemma 3.1. Let d ≥ 2, s > −2 and φ be as in (3.1). Then, for x ∈ Rd, writing x = λRx̂ with λ ≥ 0
and x̂ ∈ Sd−1, and with τd−1 as in Lemma A.2, we have

φ(λ) =


τd−1

Rs

∫ 1

−1

(1 − t2) d−3
2

(λ2 + 1 − 2λt) s
2

dt+ γ(λR)α if s ̸= 0

− logR− τd−1

2

∫ 1

−1
log(λ2 + 1 − 2λt)(1 − t2)

d−3
2 dt+ γ(λR)α if s = 0

.

Moreover φ is continuous on [0,∞) and differentiable on (0,+∞), and for λ > 0,

φ′(λ) =


sτd−1

Rs

∫ 1

−1

(t− λ)(1 − t2) d−3
2

(λ2 + 1 − 2λt) s+2
2

dt+ γαRαλα−1 if s ̸= 0

τd−1

∫ 1

−1

(t− λ)(1 − t2) d−3
2

λ2 + 1 − 2λt dt+ γαRαλα−1 if s = 0
.

Proof. The result follows from the identity

∫
Sd−1

R

Ks(x− y)σR(dy) =


R−s

∫
Sd−1

(λ2 − 2λx̂ · ŷ + 1)− s
2σ1(dŷ) if s ̸= 0

− logR− 1
2

∫
Sd−1

log(λ2 − 2λx̂ · ŷ + 1)σ1(dŷ) if s = 0
,

which holds for arbitrary x̂ ∈ Sd−1, and the Funk – Hecke formula of Lemma A.2. □

Lemma 3.2. Assume that

d ≥ 3, −2 < s ≤ d− 4, V = γ |·|α , α ≥ 2.

The energy function η(R) := I(σR), from (1.5), achieves its infimum on (0,∞) at the unique point

R :=


(

sWs,d−1
2γα

) 1
s+α if s ̸= 0(

1
2γα

) 1
α if s = 0

,

where Ws,d−1 is the Wiener constant for Sd−1 given by

Ws,d−1 :=
∫∫

Ks(x−y)σ1(dx)σ1(dy) =



sign(s)
Γ( d

2 )Γ(d− 1 − s)
Γ( d−s

2 )Γ(d− 1 − s
2 )

if −2 < s < 0, or

if 0 < s < d− 1 and d ≥ 4

− log(2) +
ψ(d− 1) − ψ( d−1

2 )
2 if s = 0 and d ≥ 4

,

and ψ(z) := Γ′(z)/Γ(z) is the digamma special function, see for example [7, Prop. 4.6.4, p. 180].

Note that −2 < s ≤ d− 4 implies d > 2; hence d ≥ 3.
We also remark that when s = 0, the radius R does not depend on the dimension d.

Proof. We have

η(R) := I(µR) =
∫∫

Sd−1
R

×Sd−1
R

Ks(x− y)σR(dx)σR(dy) + 2
∫
Sd−1

R

V (x)σR(dx)

=
∫∫

Sd−1×Sd−1
Ks(Rx̂−Rŷ)σ1(dx̂)σ1(dŷ) + 2γRα.

Case s = 0. In this case, we have Ks(x− y) = K0(R(x̂− ŷ)) = − log(R) − log |x̂− ŷ|, and thus

η(R) = − log(R) −
∫∫

Sd−1×Sd−1
log |x̂− ŷ|σ1(dx̂)σ1(dŷ) + 2γRα.
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Now η is strictly convex and reaches its minimum at the unique optimal point

R∗ =
(

1
2γα

)1/α

. (3.2)

Case −2 < s < d− 4, s ̸= 0.

η(R) = Ws,d−1

Rs
+ 2γRα where Ws,d−1 =

∫∫
Sd−1×Sd−1

Ks(x̂− ŷ)σ1(dx̂)σ1(dŷ).

The equation η′(R) = 0 has a unique solution (critical point) given by

R∗ =
(
sWs,d−1

2γα

)1/(s+α)
. (3.3)

We have

η′′(R) = s(s+ 1)R−(s+2)Ws,d−1 + 2γα(α− 1)Rα−2

= R−(s+2) (s(s+ 1)Ws,d−1 + 2γα(α− 1)Rα+s
)
,

and thus

η′′(R∗) =
(

2γα
sWs,d−1

) s+2
α+s

s(s+ α)Ws,d−1.

It follows that η′′(R∗) > 0 since s+ α > 0 and since s and Ws,d−1 have the same sign. □

3.2. Case α ≥ 2. Let V = γ |·|α with γ > 0 and α ≥ 2. We have to show that µeq is uniform on a
sphere. For this purpose, we verify the Frostman conditions (1.8) which asserts that the support of
µeq is a sphere of radius R if and only if, for some constant c, we have φ(λ) = c when λ = 1 and
φ(λ) > c when λ ̸= 1. Since φ is continuous on [0,+∞) and differentiable on (0,+∞), part (i) (b) of
Theorem 1.2 follows from Lemma 3.3 in the case where s = 0 and d ≥ 4, part (ii) (c) from Lemma 3.4
in the case where s = −1 and d = 3, and Lemma 3.7 in the case d ≥ 5 and s = d− 4.

Lemma 3.3. Let φ be as in (3.1) with s = 0, d ≥ 4, α ≥ 2, and R = ( 1
2γα ) 1

α . Then

φ′(λ) = 1
2λ

[
1 − λ2

1 + λ2 2F1

(
1
2 , 1; d2 ; 4λ2

(1 + λ2)2

)
− 1
]

+ λα−1

2 , λ > 0.

Moreover φ′(λ) < 0 if 0 < λ < 1, φ′(1) = 0, while φ′(λ) > 0 if λ > 1.

Proof. In view of the formula given by Lemma 3.1, we have, with ζ := 4λ2/(1 + λ2)2,

J :=
∫ 1

−1

(t− λ)(1 − t2) d−3
2

λ2 + 1 − 2λt dt

= ζ

4λ

∫ 1

0

2t2 − (1 + λ2)
1 − ζt2

(1 − t2)
d−3

2 dt

= ζ

4λ

∫ 1

0

2u1/2 − u−1/2(1 + λ2)
1 − ζu

(1 − u)
d−3

2 du.

The Euler integral representation of Lemma A.1 gives in particular, for a > −1, b > −1, |ζ| < 1,∫ 1

0

ua−1(1 − u)b−1

1 − ζu
du = Γ(a)Γ(b)

Γ(a+ b) 2F1(a, 1; a+ b; ζ).

Using this formula with a ∈ {3/2, 1/2}, b = (d− 1)/2, c = 1, and Γ(ζ + 1) = ζΓ(ζ), we get

τd−1J = ζ

4λ

[
2
d

2F1

(
3
2 , 1; d+ 2

2 ; ζ
)

− (1 + λ2) 2F1

(
1
2 , 1; d2 ; ζ

)]
.

At this step, we observe that the identity ζ(ζ + 1)k = (ζ)k+1 gives the formula

1 + a

b
ζ 2F1(a+ 1, 1; b+ 1; ζ) = 2F1(a, 1; b; ζ).
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Finally, using this formula, we obtain, denoting G := 2F1
( 1

2 , 1; d
2 , ζ
)

:=
∑∞

k=0
( 1

2 )k

( d
2 )k

ζk,

τd−1J = ζ

4λ

[
2
ζ

(G− 1) − (1 + λ2)G
]

= 1
2λ

[
1 − λ2

1 + λ2G− 1
]
.

Hence the formula for φ′(λ). Alternatively, we could also use the formula for φ of Lemma 3.1 to get

φ(λ) = log(2γα)
α

+ λ2

d(1 + λ2)2 3F2

(
1, 1, 3

2 ; 2, d+ 2
2 ; 4λ2

(1 + λ2)2

)
− log(1 + λ2)

2 + λα

2α. (3.4)

At this step, we observe that the formula in the statement of the lemma for φ′ gives φ′(1) = 0 as
the parameters of the 3F2 function ensure that it is finite (see Lemma A.1 or [14, eqn. 15.4.20]). It
remains to determine the sign of φ′(λ) for λ ̸= 1. Let us consider first the case d = 4. As

2F1

(
1
2 , 1; 2; ζ

)
=

∞∑
k=0

( 1
2 )k

(k + 1)!ζ
k = 21 −

√
1 − ζ

ζ
, (3.5)

we get

2F1

(
1
2 , 1; 2; ζ

)
=

1 + λ2 if 0 ≤ λ ≤ 1

1 + 1
λ2 if λ ≥ 1

,

and therefore

φ′(λ) =


−λ

2 + λα−1

2 if 0 ≤ λ ≤ 1

1 − 2λ2

2λ3 + λα−1

2 if λ ≥ 1
.

Alternatively, we could use Lemma 3.6 which replaces the Taylor series expansion behind the hyper-
geometric based formulas by the generating series of orthogonal polynomials. From this it can be
checked that φ′(λ) < 0 if 0 < λ < 1 while φ′(λ) > 0 if λ > 1, first when α = 2 and then by monotony
for all α ≥ 2. This proves the desired result for d = 4. For the general case d ≥ 4, noting that
2F1

( 1
2 , 1; d

2 ; z
)
, z ∈ [0, 1], decreases as d increases, an examination of the formula for φ′(λ) reveals

that as d increases, then φ′(λ) decreases when 0 < λ < 1, while φ′(λ) increases when λ > 1, which
reduces the analysis to the case d = 4. □

Lemma 3.4. Let φ be as in (3.1), (d, s) = (3,−1), α ≥ 2, and R = ( 2
3γα )

1
α−1 . Then

φ′(λ) = R

{
− 2

3λ+ 2
3λ

α−1 if 0 < λ ≤ 1
−1 + 1

3λ2 + 2
3λ

α−1 if λ > 1
.

Moreover φ′(λ) ≤ 0 if 0 < λ < 1, φ′(1) = 0, while φ′(λ) > 0 if λ > 1.

Proof. From Lemma 3.1 we get, for λ ≥ 0,

φ(λ) = −R

2

∫ 1

−1
(λ2 − 2λt+ 1)1/2dt+ γ(λR)α

= −R |λ− 1|3 − (λ+ 1)3

6λ + γ(λR)α

= R

{
−(1 + λ2

3 ) + γλαRα−1 if 0 ≤ λ ≤ 1
−(λ+ 1

3λ ) + γλαRα−1 if λ > 1
.

Hence

φ′(λ) = R

{
− 2

3λ+ γα(λR)α−1 if 0 < λ ≤ 1
−1 + 1

3λ2 + γα(λR)α−1 if λ > 1
.

From now on we take R = ( 2
3γα )

1
α−1 , which makes the critical value of λ on (0, 1] equal to 1. Hence

φ′(λ) = R

{
− 2

3λ+ 2
3λ

α−1 if 0 < λ ≤ 1
−1 + 1

3λ2 + 2
3λ

α−1 if λ > 1
.
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Now φ′(1) = 0, and moreover φ′(λ) < 0 for 0 < λ < 1 when α > 2 while φ′(λ) = 0 for 0 < λ < 1
when α = 2. If λ > 1, then (λ2φ′(λ))′ = R(−2λ+ 2

3 (α+ 1)λα) > 0 when λ > (3/(1 +α))1/(α−1), and
this last value is ≤ 1 since α ≥ 2, which implies that φ′(λ) > 0 for λ > 1. □

Remark 3.5 (General s). Suppose that s > −2, s ̸= 0, and d ≥ 4. By proceeding as in the proof of
Lemma 3.3, it is possible to obtain the following formulas, for all λ ≥ 0,

τd−1

∫ 1

−1

(1 − t2) d−3
2

(λ2 + 1 − 2λt) s
2

dt = (1 + λ2)− s
2 2F1

(
s

4 ,
s+ 2

4 ; d2 ; 4λ2

(1 + λ2)2

)
and

τd−1

∫ 1

−1

(t− λ)(1 − t2) d−3
2

(λ2 + 1 − 2λt) s+2
2

dt

= λ

d(1 + λ2) s+4
2

[
− (1 + λ2)

d
2F1

(
s+ 2

4 ,
s+ 4

4 ; d2 ; 4λ2

(1 + λ2)2

)

+ (2 + s) 2F1

(
s+ 2

4 + 1, s+ 4
4 ; d2 + 1; 4λ2

(1 + λ2)2

)]
.

This gives formulas for φ(λ) and φ′(λ) via Lemma 3.1. Unfortunately, the formula for φ′(λ) does not
seem to be monotonic with respect to d, and thus one cannot proceed as in proof of Lemma 3.3.

When s is an integer, instead of using power series and hypergeometric functions for the evaluation
of the integrals in the formulas for φ and φ′ of Lemma 3.1, we could use alternatively orthogonal
polynomials, which leads for instance when s = 0 to the trigonometric formulas of Lemma 3.6.

Lemma 3.6 (Trigonometric formulas). Let φ be as in (3.1) with s = 0, d = 4 + 2m where m is a
non-negative integer, and R = ( 1

2γα ) 1
α . Then

φ′(λ) =


τ2m+3

2

m∑
n=0

λ2n+1
∫ π

0
sin(θ)2m+1(sin((2n+ 3)θ) − sin((2n+ 1)θ))dθ + λα−1

2 if 0 ≤ λ ≤ 1

τ2m+3

2

m∑
n=0

1
λ2n+3

∫ π

0
sin(θ)2m+1(sin((2n+ 3)θ) − sin((2n+ 1)θ)(2λ2 − 1))dθ + λα−1

2 if λ ≥ 1
,

where τ is as in Lemma A.2. In particular, when d = 4 (m = 0), we find

φ′(λ) =


−λ

2 + λα−1

2 if 0 ≤ λ ≤ 1

1 − 2λ2

2λ3 + λα−1

2 if λ ≥ 1
,

while when d = 6 (m = 1), we find

φ′(λ) =


−2λ

3 + λ3

6 + λα−1

2 if 0 ≤ λ ≤ 1

−1 + 4λ2 − 6λ4

6λ5 + λα−1

2 if λ ≥ 1
.

Proof. In view of Lemma 3.1, it suffices to compute

I(λ) :=
∫ 1

−1

t− λ

λ2 + 1 − 2λt (1 − t2)
d−3

2 dt.

Let (Un)n≥0 be the Chebyshev orthogonal polynomials of the second kind3, orthogonal with respect
to the semicircle weight t 7→

√
1 − t2 on [−1, 1]. In order to compute I(λ), the idea is to exploit their

3Three terms recurrence relation Un+1(t) = 2tUn(t) − Un−1(t), n ≥ 1, with U0(t) = 1 and U1(t) = 2t.
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generating series formula, which states, for |t| < 1 and |λ| < 1,

1
1 + λ2 − 2λt =

∞∑
n=0

Un(t)λn.

The orthogonality relation states, for all polynomial P of degree k ≥ 0 and all n > k,∫ 1

−1
P (t)Un(t)

√
1 − t2 dt = 0.

Now, since m := d−4
2 is a non-negative integer, the expression (t − λ)(1 − t2)m is a polynomial of

degree k = 2m+ 1 with respect to t, and therefore, when |λ| < 1,

I(λ) =
2m+1∑
n=0

λn

∫ 1

−1
(t− λ)(1 − t2)mUn(t)

√
1 − t2 dt,

where we have used crucially the identity (1 − t2) d−3
2 = (1 − t2)m

√
1 − t2. Now, to evaluate the

integral in the right-hand side above, we use the trigonometric change of variable t = cos(θ) and the
fact that Un(cos(θ)) = sin((n+ 1)θ)/ sin(θ), which give∫ 1

−1
(t− λ)(1 − t2)mUn(t)

√
1 − t2 dt =

∫ π

0
(cos(θ) − λ) sin(θ)2m+1 sin((n+ 1)θ)dθ.

It follows that if 0 < λ < 1, then using standard trigonometric formulas,

I(λ) = 1
2

m∑
n=0

λ2n+1
∫ π

0
sin(θ)2m+1(sin((2n+ 3)θ) − sin((2n+ 1)θ))dθ.

This produces the desired formula for φ′(λ) when 0 < λ < 1.
Let us establish now the formula when λ > 1. Let us set ρ := 1/λ. Then we have

I(λ) = ρ2I(ρ) + ρ(ρ2 − 1)
∫ 1

−1

(1 − t2) d−3
2

1 + ρ2 − 2ρtdt.

Since 0 < ρ < 1, proceeding as before for I(ρ), we get for the last integral∫ 1

−1

(1 − t2) d−3
2

1 + ρ2 − 2ρtdt =
m∑

n=0
ρ2n

∫ π

0
sin(θ)2m+1 sin((2n+ 1)θ)dθ

where the last step comes from symmetry of sin. Hence the desired formulas for φ′(λ). □

Lemma 3.7. Let φ be as in (3.1) with d ≥ 5, s = d− 4, α ≥ 2, and R as in Theorem 1.2. Then

φ′(λ) =


2s

(s+ 4)Rs
(−λ+ λα−1) if 0 ≤ λ ≤ 1

s

(s+ 4)Rs

(2 − (s+ 4) + (s+ 4)λ2 + 2λs+α+2

λs+3

)
if λ ≥ 1

.

Moreover φ′(λ) < 0 if 0 < λ < 1, φ′(1) = 0, while φ′(λ) > 0 if λ > 1.

Proof. From Lemma 3.1 we get

φ′(λ) = −sτs+3

Rs

∫ 1

−1

(λ− t)(1 − t2) s+1
2

(λ2 + 1 − 2λt) s+2
2

dt+ γαRαλα−1.

The idea is to imitate the proof of Lemma 3.6, and compute φ′(λ) using the following generating
series, valid for all |t| < 1 and |λ| < 1,

1
(1 + λ2 − 2λt)ℓ

=
∞∑

n=0
C(ℓ)

n (t)λn
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where (C(ℓ)
n )n≥0 are the Gegenbauer ultraspherical polynomials4 of parameter ℓ := s+2

2 , orthogonal
on [−1, 1] with respect to the measure dµ(t) = (1 − t2)ℓ− 1

2 dt = (1 − t2) s+1
2 dt. The choice of ℓ is

dictated by the formula for φ′(λ) above. Using C(ℓ)
0 = 1, C(ℓ)

1 (t) = (s+ 2)t and orthogonality gives∫ 1

−1

(λ− t)(1 − t2) s+1
2

(λ2 + 1 − 2λt) s+2
2

dt =
∞∑

n=0
λn

∫ 1

−1
(λ− t)C(ℓ)

n (t)dµ(t)

= λ

∫ 1

−1
(1 − t2)

s+1
2 dt− λ

∫ 1

−1
tC

(ℓ)
1 (t)dµ(t)

= λ

τs+3
− λ(s+ 2)

∫ 1

−1
t2(1 − t2)

s+1
2 dt

= λ

τs+3
− λ(s+ 2)Γ(3/2)Γ((s+ 3)/2)

Γ(3 + s/2)

= 2λ
(s+ 4)τs+3

.

Hence, for 0 < λ < 1, we obtain

φ′(λ) = − 2s
(s+ 4)Rs

λ+ γαRαλα−1 = 2s
(s+ 4)Rs

(
− λ+ γα

s+ 4
2s Rs+αλα−1

)
which leads to the desired formula when we take R = ( 2s

(s+4)γα )
1

s+α .
Let us consider now the case λ > 1. Denoting ρ := 1/λ, we have, factorizing 1/λ2 = ρ2,∫ 1

−1

(λ− t)(1 − t2) s+1
2

(λ2 + 1 − 2λt) s+2
2

dt = ρs+2
∫ 1

−1

(ρ− t)(1 − t2) s+1
2

(1 + ρ2 − 2ρt) s+2
2

dt+ρs+1(1−ρ2)
∫ 1

−1

(1 − t2) s+1
2

(1 + ρ2 − 2ρt) s+2
2

dt.

Now, using the fact that 0 < ρ < 1, we get, from the previous computations,∫ 1

−1

(1 − t2) s+1
2

(1 + ρ2 − 2ρt) s+2
2

dt =
∫ 1

−1
(1 − t2)

s+1
2 dt =

∫ 1

0
u−1/2(1 − u)

s+1
2 du = 1

τs+3

and

φ′(λ) = − s

Rs

( 2
(s+ 4)λs+3 − 1

λs+3 + 1
λs+1

)
+ γαRαλα−1

= 2s
(s+ 4)Rs

(2 − (s+ 4) + (s+ 4)λ2

2λs+3 + γα
s+ 4

2s Rs+αλα−1
)
.

Hence with R = ( 2s
(s+4)γα )

1
s+α we find, for λ > 1,

φ′(λ) = s

(s+ 4)Rs

(2 − (s+ 4) + (s+ 4)λ2 + 2λs+α+2

λs+3

)
.

The method works more generally when m := (d − 4 − s)/2 is a non-negative integer, by using
(1 − t2) d−3

2 = (1 − t2) d−4−s
2 (1 − t2) s+1

2 where (1 − t2) d−4−s
2 = (1 − t2)m is then a polynomial in t.

Note that limλ→1+ φ′(λ) = limλ→1− φ′(λ) = 0. If 0 < λ < 1 then φ′(λ) < 0, while if λ > 1, then
the derivative of the numerator of the fraction in the formula for φ′(λ) is

2(α+ s+ 2)λα+s+1 − 2(s+ 4)λ = 2λ((α+ s+ 2)λα+s − (s+ 4))
> 2((α+ s+ 2) − (s+ 4)) ≥ 0,

hence φ′(λ) > 0, which completes the proof. □

4Recurrence relation C
(ℓ)
n (t) = 2t(n+ℓ−1)

n
C

(ℓ)
n−1(t) − (n + 2ℓ − 2)C(ℓ)

n−2(t), n ≥ 2, C
(ℓ)
0 = 1, C

(ℓ)
1 (t) = 2ℓx. Include

Chebyshev (both kinds) and Legendre polynomials as special cases with ℓ ∈ {0, 1, 1/2}.
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3.3. Case 0 < α < 2. Let d ≥ 4 and s = d− 4. For an arbitrary R > 0 define

µ := βfmd + (1 − β)σR,

where β := 2−α
s+2 and f(x) := α+s

Rα+s|Sd−1| |x|α−41|x|≤R. The condition 0 < α < 2 ensures that 0 < β < 1
so µ is a probability measure. Since Ks ∗ µ + V is radially symmetric, for x ∈ Rd, x = λRx̂ with
λ > 0 and x̂ ∈ Sd−1, the modified potential is

φ(λ) = φµ(λ) := (Ks ∗ µ+ V )(λRx̂) =
∫
Ks(λRx̂, y)µ(dy) + γRαλα. (3.6)

The Frostman conditions are satisfied if we show that for some constant c, we have φ(λ) = c if
0 ≤ λ ≤ 1 while φ(λ) ≥ c if λ ≥ 1. Since φ is continuous on [0,+∞), and differentiable on (0,+∞),
the desired result follows from the next Lemma.

Lemma 3.8. Let φ be as in (3.6) with d ≥ 5, s = d− 4, 0 < α < 2, and R as in Theorem 1.2. Then

φ′(λ) =
{

0 if 0 < λ < 1
≥ 0 if λ > 1

.

Proof. Let us focus first on the case d = 4 (s = 0). We have

−
∫

log
(
|x− y|2

)
µ(dy) = I1(λ) + I2(λ)

where, using y = rRŷ for an arbitrary ŷ ∈ S3,

I1(λ) := −α
(

1 − α

2

)∫
S3

∫ 1

0
rα−1 log

(
λ2R2 + r2R2 − 2λR2rz · u

)
drσ1(du)

I2(λ) := −α

2

∫
S3

log
(
λ2R2 +R2 − 2λR2z · u

)
σ1(du).

By the Funk – Hecke formula (Lemma A.2), we have

I2(λ) = −α

4 τ3

∫ 1

−1
log
(
λ2R2 +R2 − 2λR2t

)√
1 − t2 dt,

I ′
2(λ) = α

2 τ3

∫ 1

−1

t− λ

λ2 + 1 − 2λt
√

1 − t2 dt,

where τ3 = 2
π is as in Lemma A.2. Now we consider two cases, 0 < λ < 1, and λ > 1. If 0 < λ < 1,

then using the generating function5 for the second kind Chebyshev polynomials (Un)n≥0, we get

I ′
2(λ) = α

2 τ3

∫ 1

−1
(t− λ)

∞∑
n=0

Un(t)λn
√

1 − t2 dt = −α

4 λ

using U0 = 1, U1(t) = 2t, and the orthonormality relation τ3
∫ 1

−1 Un(t)Um(t)
√

1 − t2 dt = 1n=m.
Next, if λ > 1, then 0 < 1/λ < 1 and by using the same method we get

I ′
2(λ) = α

2 τ3
λ

λ2

∫ 1

−1

1
λ t− 1

1 +
( 1

λ

)2 − 2 1
λ t

√
1 − t2 dt

= α

2λτ3

∫ 1

−1

(
1
λ
t− 1

) ∞∑
n=0

Un(t)
(

1
λ

)n√
1 − t2 dt

= α

2λ

( 1
2λ2 − 1

)
.

Let us consider now I1(λ). We have I1(λ) = α
2 (1 − α

2 )J(λ) where

J(λ) := −
∫ 1

0

(∫
S3

log
(
λ2R2 + r2R2 − 2λR2rz · u

)
rα−1σ(du)

)
dr

5(1 − 2tu + u2)−1 =
∑∞

n=0 Un(t)un for all |u| < 1, Un+1(t) = 2tUn(t) − Un−1(t), U0 := 1, U1(t) := 2t.
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for an arbitrary z ∈ S3. Then, by the Funk – Hecke formula here again,

J(λ) = −τ3

∫ 1

0

(∫ 1

−1
log
(
λ2R2 + r2R2 − 2λR2rt

)√
1 − t2 dt

)
rα−1dr,

J ′(λ) = 2τ3

∫ 1

0

(∫ 1

−1

rt− λ

λ2 + r2 − 2λrt
√

1 − t2 dt
)
rα−1dr.

Now, if 0 < λ < 1, then, still by using the same method,

J ′(λ) = 2τ3

(∫ λ

0
+
∫ 1

λ

)(∫ 1

−1

(
rt− λ

λ2 + r2 − 2λrt

)√
1 − t2 dt

)
rα−1dr

+ 2τ3

∫ 1

λ

(
r

r2

∫ 1

−1

(
t− λ

r(
λ
r

)2 + 1 − 2 λ
r t

)√
1 − t2 dt

)
rα−1dr

= 2τ3

λ

∫ λ

0

(∫ 1

−1

( r
λ
t− 1

) ∞∑
n=0

Un(t)
( r
λ

)n√
1 − t2 dt

)
rα−1dr

+ 2τ3

∫ 1

λ

(∫ 1

−1

(
t− λ

r

) ∞∑
n=0

Un(t)
(
λ

r

)n√
1 − t2 dt

)
rα−2dr

= 2
λ

∫ λ

0

(( r
λ

)2 1
2 − 1

)
rα−1dr + 2

∫ 1

λ

(
λ

r

1
2 − λ

r

)
rα−2dr

= 8
α(α− 2)(α+ 2)λ

α−1 − 1
α− 2λ.

Thus, if 0 < λ < 1, then

φ′(λ) = I ′
1(λ) + I ′

2(λ) + γαRαλα−1

= α

2

(
1 − α

2

)
J ′(λ) − α

4 λ+ γαRαλα−1

= −
α
2 (1 − α

2 )
α− 2 λ+ α

2

(
1 − α

2

) 8
α(α− 2)(α+ 2)λ

α−1 − α

4 λ+ γαRαλα−1

=
(
γαRα − 2

α+ 2

)
λα−1.

Now if we take R = ( 2
γα(α+2) ) 1

α , then φ′(λ) = 0 for 0 < λ < 1.
We now consider λ > 1. With J(λ) as before, we have, using again the same method,

J ′(λ) = 2τ3

∫ 1

0

(
λ

λ2

∫ 1

−1

(
r
λ t− 1

1 +
(

r
λ

)2 − 2r
λ t

)√
1 − t2 dt

)
rα−1dr

= 2τ3

∫ 1

0

(
λ

λ2

∫ 1

−1

( r
λ
t− 1

) ∞∑
n=0

Un(t)
( r
λ

)n√
1 − t2 dt

)
rα−1dr

= 1
λ3(α+ 2) − 2

λα
.

Hence, using R =
(

2
γα(α+2)

) 1
α , and the previously obtained values for J ′(λ) and I ′

2(λ), we get

φ′(λ) = βJ ′(λ) + I ′
2(λ) + γαRαλα−1

= 1
4λ3

[
α(2 − α)
α+ 2 − 4λ2 + α+ 8

α+ 2λ
α+2

]
=: G(λ)

4λ3 .

We have G(1) = α(2−α)+8
α+2 − 4 + α = 0 while G′(λ) = −8λ + 8λα+1 = 8λ(λα − 1) > 0 for λ > 1.

Hence φ′(λ) > 0 for λ > 1 and so φ(λ) is increasing for λ > 1. This ends the proof in the case d = 4.
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Finally a careful examination of the proof reveals that it still works in the case d ≥ 5 provided that
we replace Chebyshev polynomials by Gegenbauer polynomials. □

3.4. Case d = 3, s = d − 4 = −1, and 1 < α < 2. Let µ be the probability measure on R3

parametrized by R > 0, and given by the mixture (convex combination)

µ := (2 − α)fm3 + (α− 1)σR,

where f(x) := α−1
Rα−1|S2| |x|α−41|x|≤R, m3 is the Lebesgue measure on R3, and σR is the uniform

probability measure on S2
R. Since K−1 ∗µ+V is radially symmetric, for x ∈ R3, x = λRx̂ with λ ≥ 0

and x̂ ∈ Sd−1, we set

φ(λ) := (K−1 ∗µ+V )(x) = −(2−α)
∫

BR

|x−y|f(y)dy−(α−1)
∫
Sd−1

|x−Rŷ|σ1(dŷ)+γRαλα. (3.7)

The Frostman conditions are satisfied if we show that for some constant c, we have φ(λ) = c if
0 ≤ λ ≤ 1 while φ(λ) ≥ c if λ ≥ 1. Since φ is continuous on [0,+∞), and differentiable on (0,+∞),
the desired result follows from Lemma 3.9.

Lemma 3.9. Let φ be as in (3.7) with d = 3, s = −1, 1 < α < 2, and R as in Theorem 1.2. Then

φ′(λ) =
{

0 if 0 < λ < 1
≥ 0 if λ > 1

.

Proof. By the Funk – Hecke formula (Lemma A.2),∫
|x− y|f(y)dy = α− 1

Rα−1

∫ 1

0

(∫
S2

√
λ2R2 − 2R2rλz · y − r2R2 σ1(dy)

)
Rα−1rα−2dr

= (α− 1)R2

∫ 1

0

(∫ 1

−1

√
λ2 − 2rλt+ r2dt

)
rα−2dr

= (α− 1)R6

∫ 1

0

( (r + λ)3 − |r − λ|3

λ

)
rα−3dr,

while ∫
|x−Ry|σ1(dy) =

∫
S2

√
λ2R2 − 2R2λz · y +R2 σ1(dy)

= R

2

∫ 1

−1

√
λ2 − 2λt+ 1 dt

= R

6

( (1 + λ)3 − |1 − λ|3

λ

)
which gives after some computations

φ(λ) = γRαλα +R


1 − α

(1 + α)λ − λ if λ ≥ 1

−
2
(
α2 + λα − 1

)
α(α+ 1) if λ ≤ 1

,

thus

φ′(λ) = γαRαλα−1 +R


α− 1

(α+ 1)λ2 − 1 if λ > 1

− 2
α+ 1λ

α−1 if 0 < λ < 1
.

The condition φ′(λ) = 0 when 0 < λ < 1 forces R =
(

2
γα(α+1)

) 1
α−1 , and with this choice, for λ > 1,

φ′(λ) = R
( 2
α+ 1λ

α−1 − 1 + α− 1
(α+ 1)λ2

)
.
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We have lim
λ→1+

φ′(λ) = R
( 2
α+ 1 − 1 + α− 1

α+ 1

)
= 0, while for λ > 1,

φ′′(λ) = 2Rα− 1
α+ 1(λα−2 − λ−3) > 0.

□

Appendix A. Useful tools

The (generalized) hypergeometric function, when it makes sense, is given by

pFq(a1, . . . , ap; b1, . . . , bq; z) :=
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k! , (A.1)

where a1, . . . , ap, b1, . . . , bq, z ∈ C, (z)k := z(z+1) · · · (z+k−1) is the Pochhammer symbol for rising
factorial, with convention (z)0 := 1 if z ̸= 0. If ℜ(z) > 0 then (z)k = Γ(z + k)/Γ(z). The series is
a finite sum when at least one of the ai’s is a negative integer. It is undefined if at least one of the
bi’s is a negative integer, and we exclude this somewhat trivial situation from now on. If p = q + 1
then the series converges if |z| < 1. If p < q + 1 then it converges for all z, while if p > q + 1 then it
diverges for all z as soon as none of the ai’s is negative integer. We primarily use (p, q) = (2, 1) (the
Gauss hypergeometric function) and (p, q) = (3, 2).

The following lemma states that 2F1 appears as the series expansion of a certain Euler type integral,
which follows essentially by using the binomial series expansion (1 − zu)−a =

∑∞
n=0

(−a
n

)
(−zu)n

together with classical Euler Beta integrals. This is useful for the handling of certain of our integrals.

Lemma A.1 (Euler integral formula for 2F1, see [2, Th. 2.2.1, p. 65] or [1, Eq. 15.3.1]). For all
a, b, c, z ∈ C with ℜ(c) > ℜ(b) > 0 and |z| < 1,∫ 1

0
ub−1(1 − u)c−b−1(1 − zu)−adu = Γ(b)Γ(c− b)

Γ(c) 2F1(a, b; c; z).

This formula allows 2F1(a, b; c; z) to be defined, by analytic continuation, for all z ∈ C \ [1,+∞).
Additionally, if ℜ(c− a− b) > 0, then the series (A.1) for 2F1 converges absolutely at z = 1 and

2F1(a, b; c; 1) = Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) .

Our main tool to reduce multivariate integrals into univariate integrals is the Funk – Hecke formula,
that gives the projection on any diameter of the uniform distribution on the sphere.

Lemma A.2 (Funk – Hecke formula, see [22, p. 18], [7, Eq. (5.1.9), p. 197]). Let σ1 denote the uniform
probability measure on Sd−1, d ≥ 2. Then, for all x̂ ∈ Sd−1,∫

Sd−1
f(x̂ · ŷ)σ1(dŷ) = τd−1

∫ 1

−1
f(t)(1 − t2)

d−3
2 dt,

where

τd−1 :=
(∫ 1

−1
(1 − t2)

d−3
2 dt

)−1

=
Γ( d

2 )
Γ( 1

2 )Γ( d−1
2 )

.

In probabilistic terms, this means that if Y is a random vector of Rd uniformly distributed on
Sd−1 then for all x̂ ∈ Sd−1, the law of x̂ · Y has density τd−1(1 − t2) d−3

2 1t∈[−1,1]. This is an arcsine
law when d = 2, a uniform law when d = 3, a semicircle law when d = 4, and more generally, for
arbitrary values of d ≥ 2, the image law by the map u 7→

√
u of a beta law.

Remark A.3 (Scale invariance and homogeneous external field). Let µγ
eq be the equilibrium measure

associated with Ks, s > −2, and V = γ |·|α, α > 0, γ > 0. In some sense, α is a shape parameter
while γ can be either a shape or scale parameter. Indeed, the homogeneity of Ks and V give

µγ
eq = dilationγ−1/α(µγ−s/α

eq )),
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and in particular if s = 0 then µγ
eq = dilationγ−1/α(µ1

eq), where dilationc(µ) stands for the push
forward of µ by the map x 7→ cx. Such scaling properties play a role in various problems, see for
instance Saff and Totik [24, Section IV.4] and Hedenmalm and Makarov [18].

Figure 3. Projection on x1 = 0 of a discrete numerical approximation of the equi-
librium measure µeq with N = 104 in the case where s = 0, d = 4, and V = |·|44.
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[9] J. A. Cañizo, J. A. Carrillo, and F. S. Patacchini. Existence of compactly supported global minimisers for the
interaction energy. Arch. Ration. Mech. Anal., 217(3):1197–1217, 2015.

[10] J. A. Carrillo, A. Figalli, and F. S. Patacchini. Geometry of minimizers for the interaction energy with mildly
repulsive potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire, 34(5):1299–1308, 2017.
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