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The aim of this note is to provide a full space quadratic external field extension 
of a classical result of Marcel Riesz for the equilibrium measure on a ball 
with respect to Riesz s-kernels. We address the case s = d − 3 for arbitrary 
dimension d, in particular the logarithmic kernel in dimension 3. The equilibrium 
measure for this full space external field problem turns out to be a radial arcsine 
distribution supported on a ball with a special radius. As a corollary, we obtain 
new integral identities involving special functions such as elliptic integrals and 
more generally hypergeometric functions. It seems that these identities are not 
found in the existing tables for series and integrals, and are not recognized by 
advanced mathematical software. Among other ingredients, our proofs involve the 
Euler – Lagrange variational characterization, the Funk – Hecke formula, the Weyl 
regularity lemma, the maximum principle, and special properties of hypergeometric 
functions.
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1. Introduction and main results

The goal of this note is to provide a full space quadratic external field extension (Theorem 1.4 below) of 
a classical result of Marcel Riesz (Theorem 1.1 below) for the equilibrium measure on a ball in arbitrary 
dimensions with respect to Riesz s-kernels, including the logarithmic kernel. The equilibrium measure turns 
out to be a radial arcsine distribution. As corollaries, we obtain new integral identities involving special 
functions such as elliptic integrals and more generally hypergeometric functions; see, for example, Corollar-
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ies 1.3, 1.5, and 1.6 below. It seems that these identities are not found in the existing tables for series and 
integrals, and are not recognized by advanced mathematical software.

Before we present our results and identities, we recall some basic notions from potential theory. Through-
out this note, we denote by d the Euclidean dimension, which is always a positive integer, and by 
s ∈ (−2, +∞) the Riesz parameter. For x ∈ Rd, x �= 0, the Riesz s-kernel is defined by

Ks(x) :=
{

sign(s) |x|−s if −2 < s < 0 or s > 0
− log |x| if s = 0

, (1.1)

where |x| :=
√

x2
1 + · · · + x2

d is the Euclidean norm. It is the Coulomb or Newton kernel if s = d −2. Let M1
be the set of probability measures on Rd and let V : Rd �→ (−∞, +∞] be a lower semicontinuous function, 
which will play the role of an external field. In this note we only deal with either an external field constant 
on a centered ball and infinite outside the ball, or with a quadratic external field of the form V (·) = γ |·|2, 
γ > 0. The energy of μ ∈ M1 with external field V is defined by

I(μ) :=
¨

Rd×Rd

(Ks(x− y) + V (x) + V (y))μ(dx)μ(dy) ∈ (−∞,+∞]. (1.2)

For s ∈ (−2, d), with our choices of V , the integrand in the double integral in (1.2) is bounded below, I is 
strictly convex1 on M1 and lower semicontinuous with compact level sets.2 It has a unique global minimizer 
called the “equilibrium measure” μeq ∈ M1; in other words,

I(μeq) = min
μ∈M1

I(μ) and I(μ) > I(μeq) for all μ �= μeq, μ ∈ M1. (1.3)

Moreover, μeq is compactly supported with finite energy I(μeq) < +∞. We refer to [21] and [5] for more 
details. If s < 0, then Ks is not singular and we could have I(μ) < ∞ for a μ ∈ M1 having Dirac masses; in 
particular μeq could conceivably have Dirac masses. In contrast, if s ≥ 0 then Ks is singular and I(μ) = +∞
whenever μ has Dirac masses; consequently μeq cannot have such masses.

We first recall a classical result of M. Riesz for the equilibrium measure with constant external field in a 
closed ball and infinite outside the ball. For R > 0, let

BR := {x ∈ Rd : |x| ≤ R} and SR := {x ∈ Rd : |x| = R}

denote the ball and sphere of radius R centered at the origin. In particular S1 = Sd−1 is the unit sphere, 
with surface area |Sd−1| = 2πd/2/Γ(d/2). For a subset S of Rd, we denote, when it makes sense, by σS the 
uniform probability measure on S (normalized trace of Lebesgue measure).

Theorem 1.1 (Riesz [29]). Suppose that d ∈ {2, 3, 4, . . .} and V =
{

0 on BR

+∞ outside BR

, R > 0.

• If −2 < s ≤ d − 2, then μeq = σSR
,

• If d − 2 < s < d, then μeq is the probability measure

μeq(dx) =
Γ(1 + s

2 )
Rsπ

d
2 Γ(1 + s−d

2 )
1|x|≤R

(R2 − |x|2) d−s
2

dx =
2Γ(1 + s

2 )
RsΓ(1 + s−d

2 )Γ(d2 )
rd−11r≤R

(R2 − r2) d−s
2

drdσS1 , (1.4)

1 In other words, Ks is conditionally strictly positive in the sense of Bochner, see for instance [5, Section 4.4].
2 We follow the probability theory standard and equip the convex set M1 with the topology of weak convergence with respect 

to continuous and bounded test functions, in other words the weak-∗ convergence.
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where dx and dr denote the Lebesgue measures on Rd and on [0, +∞) respectively.
Moreover, the equilibrium potential Uμeq satisfies, for x ∈ BR,

Uμeq(x) := (Ks ∗ μeq)(x) =
ˆ

Rd

Ks(x− y)μeq(dy) = I(μeq) =
Γ(1 + s

2 )Γ(d−s
2 )

RsΓ(d2 )
. (1.5)

The case d − 2 < s < d in Theorem 1.1 is a direct consequence of the following formula.

Lemma 1.2 (Riesz formula [29]). If d ∈ {2, 3, 4, . . .}, 0 ≤ d − 2 < s < d, and R > 0, then for x ∈ BR,

ˆ

Rd

|x− y|−s

(R2 − |y|2) d−s
2

1|y|≤Rdy = π
d
2 +1

Γ(d2 ) sin(π2 (d− s))
. (1.6)

The proof of Theorem 1.1 and Lemma 1.2 can be found, together with some geometric aspects, in the 
works of M. Riesz [28, p. 438–439] and [29, § 16, Eq. (1)], where it is mentioned that the cases d = 1, 2, 3 were 
already considered by Pólya and Szegő in [27]. It can also be found in the book [21, § II.3.13, p. 163–164, 
and Appendix, p. 399 – 400], and is stated in [5, Eq. (4.6.13)]. The proof sketched by Riesz, with a bit more 
detail by Landkof, involves first a geometric inversion transforming the integral on the ball into an integral 
on its complement, and second a trigonometric substitution which has a geometric interpretation, both steps 
being inspired by the analytic-geometric techniques used classically for elliptic integrals since the eighteenth 
century. For the reader’s convenience, a detailed proof of Lemma 1.2 is given in Appendix C.

Our first result, Corollary 1.3, is a simple consequence of Theorem 1.1. It relates an equilibrium measure 
of potential theory with an integral identity for special functions (here a 2F1 hypergeometric function). 
Before stating it, let us recall the Newton binomial series

1
(1 − z)α =

∞∑
n=0

(α)n
zn

n! , α, z ∈ C, |z| < 1, (1.7)

where (α)n := α(α+1) · · · (α+n −1) is the Pochhammer symbol for the rising factorial, with the convention 
(α)0 := 1 if α �= 0. If 
(α) > 0, then (α)n = Γ(α + n)/Γ(α). More generally, the hypergeometric function
with parameters (a1, . . . , ap) ∈ Cp and (b1, . . . , bq) ∈ Cq, at z ∈ C, |z| < 1, is given (when it makes sense) 
by the series

pFq(a1, . . . , ap; b1, . . . , bq; z) :=
∞∑

n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n! . (1.8)

Special choices of the parameters a1, . . . , ap and b1, . . . , bq allow us to recover many special functions, for 
instance 2F1(α, β; β; z) = (1 − z)−α, 2F1(1, 1; 2; −z) = log(1+z)

z , and 2F1(1
2 , 

1
2 ; 32 ; z2) = arcsin(z)

z . Actually 
one of the main historical motivations for the introduction and study of hypergeometric functions is the 
unification of as many as possible special functions via series expansions. For instance the complete elliptic 
integral of first and second kind, K and E respectively, satisfy for z ∈ [0, 1],

K(z) :=

π
2ˆ

0

dθ√
1 − z sin2(θ)

=
1ˆ

0

dt√
1 − zt2

√
1 − t2

= π

2 2F1

(1
2 ,

1
2 ; 1; z

)
(1.9)

and
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E(z) :=

π
2ˆ

0

√
1 − z sin2(θ) dθ =

1ˆ

0

√
1 − zt2√
1 − t2

dt = π

2 2F1

(
− 1

2 ,
1
2 ; 1; z

)
. (1.10)

They can be extended to the complex plane, with a branch cut discontinuity running from 1 to ∞. For more 
basic facts about these functions, we refer for instance to the classical books [15,7]. Here we only remark 
that K, E ≥ 0 on the interval [0, 1], K(0) = E(0) = π

2 , K(1) = ∞, and E(1) = 1.
The following identity is an easy consequence of Theorem 1.1 (see Section 2.1 and Remark 2.4).

Corollary 1.3 (Special function identity3). For d ∈ {2, 3, 4, . . .}, d − 2 < s < d, λ ∈ [0, 1],

1ˆ

0

2F1

(
s

4 ,
s + 2

4 ; d2 ; 4r2λ2

(λ2 + r2)2

)
rd−1

(λ2 + r2) s
2 (1 − r2) d−s

2
dr = π

2 sin(π2 (d− s)) . (1.11)

Here are some special cases worth noting for the hypergeometric function in (1.11):

• for (d, s) = (2, 1) we get 2F1
(
s
4 ,

s+2
4 ; d

2 ; z
)

= 2F1
( 1

4 ,
3
4 ; 1; z

)
=

2K
(

2
√

z√
z+1

)
π
√√

z+1
.

• for (d, s) = (3, 2) we get 2F1
(
s
4 ,

s+2
4 ; d

2 ; z
)

= 2F1
( 1

2 , 1; 3
2 ; z

)
= tanh−1(

√
z)√

z
.

• for (d, s) = (5, 4) we get 2F1
(
s
4 ,

s+2
4 ; d

2 ; z
)

= 2F1
(
1, 3

2 ; 5
2 ; z

)
= 3

(√
z tanh−1(

√
z)−z

)
z2 .

Our main potential theoretic result is the following external field version of Theorem 1.1.

Theorem 1.4 (Main result). Suppose that d ∈ {2, 3, 4, . . .} and s = d − 3, namely

(d, s) ∈ {(2,−1), (3, 0), (4, 1), . . .}.

Let

R :=
(
cd,d−3

√
π

4γ
Γ
(
d+1
2

)
Γ
(
d+2
2

)) 1
d−1

, where cd,s :=
{
|s|(d− 2 − s) if s �= 0
d− 2 if s = 0

. (1.12)

If V = γ |·|2, γ > 0, then the equilibrium measure μeq for the minimum energy problem on Rd (1.2)–(1.3)
with kernel Ks and external field V is the “radial arcsine distribution”

μeq(dx) =
Γ
(
d+1
2

)
π

d+1
2 Rd−1

1|x|≤R√
R2 − |x|2

dx =
2Γ

(
d+1
2

)
√
πΓ(d2 )Rd−1

rd−11r≤R√
R2 − r2

dr dσS1 , (1.13)

where dx and dr are the Lebesgue measures on Rd and on [0, ∞) respectively. Moreover, this μeq is also the 
equilibrium measure in Theorem 1.1 with s = d − 1 and R as in (1.12).

Theorem 1.4 is proved in Section 2.2.
Several extensions of Theorem 1.4 for more general (d, s) or V are considered in [10].

3 It is worth noting that 4r2λ2 ≤ (λ2 + r2)2 with equality if and only if λ = r, so that the radius of convergence of the 2F1 in 
(1.11), which is equal to 1, is reached in the interior of the interval of integration over r when λ ∈ [0, 1).
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Table 1
Some special values of the critical radius R in Theorem 1.4, with γ = 1.

d = 2, s = −1 d = 3, s = 0 d = 4, s = 1 d = ∞, s = ∞ − 3

π

8
≈ 0.392699

1√
3

≈ 0.57735
1
2

3

√
3π
4

≈ 0.665335 1

Table 1 gives values of the radius R in (1.12) for γ = 1 and various values of d. For γ = 1, integer d ≥ 2, 
the function d �→ R achieves its minimum ≈ 0.392699 at d = 2 (s = −1) and its maximum ≈ 1.04747 at 
d = 16 (s = 13), and these values are the unique extreme points. Regarding high dimensional behavior or 
asymptotic analysis, we have limd=s+3→∞ R = 1.

As we shall verify, Theorem 1.4 yields the following integral formulas.

Corollary 1.5 (Integral formula). Let d ∈ {2, 3, 4, . . .} and λ ∈ [0, 1]. Then

1ˆ

0

Sd−3

( 4λr
(λ + r)2

) (λ + r)3−drd−1 dr√
1 − r2

=
π

3
2 Γ(d−1

2 )
2d+1Γ(d2 )

((3
d
− 1

)
λ2 + 1

)
, (1.14)

where

Ss(z) :=

π
2ˆ

0

sins+1(2α)dα
2s+1(1 − z sin2(α)) s

2
=

1ˆ

0

ts+1(1 − t2) s
2 dt

(1 − zt2) s
2

=
Γ( s+2

2 )2

2Γ(s + 2) 2F1

(s + 2
2 ,

s

2 ; s + 2; z
)
. (1.15)

Equivalently, for d ∈ {2, 3, 4, . . .} and λ ∈ [0, 1],

1ˆ

0

2F1

(d− 1
2 ,

d− 3
2 ; d− 1; 4λr

(λ + r)2
) (λ + r)3−drd−1

√
1 − r2

dr = π

4

((3
d
− 1

)
λ2 + 1

)
. (1.16)

Corollary 1.5 is proved in Section 2.3.
The formula (1.16) comes from the Euler – Lagrange characterization related to Theorem 1.4. Numerical 

experiments suggest that (1.14) and (1.16) remain valid whenever the parameter d > 1 is real.
It is tempting to regard Ss as a special function in its own right. When (d, s) = (2, −1), it becomes the 

complete elliptic integral of the second kind, namely S−1 = E, and (1.14) becomes (1.19) below.

Corollary 1.6 (More integral formulas4). For λ ∈ [0, 1],

1ˆ

0

(
(λ + r)2 log(λ + r) − (λ− r)2 log |λ− r|

) r dr√
1 − r2

= π
(λ3

3 + (1 − log 2)λ
)
, (1.17)

1ˆ

0

((λ + r) log(λ + r) − (λ− r) log |λ− r|) r dr√
1 − r2

= π

2

(
λ2 + 1

2 − log 2
)
, (1.18)

1ˆ

0

E

(
4λr

(λ + r)2

)
(λ + r)r dr√

1 − r2
= π2

8

(λ2

2 + 1
)
, (1.19)

4 Note that 4rλ
(λ+r)2 = 4x

(1+x)2 with x := λ
r . The map x 	→ 4x

(1+x)2 is the Landen transform of elliptic integrals.
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1ˆ

0

K

(
4λr

(r + λ)2

)
(λ− r)r dr√

1 − r2
= π2

8

(3λ2

2 − 1
)
, (1.20)

where E and K are the special functions defined in (1.10) and (1.9).

Corollary 1.6 is proved in Section 2.4 by applying further transformations to the Euler – Lagrange condi-
tions of Theorem 1.4 in the special cases (d, s) ∈ {(2, −1), (3, 0)}.

To the best of our knowledge, the formulas provided by Corollaries 1.3, 1.5, and 1.6 are not found in 
the existing catalogs of identities and tables for series and integrals such as [12], [26], and [6], and are not 
recognized by advanced software such as Maplesoft Maple and Wolfram Mathematica. However it is worth 
noting that these softwares do recognize the first parts of (1.17) and (1.18) in terms of 3F2:

1ˆ

0

(λ + r)2 log(λ + r) r dr√
1 − r2

=
π 3F2

( 1
2 , 1, 1; 2, 3; 1

λ2

)
16λ −

2 3F2
(
1, 1, 3

2 ; 5
2 ,

7
2 ; 1

λ2

)
45λ2 + πλ

4 + 3λ(2λ + π) + 4
6 log(λ) + 1 (1.21)

and

1ˆ

0

(λ + r) log(λ + r) r dr√
1 − r2

=
32λ 3F2

( 1
2 , 1, 1; 3

2 ,
5
2 ; 1

λ2

)
− 3π 3F2

(
1, 1, 3

2 ; 2, 3; 1
λ2

)
+ 24λ2((4λ + π) log(λ) + π)

96λ2 . (1.22)

2. Proofs

2.1. Proof of Corollary 1.3

Let us consider the settings of Theorem 1.1 in the case d − 2 < s < d. By scaling we can assume without 
loss of generality that R = 1. Then, using the Funk –Hecke formula (A.11), we get, for x ∈ Rd, x �= 0, 
denoting λ := |x| and C := Γ(1+ s

2 )

π
d
2 Γ(1+ s−d

2 )
,

Uμeq(x) = C

ˆ

|y|≤1

|x− y|−s

(1 − |y|2) d−s
2

dy

= C

1ˆ

0

(ˆ
S1

(λ2 + r2 − 2λr x
|x| · u)− s

2

(1 − r2) d−s
2

rd−1du
)

dr

= Cτd−1|S1|
1ˆ

0

( 1ˆ

−1

(1 − t2) d−3
2

(λ2 + r2 − 2λrt) s
2
dt
) rd−1

(1 − r2) d−s
2

dr.

Now, since 2λr
(λ2+r2) ∈ [0, 1/2], using the Newton binomial series (1.7),

1ˆ (1 − t2) d−3
2

(λ2 + r2 − 2λrt) s
2
dt = 1

(λ2 + r2) s
2

1ˆ (1 − t2) d−3
2

(1 − 2λr
λ2+r2 t)

s
2
dt
−1 −1
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= 1
(λ2 + r2) s

2

∞∑
n=0

( s2)2n
(2n)!

( 4r2λ2

(λ2 + r2)2
)n

1ˆ

−1

(1 − t2)
d−3
2 t2ndt

= 1
(λ2 + r2) s

2

∞∑
n=0

( s2)2n
(2n)!

( 4r2λ2

(λ2 + r2)2
)nΓ(d−1

2 )Γ(n + 1
2 )

Γ(d2 + n)

=
√
πΓ(d−1

2 )
Γ(d2 )

2F1

(
s
4 ,

s+2
4 ; d

2 ; 4r2λ2

(r2+λ2)2

)
(λ2 + r2) s

2
,

where we have use the identities (related to the Legendre duplication formula (A.2))

(s
2

)
2n

= 22n
(s

4

)
n

(s
4 + 1

2

)
n

and 22n
(1

2

)
n

= (2n)!
n! .

Note that we could alternatively proceed as in the proof of Lemma B.2 and use the Euler integral formula 

(A.10). Next, using the fact that τd−1 = Γ( d
2 )√

πΓ( d−1
2 ) , we get, for x ∈ Rd, x �= 0,

Uμeq(x) = C|S1|
1ˆ

0

2F1

(
s

4 ,
s + 2

4 ; d2 ; 4r2λ2

(λ2 + r2)2

)
rd−1

(λ2 + r2) s
2 (1 − r2) d−s

2
dr.

(This last integral may be compared with extensions of the Beta integral in [13, Th. 5.1] and [31]).
Now, the Euler – Lagrange conditions (A.14) and the continuity of Uμeq give that this quantity is constant 

on B1. Finally the value of the constant can be obtained from (1.6). �
2.2. Proof of Theorem 1.4

We split the proof into several subsections.

2.2.1. Computation of critical radius and candidate equilibrium measure
From the uniqueness property we know that the equilibrium measure μeq is radially symmetric. Let us 

make a succession of assumptions to extract a candidate for μeq, and we will then check that it indeed satisfies 
the Euler – Lagrange conditions (A.14). We start by observing from (A.14) that, for x ∈ S∗ := supp(μeq),

ˆ
Ks(x− y)μeq(dy) + γ|x|2 = c. (2.1)

Applying the Laplacian operator to (2.1) and assuming it can be taken inside the integral, we get from (2.1)
and (A.15) that for all x in the interior of S∗,

−cd,s

ˆ
Ks+2(x− y)μeq(dy) + 2γd = 0. (2.2)

In our case s = d − 3, so cd,s = cd,d−3 is equal to |d − 3| if d �= 3 while it is equal to 1 if d = 3.
Next suppose that S∗ = BR for some R > 0. Let νR be the equilibrium measure for the minimum energy 

problem on BR with kernel Ks+2 = |·|−(s+2) and V = 0. Observing that νR is the dilation by a factor of R
of ν1, we see from Theorem 1.1 that νR is the “radial arcsine distribution”; in other words, the measure

νR(dx) = Cd,R√
2 2

1|x|≤R dx, where Cd,R =
2Γ

(
d+1
2

)
√ (

d
)

d−1 =
Γ
(
d+1
2

)
d−1 d+1 . (2.3)
R − |x| |S1| πΓ 2 R R π 2
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In particular, the support of νR is all of BR. Next, by definition of νR, the associated Euler – Lagrange 
conditions state that, for some constant WR,

ˆ
Ks+2(x− y)νR(dx) = WR, for y ∈ BR. (2.4)

As d = s + 3 we obtain (using y = 0 ∈ BR)

WR = W1

Rs+2 = W1

Rd−1 and W1 = Cd,1|S1|
1ˆ

0

r−(s+2)rd−1
√

1 − r2
dr =

√
π

Γ
(
d+1
2

)
Γ
(
d
2
) . (2.5)

To derive the value of R we first integrate (2.2) with respect to νR(dx) and swap the integrals, assuming 
that this is legal, giving

−cd,s

ˆ (ˆ
Ks+2(x− y)νR(dx)

)
μeq(dy) + 2γd = 0. (2.6)

Then, using (2.4) and (2.5) in (2.6), we get

cd,s
√
πΓ

(
d+1
2

)
Γ
(
d
2
) R−s−2 = 2γd.

Finally, from the formula zΓ(z) = Γ(z + 1) with z = d/2, we derive the desired formula for R, namely

R =
(
cd,d−3

√
πΓ(d+1

2 )
4γΓ(d+2

2 )

) 1
d−1

=
(
cs+3,s

√
πΓ( s+4

2 )
4γΓ( s+5

2 )

) 1
s+2

. (2.7)

See also Remark 2.4 for an alternative way to compute this critical value of R.

2.2.2. Euler – Lagrange characterization
The probability measure νR in (2.3) with R as in (2.7) satisfies the Frostman conditions (A.14) with 

kernel Ks and V = γ |·|2 thanks to Lemma 2.1 below.

Lemma 2.1 (Potentials). Let R be as in (2.7) and define Φ := Ks ∗ νR + γ |·|2. Then,

• Φ is continuous on Rd;
• Φ = Φ(0) on BR;
• Φ ≥ Φ(0) outside BR.

Proof. As Ks ∗ νR is radially symmetric, so is Φ. Thus we define for any λ ≥ 0,

ϕ(λ) := Φ (λRx̂) for any x̂ ∈ Rd with |x̂| = 1. (2.8)

Using from Lemma A.1 that Ks ∗νR ∈ L1
loc(Rd, dx) and we can swap the Laplacian and the Riesz potential, 

we get

ΔΦ = −cs+3,sKs+2 ∗ νR + 2dγ. (2.9)

Moreover, νR and the radius R have been chosen in the preceding subsection precisely in such a way that 
on int(BR) := {x ∈ Rd : |x| < R},
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ΔΦ = −cs+3,sKs+2 ∗ νR + 2dγ = 0. (2.10)

Continuity of Φ. At this step, let us remark that when d < 6, Lemma A.1 (iv) gives that Ks ∗ νR is 
continuous on Rd since dνR

dx ∈ Lp(Rd, dx), 2 > p > d/(d − s) = d/3 (recall that s = d − 3).
Actually Ks∗νR is continuous on Rd for arbitrary dimension d. Indeed, this can be checked directly, in the 

case (d, s) = (2, −1), since K−1 is not singular. This can also be checked directly in the case (d, s) = (3, 0)
from the formula provided by Lemma B.1. Finally, in the case s = d − 3 > 0, using Lemma B.1 and 
Lemma B.2 and the change of variable r = sin(θ) to remove the singularity at the edge r = 1, we get, for 
x ∈ Rd, with λ = |x|/R, for some constant Cs > 0,

(Ks ∗ νR)(x) = Cs

π
2ˆ

0

2F1

(s
2 + 1, s2 ; s + 2; 4λ sin(θ)

(λ + sin(θ))2
) sin(θ)s+2

(λ + sin(θ))s dθ. (2.11)

The continuity of Ks ∗ νR follows then from the uniform continuity of the hypergeometric function. Indeed, 
by (A.4) the series that defines 2F1(a, b; c; z) converges absolutely for z ∈ [0, 1] (and remarkably for z = 1) 
when c − a − b > 0 as in our case c − a − b = 1. The hypergeometric function 2F1

(
s
2 + 1, s

2 ; s + 2; z
)

is 
uniformly continuous on [0, 1] since it is clearly analytic on [0, 1) and it is also continuous at z = 1; the 
latter assertion follows from Abel’s Limit Theorem [1, Sec. 2.5] and the fact that 2F1

(
s
2 + 1, s

2 ; s + 2; 1
)

is 
finite. Furthermore λ = 0 is not a problem as soon as we establish the fact that Φ is harmonic (in fact 
constant) in the unit disk (see below!).

Constantness on BR. It follows from Lemma 2.2.
Behavior outside BR. Since ϕ defined in (2.8) is continuous on [0, +∞) and differentiable on (1, +∞), 

the Frostman condition outside BR is realized if we show that ϕ′(λ) ≥ 0 for λ > 1.
Let us first consider the case (d, s) = (2, −1). By Lemma B.3, ϕ is convex on [1, +∞) since

ϕ′′(λ) = R

√
1 − 1

λ2

2λ −R
arcsin

( 1
λ

)
2 + 2γR2 ≥ 0 − π

8γ

π
2
2 + 2 π2

64γ = 0, λ > 1. (2.12)

Moreover since (B.8) gives limλ→1+ ϕ′(λ) = − π
16γ

π
2 + 2 π2

64γ = 0, it follows that ϕ′(λ) ≥ 0 when λ > 1.
Finally, consider the case (d, s) = (3, 0). By Lemma B.4, if λ > 1,

ϕ′(λ) = 2
√
λ2 − 13

3γλ2 ≥ 0. (2.13)

Let us now consider the case s = d − 3 > 0. We can rewrite (2.11) as

ϕ(λ) = Cs

1ˆ

0

h(λ, r) rd−1
√

1 − r2
dr, (2.14)

where

h(λ, r) := 2F1

(
s

2 + 1, s2 ; s + 2; 4λr
(λ + r)2

)
(λ + r)−s (2.15)

= 2F1

(
s

4 ,
s + 2

4 ; s + 3
2 ; 4λ2r2

(λ2 + r2)2

)(
λ2 + r2)− s

2 (2.16)

where the last equality comes from the quadratic transformation (A.6). Differentiating (2.15) with
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z = 4λr
(λ + r)2 ,

∂z

∂λ
= 4r(r − λ)

(λ + r)3

and using the derivative formula (A.9) for 2F1 we get

∂h

∂λ
(λ, r) = sr(r − λ)(λ + r)−s−3

2F1

(
s

2 + 2, s2 + 1; s + 3; 4λr
(λ + r)2

)
− s(λ + r)−s−1

2F1

(
s

2 + 1, s2 ; s + 2; 4λr
(λ + r)2

)
. (2.17)

The only potential difficulties are when the argument of the hypergeometric functions is z = 1. As before 
z ∈ [0, 1] and z = 1 ⇐⇒ λ = r. The parameters in the first hypergeometric function in (2.17) satisfy 
c − a − b = 0, so by the property (A.5) of 2F1, we get

lim
λ→r

(r − λ) 2F1

(
s

2 + 2, s2 + 1; s + 3; 4λr
(λ + r)2

)
= 0.

As before, the second hypergeometric function in (2.17) has parameters which satisfy c − a − b = 1 > 0. 
Thus ∂h∂λ (λ, r) is uniformly continuous for r ∈ [0, 1] and λ ≥ 0, so by the Leibniz integral rule

ϕ′(λ) = Cs

π
2ˆ

0

∂h

∂λ
(λ, sin(θ)) sin(θ)d−1 dθ

and ϕ′(λ) is continuous for λ ≥ 0. In particular

lim
λ→1+

ϕ′(λ) = ϕ′(1).

Let us show now that ϕ′(λ) ≥ 0 for λ ≥ 0.
Since s + 2 = d − 1 > d − 2, the function Ks+2 ∗ νR is subharmonic outside the support BR of νR, see for 

instance [21, Th. I.1.4, p. 66]. Since it is continuous everywhere in Rd even at ∞, it follows by the maximum 
principle applied on the complement of BR, that for |x| ≥ R,

I(νR) ≥ UνR(x) =
ˆ

Rd

1
|x− y|s+2 νR(dy) (2.18)

(equality holds for |x| = R by Theorem 1.1). It follows by using (1.5) and (2.9) that ΔΦ(x) ≥ 0 for |x| > R. 
Next, using the radial form of the Laplacian,

1
λd−1

(
λd−1ϕ′(λ)

)′ ≥ 0 for λ > 1.

Thus 
λ̂

ρ

[τd−1ϕ′(τ)]′ dτ ≥ 0 for λ ≥ ρ > 1, and so

λd−1ϕ′(λ) ≥ ρd−1ϕ′(ρ).

Finally, letting ρ → 1+ we get, as ϕ′(1) = 0,

ϕ′(λ) ≥ 0 for λ ≥ 1.
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We also know that ϕ is constant for 0 ≤ λ ≤ 1, so ϕ′(λ) ≥ 0 for λ ≥ 0. �
Lemma 2.2 (Laplacian inversion or Liouville lemma). Let Φ : int(BR) → R, d ≥ 2, R > 0. If

• (local integrability) Φ ∈ L1
loc(dx);

• (weak harmonicity) ΔΦ = c for a constant c, in the sense of Schwartz distributions;
• (radial symmetry) Φ is equal to a constant on the sphere Sr for all r < R;

then Φ is C∞ and is given by Φ = c
2d |·|

2 + Φ(0). In particular Φ is constant when c = 0.

Related statements can be found in [30, Sec. 0.3] for d = 2, and in [21, Th. 3.3, Ch. III, p. 183].

Remark 2.3 (Extension). Lemma 2.2 extends to the case where ΔΦ is a C∞ radial function on BR, say 
ΔΦ = A(|·|). Indeed the same proof gives Φ = Φ(0) +B(|·|), where B solves rB′′(r) + (d − 1)B′(r) = A(r), 
0 < r < R, with B(0) = B′(0) = 0, which gives B(r) =

´ r

0 u1−d
( ´ u

0 vd−1A(v)dv
)
du. Thus

B(r) =
rˆ

0

(k(r) − k(v))vd−1A(v)dv with k(v) :=
{

v2−d

2−d if d �= 2
log(v) if d = 2

.

If A is a polynomial of degree m, then B is a polynomial of degree m + 2, while if A is a hypergeometric 
series, then B is also a hypergeometric series. For an arbitrary integer m ≥ 1, repeating this procedure gives 
a symmetric polynomial in d variables Φ such that ΔmΦ = c. See for instance [14] and references therein 
for a link with Jacobi and Zernike orthogonal polynomials and hypergeometric functions.

Proof of Lemma 2.2. By a version of the Weyl lemma expressing the Hörmander hypoellipticity of the 
Laplacian operator, see for instance Stroock’s expository note [34], we get that Φ is C∞(int(BR)). Next, by 
radial symmetry Φ(x) = ψ(r) where r = |x|. Using Δ = ∂2

r + d−1
r ∂r + 1

r2 ΔS1 we get that

c = ΔΦ(x) = ψ′′(r) + d− 1
r

ψ′(r) = (rd−1ψ′(r))′

rd−1 ,

and thus rd−1ψ′(r) = c
dr

d (note that we use here the fact that d > 1 to get that rd−1ψ′(r) = 0 when r → 0). 
Hence ψ(r) = c

2dr
2 + ψ(0). Note that ΔΦ = c = Δ( c

2d |·|
2) gives Δ(Φ − c

2d |·|
2) = 0. �

2.2.3. Completion of proof
To complete the proof of Theorem 1.4 note that we can reinterpret (2.2) as Frostman conditions (A.14): 

μeq = νR is seen as an equilibrium measure for kernel K̃ = Ks+2 with external field Ṽ equal to 0 on BR

and to +∞ outside, connecting with Theorem 1.1. �
Remark 2.4 (Alternative motivation of the Frostman condition on BR). Following [14, Lemma 2.3] or [8, 
Sec. 4], Riesz’s formula (1.6) with d ≥ 2, d −2 < s < d, R > 0 gives, using (A.15) and (A.17), for x ∈ int(BR),

Δ
ˆ

|y|≤R

dy
|x− y|s−2(R2 − |y|2) d−s

2
=

ˆ

|y|≤R

cd,s−2dy
|x− y|s(R2 − |y|2) d−s

2
= cd,s−2π

d
2 +1

Γ(d2 ) sin((d− s)π2 )
. (2.19)

Now, inverting the Laplacian as in Lemma 2.2 and using Lemma 2.1 for continuity at the boundary, we get

ˆ dy
|x− y|s−2(R2 − |y|2) d−s

2
= π

d
2 +1

Γ(d2 ) sin((d− s)π2 )

(cd,s−2|x|2
2d + d− s

2 R2
)
. (2.20)
|y|≤R
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Replacing s − 2 by s gives, for d ≥ 2 and d − 4 < s < d − 2, R > 0, x ∈ BR,

ˆ

|y|≤R

dy
|x− y|s(R2 − |y|2) d−s

2 −1
= π

d
2 +1

Γ(d2 ) sin((d− s)π2 )

(cd,s
2d |x|2 − d− s− 2

2 R2
)
. (2.21)

The left-hand side can be normalized using the fact that for 0 < β < 1,

Zβ :=
ˆ

|y|≤R

dy
(R2 − |y|2)β = |S1|Rd−2β

1ˆ

0

rd−1dr
(1 − r2)β = Rd−2βπ

d
2 Γ(1 − β)

Γ(1 − β + d
2 )

. (2.22)

Indeed, with d − s = 3 and β = d−s
2 − 1 = 1

2 , we get Z 1
2

= Rs+2π
s+4
2

Γ( s+4
2 ) , and (2.21) gives

Γ( s+4
2 )

Rs+2π
s+4
2

ˆ

|y|≤R

dy
|x− y|s

√
R2 − |y|2

+
Γ( s+4

2 )
√
πcs+3,s

4Rs+2Γ( s+5
2 )

|x|2 =
Γ( s+4

2 )
√
π

2RsΓ( s+3
2 )

. (2.23)

When R is equal to the critical value (2.7), the prefactor of |x|2 in (2.23) is equal to γ and (2.23) becomes 
the Frostman condition on BR for Theorem 1.4. Note also that taking (d, s) = (3, 0) in (2.23) is allowed but 
produces a trivial kernel inside the integral in the left-hand side. It is also possible to take d = 3 and s → 0
while keeping s �= 0, and use, for x �= 0,

lim
s→0
s �=0

|s|−1c3,s = 1 and lim
s→0
s �=0

( 1
s|x|s − 1

s

)
= lim

s→0

|x|−s − 1
s− 0 = − log |x| (2.24)

to recover the logarithmic kernel in this case. In another direction, note also that repeating the process that 
we used to get (2.21) to reach higher powers provides a family of generalizations of (2.21) involving Jacobi 
polynomials in the right-hand side, and even more generally hypergeometric 2F1 functions, see for instance 
[14,8,17], producing potential extensions of Theorem 1.4.

Remark 2.5 (Hypergeometric formulas outside BR). As pointed out by the referee we can give hypergeo-
metric formulas for the integrals (1.11) and (1.14) when λ = |x|/R ≥ 1. More precisely, for d ∈ {2, 3, 4, . . .}, 
d − 2 < s < d, λ ≥ 1,

ˆ

Rd

|x− y|−s

(R2 − |y|2) d−s
2

1|y|≤Rdy = 1
λs

π
d
2 Γ( s−d+2

2 )
Γ( s+2

2 ) 2F1

(s
2 ,

s− d + 2
2 ; s + 2

2 ; 1
λ2

)
(2.25)

and, using the function Sd−3 defined in (1.15),

1ˆ

0

Sd−3

( 4λr
(λ + r)2

) (λ + r)3−drd−1dr√
1 − r2

= 1
2λd−3

Γ(d−1
2 )2Γ(d2 )Γ(3

2 )
Γ(d− 1)Γ(d+1

2 ) 2F1

(d− 3
2 ,−1

2 ; d + 1
2 ; 1

λ2

)
. (2.26)

Indeed, to get (2.25), we start from the integral in the left hand side of (1.11) by using, for 0 ≤ r < λ,

2F1

(s
,
s + 2; d ; 4λ2r2

2 2 2

)
= (λ2 + r2) s

2

s 2F1

(s
,
s− d + 2; d ; r

2

2

)
, (2.27)
4 4 2 (λ + r ) λ 2 2 2 λ
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which comes from the quadratic transformation (A.7) with z = r2/λ2 < 1. With this replacement the 
left-hand side of (1.11) takes the form of the following Euler beta integral formula (see [18] and [3, eq. 
(2.2.2)])

∞̂

0

uα−1(1 − u)γ−α−1
2F1(a1, a2; b1; tu)du = Γ(α)Γ(γ − α)

Γ(γ) 3F2(a1, a2;α; b1; γ; t), (2.28)

which leads to (2.25) after cancellation of upper and lower 3F2 parameters. Similarly, to get (2.26), we start 
from the integral on the left-hand side of (1.14) by using, for 0 ≤ r < λ, the relation5

2F1

(s
2 ,

s + 2
2 ; s + 2; 4λr

(λ + r)2
)

= (λ + r)s

λs 2F1

(s
2 ,−

1
2 ; s + 3

2 ; r
2

λ2

)
, (2.29)

which comes from the quadratic transformation (A.8) with z = r/λ < 1. This leads to (2.26) via (2.28).

2.3. Proof of Corollary 1.5

The function ϕ defined in (2.8) is continuous on [0, 1] and differentiable on (0, 1). From the proof of 
Theorem 1.4, the Frostman condition states that ϕ is constant and equal to ϕ(0) on λ ∈ [0, 1], namely 
ϕ′(λ) = 0 for λ ∈ (0, 1). Now the formula (1.14) in Corollary 1.5 comes from the combination of equation 
ϕ(λ) = ϕ(0) together with the formulas for ϕ provided by Lemmas B.1 and B.2 of Appendix B. Note that 
(1.14) is trivial when d = 3. The formula (1.16) is obtained from (1.14) by using (1.15) and the Legendre 
duplication formula (A.2).

2.4. Proof of Corollary 1.6

Let us keep the notation used in Appendix B. First of all, the formulas (1.17)–(1.18) in Corollary 1.6
come from the Frostman condition ϕ(λ) = ϕ(0) and its reformulation ϕ′(λ) = 0, and the formula for ϕ
provided by Lemma B.1.

The formula (1.19) in Corollary 1.6 is obtained by further reformulating ϕ when (d, s) = (2, −1) in terms 
of special functions using Lemma B.3 below. The formula for ϕ′ provided by this lemma gives

1ˆ

0

[
(λ + r)E

(
4λr

(r + λ)2

)
+ (λ− r)K

(
4λr

(r + λ)2

)]
r dr√
1 − r2

= π2

4 λ2. (2.30)

Next, following [19,20,2], the Landen transform for E and K gives, for z ∈ [−1, 1],

K
( 4z

(1 + z)2
)

= (1 + z)K(z2) and E
( 4z

(1 + z)2
)

= 2
1 + z

E(z2) − (1 − z)K(z2). (2.31)

Now, the formula (1.20) of Corollary 1.5 comes by combining (1.19) and (2.30) with z = r
λ .

5 The relation (2.29) can also be derived using Erdélyi [12, 3.3(13)] which is Whipple’s relation between the Legendre functions 
of the first and second kinds, rewritten in terms of 2F1. Both the first-kind Pμ

ν and the second-kind Qμ
ν have 2F1 representations; 

see [11, 14.3.6 and 14.3.7].
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Appendix A. Useful tools

Let us recall the Euler reflection formula for the Gamma function, valid for z /∈ {−1, −2, . . .},

Γ(z)Γ(1 − z) = π

sin(πz) , (A.1)

and the Legendre duplication formula, valid for 2z /∈ {−0, −1, −2, −3, . . .},

√
πΓ(2z) = 22z−1Γ(z)Γ

(
z + 1

2

)
. (A.2)

A.1. Hypergeometric identities

• The hypergeometric function 2F1 can be written as (see [11, (15.2(i))])

2F1 (a, b; c; z) := Γ(c)
Γ(a)Γ(b)

∞∑
k=0

Γ(a + k)Γ(b + k)
Γ(c + k)

zk

k! . (A.3)

• If 
(c − a − b) > 0 then (A.3) converges absolutely for |z| ≤ 1 and (see [11, (15.4.20)])

2F1 (a, b; c; 1) = Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) . (A.4)

• If c = a + b then ([11, (15.4.21)]):

lim
z→1−

2F1 (a, b; a + b; z)
− log(1 − z) = Γ(a + b)

Γ(a)Γ(b) . (A.5)

• Quadratic transformation (see [11, (15.8.13)] or [12, 2.11(4)]): if |phase(1 − z)| < π then

2F1

(
a

2 ,
1
2 + a

2 ; 1
2 + b; z2

(2 − z)2

)
=

(
1 − z

2

)a

2F1 (a, b; 2b; z) . (A.6)

• Quadratic transformation ([12, 2.11(34)]): if 0 ≤ z ≤ 1 then

2F1

(a
2 ,

a + 1
2 ; a− b + 1; 4z

(1 + z)2
)

= (1 + z)a 2F1(a, b; a− b + 1; z) (A.7)

(there is a typo in [12, 2.11(34)]: a − b − 1 has been corrected here to a − b + 1).
• Quadratic transformation (see [12, 2.11(5)]): if 0 ≤ z ≤ 1 then

2F1

(
a, b; 2b; 4z

2

)
= (1 + z)2a 2F1

(
a, a + 1 − b; b + 1; z2

)
. (A.8)
(1 + z) 2 2
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• Derivative formula (see [11, (15.5.1)]):

d
dz 2F1 (a, b; c; z) =

(
ab

c

)
2F1 (a + 1, b + 1; c + 1; z) . (A.9)

• Euler integral formula (see [4, p. 4-5] and [11, (15.6.1)]):

2F1 (a, b; c; z) = Γ(c)
Γ(b)Γ(c− b)

1ˆ

0

ub−1(1 − u)c−b−1

(1 − zu)a du, (A.10)

provided that 
(b) > 0, 
(c) > 0, and |phase(1 − z)| < π.

A.2. Funk –Hecke formula

Let d ≥ 2 and σS1 denote the uniform probability measure on the unit centered sphere S1 = {x ∈ Rd :
|x| = 1}. Then, for z ∈ Rd with |z| = 1,

ˆ

S1

f(z · x)σS1(dx) = τd−1

π̂

0

f(cos(θ)) sind−2(θ)dθ = τd−1

1ˆ

−1

f(t)(1 − t2)
d−3
2 dt (A.11)

where

τd−1 :=

⎛⎝ π̂

0

sind−2(θ)dθ

⎞⎠−1

=

⎛⎝ 1ˆ

−1

(1 − t2)
d−3
2 dt

⎞⎠−1

=
Γ(d2 )

Γ(1
2 )Γ(d−1

2 )
. (A.12)

The Funk –Hecke formula (A.11) is a useful tool to reduce multivariate integrals into univariate integrals. 
It gives the projection on any diameter of the uniform law on the sphere. If X is a random vector in Rd

uniformly distributed on S1 then for z ∈ S1, the law of z ·X has density τd−1(1 − t2) d−3
2 1t∈[−1,1]. This is 

an arcsine law when d = 2, a uniform law when d = 3, a semicircle law when d = 4, and more generally, for 
an arbitrary d ≥ 2, the image by the map u �→ √

u of the beta law Beta(1
2 , 

d−1
2 ). We refer to [25, p. 18] or 

[5, Eq. (5.1.9), p. 197] for a proof.

A.3. Euler – Lagrange characterization of equilibrium measure (Frostman conditions)

For μ ∈ M1 such that Ks(x)1|x|>11s≤0 ∈ L1(μ), we define the s-Riesz potential at point x ∈ Rd by

Uμ(x) := (Ks ∗ μ)(x) =
ˆ

Ks(x− y)μ(dy) ∈ (−∞,+∞]. (A.13)

The Euler – Lagrange characterization of the equilibrium measure μeq, also known as Frostman conditions
in potential theory, states that a necessary and sufficient condition for such an element μ of M1 to be an 
equilibrium measure is that for some finite constant c we have (see, for example, [21])

Uμ + V

{
≤ c on the support of μ
≥ c quasi-everywhere on Rd

; (A.14)

by “quasi-everywhere” we mean except on a set for which every probability measure supported on it has 
infinite energy. This condition holds everywhere when V is continuous. It is customary to say that c is the 
modified Robin constant and we have c =

´
Uμeqdμeq +

´
V dμeq = I(μeq) −

´
V dμeq.



16 D. Chafaï et al. / J. Math. Anal. Appl. 515 (2022) 126367
A.4. Integrability and regularity of Riesz potentials

The following Lemma summarizes key regularity properties of the Riesz kernel, some of which are classical. 
We give a proof for the reader’s convenience. On this topic, we also refer to the works of Mizuta such as 
[22–24].

Lemma A.1 (Integrability and regularity of Riesz potentials).

(i) Ks ∈ L1
loc(Rd, dx) if and only if s = 0 or s �= 0 and s < d.

(ii) If s < d − 2 then, in the sense of distributions, and in the sense of functions on {x ∈ Rd : x �= 0},

ΔKs = −cd,sKs+2 where cd,s :=
{
|s|(d− 2 − s) if s �= 0
d− 2 if s = 0

. (A.15)

(iii) Suppose that s = 0 or s �= 0 and s < d. Let μ be a compactly supported probability measure on Rd. 
Then the following function is well defined and belongs to L1

loc(Rd, dx):

x ∈ Rd �→ (Ks ∗ μ)(x) :=
ˆ

Ks(x− y)μ(dy). (A.16)

Moreover, in the sense of distributions,

Δ(Ks ∗ μ) = (ΔKs) ∗ μ = −cd,sKs+2 ∗ μ. (A.17)

(iv) Suppose that s = 0 or s �= 0 and s < d. If μ is a compactly supported probability measure on Rd such 
that μ(dx) = f(x)dx, f ∈ Lp(Rd, dx), and p > d/(d − s), then Ks ∗ μ is continuous on Rd.

Note that Ks+2 ∈ L1
loc(Rd, dx) implies s + 2 < d; in other words s < d − 2. Furthermore, the condition 

s < d − 2 is sharp for (A.15), indeed; in the sense of distributions, we have ΔKd−2 = −cdδ0 (Coulomb 
kernel). This suggests defining Kd := δ0 to make the formula (A.15) valid for the critical case s = d − 2, 
provided that we also set cd,d−2 := cd.

We remark that (A.15) is a special case of (A.17) which corresponds to taking μ = δ0 and that (A.17)
goes beyond [33, Eq. (7), p. 118] and [16, Eq. (85), p. 136]. Note also that the distribution Δμ equals the 
convolution (Δδ0) ∗ μ, see [32, end of Ch. VI, Sec. 3; notably eq. (VI, 3; 34–35)]. From this point of view, 
it follows that (A.17) is a consequence of the associative law for convolution of three distributions, two of 
which have compact support, see [32, Ch. VI, Sec. 3, Th. VII] and [21, Lemma 0.6]. We give however a 
direct short proof of (A.17) below.

Proof of Lemma A.1. Proof of (i). It suffices to check local integrability in the neighborhood of the origin. 
We have

ˆ

|x|≤1

|Ks(x)|dx =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
2π

1ˆ

0

r−s+d−1dr < ∞ if s �= 0 and d > s

2π
1ˆ

0

log(r)rd−1dr < ∞ if s = 0

.

Proof of (ii). On Rd \ {0}, the function Ks is C∞ and a computation reveals that

ΔKs = −cd,sKs+2.
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It follows that this equality also holds in the sense of distributions for test functions supported away from 
the origin. For general test functions, we proceed by integration by parts outside a centered ball of small 
radius. Namely, let ϕ be a compactly supported C∞ test function, and let ε > 0. By the Green integration 
by parts formula for the open set {x ∈ Rd : |x| > ε}, denoting n(x) = −x|x|−1 the inner unit normal vector 
to the sphere {x ∈ Rd : |x| = ε} at the point x,

ˆ

|x|≥ε

Δϕ(x)Ks(x)dx−
ˆ

|x|≥ε

ϕ(x)ΔKs(x)dx

=
ˆ

|x|=ε

Ks(x)∇ϕ(x) · n(x)dσε(x) −
ˆ

|x|=ε

ϕ(x)∇Ks(x) · n(x)dσε(x).

If s �= 0 and d > s + 1 then
ˆ

|x|=ε

Ks(x)∇ϕ(x) · n(x)dσε(x) = ε−s

ˆ

|x|=ε

∇ϕ(x) · n(x)dσε(x)

= ε−sO(εd−1) = O(ε−s+d−1) = oε→0+(1),

while, using ∇Ks(x) = −sx|x|−(s+2) = −sxKs+2(x) and x · nx = −|x|, if d > s + 2,
ˆ

|x|=ε

ϕ(x)∇Ks(x) · n(x)dσε(x) = sε1−(s+2)
ˆ

|x|=ε

ϕ(x)dσε(x)

= sε1−(s+2)O(εd−1) = O(εd−(s+2)) = oε→0+(1).

Finally a careful analysis reveals that the conditions on d are the same in the case s = 0.
Proof of (iii). If s < 0, then Ks ≤ 0, and hence Ks ∗ μ is well defined and takes its values in [−∞, 0]. 

Similarly, if s > 0, then Ks ≥ 0, and hence Ks ∗ μ is well defined and takes its values in [0, +∞]. If s = 0
then K01|·|≤1 ≥ 0 while supRd K01|·|≥1/ log(1 + |·|) < ∞, hence K0 ∗ μ is well defined and takes its values 
in (−∞, +∞]. Next, by the Fubini –Tonelli theorem, for R > 0, using (i) and the compactness of support 
of μ (note that this can be weakened into integrability of log(1 + |·|)1s=0),

¨
|Ks(x− y)|1|x|≤Rμ(dy)dx =

ˆ (ˆ
|Ks(x)|1|x+y|≤Rdx

)
μ(dy) < ∞.

It follows that Ks ∗ μ belongs to L1
loc(Rd, dx).

For the differentiability, let ϕ : Rd → R be a C∞ and compactly supported test function. By the 
Fubini – Tonelli theorem, the Green integration by parts formula, and (ii), we have

ˆ
(Ks ∗ μ)(x)Δϕ(x)dx =

ˆ ( ˆ
Ks(x− y)μ(dy)

)
Δϕ(x)dx

=
ˆ ( ˆ

Ks(x− y)Δϕ(x)dx
)
μ(dy)

= −cd,s

ˆ (ˆ
Ks+2(x− y)ϕ(x)dx

)
μ(dy)

= −cd,s

ˆ
ϕ(x)

( ˆ
Ks+2(x− y)μ(dy)

)
dx

= −cd,s

ˆ
ϕ(x)(Ks+2 ∗ μ)(x)dx.
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Proof of (iv). For the continuity, we follow closely the cutoff argument used in [9, Lem. 4.3], see also [22, 
Th. 1], [23], and [24, Sec. 5.3]. Namely, let us consider first the case s > 0. For n ≥ 1 and x ∈ Rd, let us 
define

Rn(x) :=
ˆ

f(y)Ks(x− y)1|Ks(x−y)|≤ndy

and

Tn(x) := (Ks ∗ μ)(x) −Rn(x) =
ˆ

f(y)Ks(x− y)1|Ks(x−y)|≥ndy.

By the dominated convergence theorem, Rn is continuous on Rd. Let us show now that limn→∞ Tn = 0
uniformly on compact subsets, which will prove the continuity of Ks ∗ μ. Let q := p/(p − 1) be the Hölder 
conjugate exponent of p. Now, by the Hölder inequality, using the fact that Ks = |·|−s, s > 0,

0 ≤ Tn(x) =
ˆ

f(y)
1|x−y|≤n−1/s

|x− y|s dy ≤ ‖f‖p,B(x,1) ε
1/q
n

where B(x, r) := {x ∈ Rd : |x| ≤ r} is the closed centered ball of radius r, where ‖·‖p,C denotes the Lp

norm with respect to the trace of the Lebesgue measure on C, where

εn := |Sd−1|
n−1/sˆ

0

dr
rqs−d+1 ,

and where |Sd−1| is the surface area of the unit sphere {x ∈ Rd : |x| = 1}. The condition p > d/(d − s), 
which is equivalent to qs − d + 1 < 1, ensures that εn is finite for all n and that limn→∞ εn = 0. Hence, if 
C ⊂ Rd is a compact set, then, denoting C1 := {x ∈ Rd : dist(x, C) ≤ 1}, we have

sup
x∈C

|Tn(x)| ≤ ‖f‖p,K1
ε1/q
n −→

n→∞
0,

which completes the proof of the continuity of Ks ∗ μ. The case s < 0 is entirely similar up to a sign. It 
remains to examine the case s = 0. Let us write K0 = K+

0 −K−
0 with K±

0 ≥ 0, namely K+
0 = − log |·|1|·|≤1

and K−
0 = log |·|1|·|>1. To establish the continuity of K+

0 ∗ μ we write

0 ≤ T+
n (x) :=

ˆ
f(y) log 1

|x− y|1|x−y|≤11|x−y|≤e−ndy ≤ ‖f‖p,B(x,1) (ε+
n )1/q

where

ε+
n = −|Sd−1|

e−nˆ

0

rd−1 log(r)dr −→
n→∞

0.

On the other hand, the continuity of K−
0 ∗ μ follows from that of K−

0 . Hence K0 ∗ μ is continuous. �
Appendix B. Key formulas for potential plus external field

Let d, s, μeq = νR, R, and σS1 be as in Theorem 1.4. For x ∈ Rd, the quantity Φ(x) := (Ks∗μeq)(x) +γ |x|2

depends only on λ := |x|/R and we can define
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ϕ(λ) := Φ(x) = Uμeq(x) + γ |x|2 = Uμeq(x) + γR2λ2. (B.1)

The following lemmas provide key formulas for the potential plus external field ϕ.

Lemma B.1 (Integral formula for potential). For λ ≥ 0, denoting cd :=
2 sign(d− 3)Γ(d+1

2 )
πΓ(d−1

2 )
,

ϕ(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
Rd−3

⎛⎝cd

1ˆ

0

( π̂

0

sind−2(θ)
(λ2 − 2rλ cos(θ) + r2) d−3

2
dθ

) rd−1 dr√
1 − r2

+ γRd−1λ2

⎞⎠ if d �= 3

−
1ˆ

0

(λ + r)2 log(λ + r) − (λ− r)2 log |λ− r|
πλ

r dr√
1 − r2

− logR + 1
2 + γR2λ2 if d = 3

.

Note that γRd−1 does not depend on γ.

Proof. By the Funk –Hecke formula (A.11), for x ∈ Rd, s �= 0, with Cd := sign(s)Γ( d+1
2 )

π
d+1
2

,

Uμeq(x) = Cd

ˆ

|y|≤1

dy
|x−Ry|s

√
1 − |y|2

= Cd|S1|
1ˆ

0

ˆ

S1

σS1(dy)rd−1 dr
(|x|2 − 2rR〈x, y〉 + r2R2) s

2
√

1 − r2

= Cd|S1|τd−1

Rs

1ˆ

0

( 1ˆ

−1

(1 − t2) s
2

(λ2 − 2rλt + r2) s
2
dt
) rd−1
√

1 − r2
dr

=
2sign(s)Γ(d+1

2 )
πΓ(d−1

2 )Rd−3

1ˆ

0

( π̂

0

sins+1(θ)
(λ2 − 2rλ cos(θ) + r2) s

2
dθ

) rd−1
√

1 − r2
dr, (B.2)

while if s = 0 (d = 3),

Uμeq(x) = − 1
π2

ˆ

|y|≤1

log |x−Ry|√
1 − |y|2

dy

= − 2
π

1ˆ

0

(ˆ
S2

log
(
λ2R2 − 2rR〈x, y〉 + r2R2)σS1(dy)

) r2
√

1 − r2
dr

= − 1
π

1ˆ

0

(
4 logR +

1ˆ

−1

log(λ2 − 2rλt + r2)dt
) r2
√

1 − r2
dr.

Finally we observe that

1ˆ
log(λ2 − 2rλt + r2)dt = (λ + r)2 log(λ + r) − (λ− r)2 log |λ− r|

rλ
− 2. �
−1
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Lemma B.2 (Landen transform and a special function). For d ∈ {2, 3, . . .}, λ ≥ 0, and r ∈ [0, 1],

π̂

0

sind−2(θ)
(λ2 − 2rλ cos(θ) + r2) d−3

2
dθ = 2d−1

(λ + r)d−3Sd−3

(
4λr

(λ + r)2

)
,

where for z ∈ [0, 1],

Ss(z) :=

π
2ˆ

0

sins+1(α) coss+1(α)
(1 − z sin2(α)) s

2
dα =

1ˆ

0

ts+1(1 − t2) s
2

(1 − zt2) s
2

dt =
Γ( s2 + 1)2

2Γ(s + 2) 2F1

(s
2 + 1, s2 ; s + 2; z

)
.

Proof. We set ρ1 := 2λr
λ2+r2 , ρ2 := 2ρ1

1+ρ1
= 4λr

(λ+r)2 , which gives (λ2 + r2)(1 + ρ1) = (λ + r)2. Using the change 

of variable θ = 2α, and cos(θ) = 1 − 2 sin2(α), sin(θ) = 2 sin(α) cos(α), we get

π̂

0

sins+1(θ)
(λ2 − 2rλ cos(θ) + r2) s

2
dθ = 1

(λ2 + r2) s
2

π̂

0

sins+1(θ)
(1 − ρ1 cos(θ)) s

2
dθ

= 2s+2

(λ2 + r2) s
2

π
2ˆ

0

sins+1(α) coss+1(α)
(1 − ρ1(1 − 2 sin2(α))) s

2
dα

= 2s+2

(λ2 + r2) s
2 (1 − ρ1)

s
2

π
2ˆ

0

sins+1(α) coss+1(α)
(1 + 2ρ1

1−ρ1
sin2(α)) s

2
dα

= 2s+2

(λ + r)s
(1 + ρ1)

s
2

(1 − ρ1)
s
2
Ss

(
− 2ρ1

1 − ρ1

)
.

But for z ∈ [0, 1],

Ss(−z) =

π
2ˆ

0

sins+1(α) coss+1(α)
(1 + z sin2(α)) s

2
dα = 1

(1 + z) s
2

π
2ˆ

0

sins+1(α) coss+1(α)
(1 − z

1+z cos2(α)) s
2

dα = 1
(1 + z) s

2
Ss

( z

1 + z

)
.

In particular, with z = 2ρ1
1−ρ1

, we get 1 + z = 1+ρ1
1−ρ1

and z
1+z = 2ρ2

1+ρ1
= ρ2; therefore

Ss

(
− 2ρ1

1 − ρ1

)
= (1 − ρ1)

s
2

(1 + ρ1)
s
2
Ss(ρ2),

hence the desired integral formula in terms of Sd−3. Finally the hypergeometric formula for Ss follows from 
Ss(z) = 1

2
´ 1
0 u

s
2 (1 −u) s

2 (1 −zu)− s
2 du and the Euler integral formula (A.10). Note that we could alternatively 

proceed as in the proof of Corollary 1.3 via the Newton binomial series (1.7). �
Lemma B.3 (d = 2, s = −1). If (d, s) = (2, −1), then

ϕ(λ) = − 1
4γ

1ˆ

0

(λ + r)E
(

4λr
(λ + r)2

)
r√

1 − r2
dr + π2

64γ λ
2, λ ≥ 0,

ϕ′(λ) = − 1
8γ

1ˆ [(
1 + r

λ

)
E

(
4λr

(r + λ)2

)
+
(
1 − r

λ

)
K

(
4λr

(r + λ)2

)]
r√

1 − r2
dr + π2

32γ λ, λ > 0,

0
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ϕ(λ) = − π

8γ λ 2F1

(
− 1

2 ,−
1
2 ; 3

2 ; 1
λ2

)
+ π2

64γ λ
2, λ ≥ 1

ϕ′(λ) = − π

16γ

(√
1 − 1

λ2 −
arcsin

( 1
λ

)
1
λ

)
+ π2

32γ λ, λ > 1.

Proof. By combining Lemmas B.1 and B.2 with d = 2, we get, for λ ≥ 0,

ϕ(λ) = − R

2π

1ˆ

0

(λ + r)E
(

4λr
(λ + r)2

)
r√

1 − r2
dr + γR2λ2. (B.3)

Next, by using the well-known ordinary differential equations (for 0 < z < 1)

K ′(z) = E(z) − (1 − z)K(z)
2(1 − z)z and E′(z) = E(z) −K(z)

2z (B.4)

we get, after some algebra,

ϕ′(λ) = −R

π

1ˆ

0

[(
1 + r

λ

)
E

(
4λr

(r + λ)2

)
+
(
1 − r

λ

)
K

(
4λr

(r + λ)2

)]
r√

1 − r2
dr + 2γR2λ. (B.5)

By combining (1.10) with the quadratic transformation (A.8) we get, for z ∈ [0, 1),

(1 + z)E
( 4z

(1 + z)2
)

= (1 + z)π2 2F1

(
− 1

2 ,
1
2 ; 1; 4z

(1 + z)2
)

= π

2 2F1

(
− 1

2 ,−
1
2 ; 1; z2

)
. (B.6)

Thus (B.3) gives, with z = r
λ ∈ [0, 1), r ∈ [0, 1], and λ > 1,

2
π

1ˆ

0

(
1 + r

λ

)
E
( 4λr

(λ + r)2
) r√

1 − r2
dr = 2

π

1ˆ

0

(1 + z)E
( 4z

(1 + z)2
) r√

1 − r2
dr

=
1ˆ

0

2F1

(
− 1

2 ,−
1
2 ; 1; z2

) r√
1 − r2

dr

=
∞∑

n=0

(−1
2 )2n

n!2
( 1
λ

)2n
1ˆ

0

r2n+1
√

1 − r2
dr

=
∞∑

n=0

(−1
2)2n

(3
2)nn!

( 1
λ

)2n
= 2F1

(
− 1

2 ,−
1
2 ; 3

2 ;
( 1
λ

)2)
,

and therefore, using (B.3), we get, when λ > 1,

ϕ(λ) = −Rλ 2F1

(
− 1

2 ,−
1
2 ; 3

2 ; 1
λ2

)
+ γR2λ2, (B.7)

hence

ϕ′(λ) = −R 2F1

(
− 1

2 ,−
1
2 ; 3

2 ; 1
λ2

)
+ 1

3
R

λ2 2F1

(1
2 ,

1
2 ; 5

2 ; R
2

λ2

)
+ 2γR2λ

= −R

2

(√
1 − 1

λ2 −
arcsin

( 1
λ

)
1
λ

)
+ 2γR2λ. (B.8)
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Finally, it remains to recall that R = π
8γ . �

Lemma B.4 (d = 3, s = 0). If (d, s) = (3, 0) then, for λ ≥ 0,

ϕ(λ) = 1 + log(3γ)
2 − 1

2πλ

1ˆ

0

(
(λ + r)2 log((λ + r)2) − (λ− r)2 log

(
(λ− r)2

))
r√

1 − r2
dr + λ2

3

Moreover, if λ ≥ 1,

ϕ(λ) = −1
2 + log(3γ)

2 + λ2 + 2
3λ

√
λ2 − 1 − log λ +

√
λ2 − 1
2 .

Proof. From Lemma B.1 and with the formulas (b ∈ (−a, a))

1ˆ

−1

log(a− bt)dt = (a + b) log(a + b) − (a− b) log(a− b)
b

− 2 and
1ˆ

0

r2
√

1 − r2
dr = π

4

with a = λ2 + r2 and b = 2rλ, we obtain, for λ ≥ 0,

ϕ(λ) = 1
2 − log(R) −

1ˆ

0

(λ + r)2 log((λ + r)2) − (λ− r)2 log
(
(λ− r)2

)
2πλ

r√
1 − r2

dr + γR2λ2.

Recall that R = 1
γ
√

3 . It follows that if λ > 1,

ϕ(λ) − λ2

3 = 1
2 + log(3γ)

2 − λ

π

1ˆ

0

log(λ + r) − log(λ− r)√
1 − r2

rdr

− 2
π

1ˆ

0

log(λ + r) + log(λ− r)√
1 − r2

r2dr

− 1
πλ

1ˆ

0

log(λ + r) − log(λ− r)√
1 − r2

r3dr.

These three last integrals can be explicitly computed and we obtain the desired formula. �
Appendix C. Proof of Riesz formula

C.1. Cross-ratio

Recall that in projective geometry, the cross-ratio (birapport in French) of four distinct points z1, z2, z3, z4
on the Riemann sphere C ∪ {∞} is defined by

[z1, z2; z3, z4] = z3 − z1

z3 − z2
/
z4 − z1

z4 − z2
= (z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)
,

where each length is removed from the formula if it involves the point at infinity. The following lemma is a 
classical and important result of projective geometry.
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Lemma C.1 (Cross-ratio invariance). The cross-ratio is invariant under the Möbius transform

z �→ az + b

cz + d
, ad− bc �= 0,

and thus its modulus is invariant under the “conjugated Möbius transform” z �→ az̄ + b

cz̄ + d
, ad − bc �= 0.

C.2. Inversions

In Rd, d ≥ 1, the inversion with center x0 and radius R > 0 is the transform that maps x �= x0 to T (x)
on the half line started from x0 and passing through x, in such a way that

|x− x0| |T (x) − x0| = R2.

The circle centered at x0 and of radius R is pointwise invariant under the transformation in the sense that 
all its elements are fixed points of the transformation. The transformation maps the interior of this circle 
to its exterior, and vice versa. In projective geometry, this transformation is extended to the d-dimensional 
sphere by mapping x0 to the point at infinity ∞, and vice versa. We have

T (x) − x0 = R2

|x− x0|2
(x− x0),

which exchanges x0 and ∞. In dimension d = 2, using complex numbers, T (z) − z0 = R2/(z − z0), which 
is a special case of the conjugated Möbius transform z �→ αz̄+β

γz̄+δ . It is worth mentioning that inversions are 
geometric transformations at the basis of the Kelvin transform of functions Rd → R.

Lemma C.2 (Classical properties of inversions). Let T be the inversion of Rd, d ≥ 1, with center x0 ∈ Rd

and radius R > 0. Then we have the following properties.

1. For all x, |x− T (x)| = |R2 − |x− x0|2 |
|x− x0|

.

2. For all x, y, |T (x) − T (y)| = R2 |x− y|
|x− x0| |y − x0|

.

3. As differential forms dT (x)
|T (x) − x0|d

= dx
|x− x0|d

.

4. The modulus of the cross-ratio of distinct coplanar points x1, x2, x3, x4 is invariant under T .

Proof. We can assume without loss of generality that x0 = 0.

1. Since 0, x, T (x) are aligned with 0 at the edge we have

|x− T (x)| = ||x| − |T (x)|| =
∣∣∣∣|x| − R2

|x|

∣∣∣∣ = ||x|2 −R2|
|x| .

2. We have

|T (x) − T (y)|2 = |T (x)|2 + |T (y)|2 − 2〈T (x), T (y)〉

= R4

2 + R4

2 − 2 R4

2 2 〈x, y〉 = R4

2 2 |x− y|2.
|x| |y| |x| |y| |x| |y|
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Fig. 1. Intersecting chords of a circle, AA∗ and BB∗ in the first two pictures, xx∗ and zz∗ for the third. On the two last pictures, 
the chords BB∗ and zz∗ are diameters of the circle. On the right, x, y ∈ Rd, d ≥ 2, |x| = r, |y| < r, x∗ is aligned with x and y, y
separates x and x∗.

3. We have Jac(T )(x) = R2

|x|2 (Id + u ⊗ v), u = x

|x| , v = −2 x

|x| , which gives then

|det Jac(T )(x)| =
(

R2

|x|2
)d

=
(
|T (x)|
|x|

)d

,

via the “matrix determinant lemma” det(A + u ⊗ v) = (1 + u ·A−1v) det(A), the determinant analogue 
of the Sherman –Morrison formula (A + u ⊗ v)−1 = A−1 − A−1u⊗vA−1

1+v·A−1u .
4. Follows from the fact that T restricted to the plane is a conjugated Möbius transform. �

C.3. Intersecting chords

The intersecting chords theorem in Euclidean (planar) geometry states that if AA∗ and BB∗ are two 
chords of a circle, intersecting at the point M , see Fig. 1, then

AM × MA∗ = BM × MB∗.

Indeed, the triangles A∗MB and AMB∗ are similar, identical up to rotation and scaling, more precisely 
they have two equal angles: ̂A∗MB = ̂AMB∗ (opposite angles) and ̂MA∗B = ̂MB∗A (subtend the same 
arc).

Suppose now that the circle has center O, radius r, that BB∗ is a diameter, and that M belongs to the 
segment OB (instead OB∗). Then BM = r − OM while MB∗ = OM + r and thus

BM × MB∗ = (r − OM)(OM + r) = r2 − OM2.

In Euclidean geometry, this quantity is known as the Laguerre power of the point M with respect to the 
circle. We deduce immediately the following lemma.

Lemma C.3 (Intersecting chords). For every chord AA∗ of a circle with center O and radius r, intersecting 
an arbitrary diameter at point M , see Fig. 1, we have

AM × MA∗ = r2 − OM2.

C.4. Riesz geometric argument

The argument is essentially two-dimensional and involves projective geometry. Fix r > 0 and x, y ∈ Rd, 
d ≥ 2, with |y| < r. Let us define the map S : x �→ S(x) = x∗ where x∗ ∈ Rd is the point aligned with x, y
such that y separates x and x∗ and

|x− y| |y − x∗| = r2 − |y|2.
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The map S is the composition of an inversion centered at y of radius 
√
r2 − |y|2 and the central symmetry 

centered at y (recall that y separates x and x∗). Moreover, by Lemma C.3, see also Fig. 1, we have |x| = r

if and only if |x∗| = r, namely the centered sphere of radius r is globally invariant under S. The points y
and ∞ are mapped to each other by S.

Let T be the inversion centered at the origin and with radius r. By Lemma C.2, the modulus of the 
cross-ratio of the coplanar points x, T (y), y, T (x) satisfies

|[x, T (y); y, T (x)]| = |x− y| |T (x) − T (y)|
|x− T (x)| |y − T (y)| = |x− y|2r2

|r2 − |x|2| |r2 − |y|2| .

Note that since x, y, x∗ are aligned, the points x, y, x∗, T (x), T (y) are coplanar.

Lemma C.4 (Commutation). S and T commute.

This is related to the fact that S leaves globally invariant the fixed points (circle) of T .

Proof. Using complex coordinates T (z) = r2/z while T (z) − z0 = −(r2 − |z0|2)/(z − z0), where z0 stands 
for y. Now we have

T (S(z)) = r2

z0 − r2−|z0|2
z−z0

= r2(z − z0)
z0z − r2 and S(T (z)) = z0 −

r2 − |z0|2
r2

z − z0
= r2(z0 − z)

r2 − z0z
. �

Since S is the composition of an inversion and a central symmetry, it is a special case of a conjugate 
Möbius transform, and then, by Lemma C.1, |[x, T (y); y, T (x)]| = |[S(x), S(T (y)); S(y), S(T (x))]|. Since S

and T commute (Lemma C.4), we have, using Lemma C.2 for the final step,

|[x, T (y); y, T (x)]| = |[S(x), T (S(y));S(y), T (S(x))]| = |[x∗, T (∞);∞, T (x∗)]| = |[x∗, 0;∞, T (x∗)]|

= |T (x∗)|
|T (x∗) − x∗| = |T (x∗)||x∗|

|r2 − |x∗|2| = r2

|r2 − |x∗|2| .

It follows that in the case |x| < r (in other words |x∗| > r) we get (recall that |y| < r)

|x− y|2
(r2 − |x|2)(r2 − |y|2) = 1

|x∗|2 − r2 hence 1
(r2 − |x|2)α

2 |x− y|−α
= (r2 − |y|2)α

2

(|x∗|2 − r2)α
2
.

Finally, using this formula, we get, for all y ∈ Rd, |y| ≤ r, and all α ≥ 0, d ≥ 2,

I(y) :=
ˆ

|x|≤r

dx
(r2 − |x|2)α

2 |x− y|d−α
= (r2 − |y|2)α

2

ˆ

|x∗|≥r

dx∗

(|x∗|2 − r2)α
2 |x∗ − y|d ,

where the differential identity dx
|x−y|d = dx∗

|x∗−y|d comes from Lemma C.2 applied to S which is not an inversion 
but which is the composition of an inversion with an isometry (central symmetry).

Using spherical coordinates with ρ = |x∗| and the Funk –Hecke formula (A.11) we get

I(y) = (r2 − |y|2)α
2

ˆ
∗

dx∗

(|x∗|2 − r2)α
2 (|x∗|2 − 2x∗ · y + |y|2) d

2

|x |≥r
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= |S1|
Γ(d2 )

√
πΓ(d−1

2 )
(r2 − |y|2)α

2

∞̂

r

π̂

0

ρd−1 sind−2(θ)dρdθ
(ρ2 − r2)α

2 (ρ2 − 2ρ|y| cos(θ) + |y|2) d
2

= |S1|
Γ(d2 )

√
πΓ(d−1

2 )
(r2

1 − 1)α
2

∞̂

r1

ρd−1
1

(ρ2
1 − r2

1)
α
2

( π̂

0

sind−2(θ)dθ
(ρ2

1 − 2ρ1 cos(θ) + 1) d
2

)
dρ1 (C.1)

where r := r1|y| and ρ := ρ1|y|. Note that r1 ≥ 1 and ρ1 ≥ 1.

C.5. Trigonometric change of variable

Let us show that for d > 1 and ρ1 > 1,

id :=
π̂

0

sind−2(θ)

(ρ2
1 − 2ρ1 cos(θ) + 1)

d
2
dθ = ρ2−d

1
ρ2
1 − 1

π̂

0

sind−2(α)dα = ρ2−d
1

ρ2
1 − 1

√
π

Γ
(
d−1
2

)
Γ
(
d
2
) . (C.2)

We first give a historical geometric argument. We then give in Remark C.5 an analytic argument using 
properties of the Gegenbauer polynomials. The second equality in (C.2) follows from the fact that the 
middle integral becomes an Euler beta integral after the change of variable u = sin(α). To prove the first 
equality in (C.2), we follow [21, p. 400], and we use the change of variable

sin(θ)√
ρ2
1 − 2ρ1 cos(θ) + 1

= sin(α)
ρ1

,

see Fig. 2 for a geometric interpretation.6 Following this figure, we have the identity

ρ2
1 − 2ρ1 cos(θ) + 1 = A(α)2 where A(α) =

√
ρ2
1 − sin2(α) + cos(α),

hence 2ρ1 sin(θ)dθ = 2A(α)A′(α)dα and by using the formula for the change of variable this gives

dθ = A′(α)
sin(α)dα =

− sin(α) − sin(α) cos(α)√
ρ2
1−sin2(α)

sin(α) dα = −
(√

ρ2
1 − sin2(α) + cos(α)√

ρ2
1 − sin2(α)

)
dα.

Therefore, we obtain, noting that θ = 0 ⇐⇒ α = π and θ = π ⇐⇒ α = 0 (see Fig. 2),

id =
π̂

0

( sin(α)
ρ1

)d−2 1(
cos(α) +

√
ρ2
1 − sin2(α)

)2

√
ρ2
1 − sin2(α) + cos(α)√

ρ2
1 − sin2(α)

dα

=
π̂

0

( sin(α)
ρ1

)d−2 1
cos(α) +

√
ρ2
1 − sin2(α)

1√
ρ2
1 − sin2(α)

dα

=
π̂

0

( sin(α)
ρ1

)d−2 cos(α) −
√

ρ2
1 − sin2(α)

cos2(α) − (ρ2
1 − sin2(α))

1√
ρ2
1 − sin2(α)

dα

6 It is mentioned in [21, p. 400] that this change of variable was suggested S.I. Greenberg. Nevertheless such geometric reasoning 
goes back at least to the works on elliptic integrals of the 19-th century, see [15].
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Fig. 2. Geometric interpretation of the θ to α change of variables for id. The angles and distances are ACB = θ, CBA = α, 
CB = 1 and CA = ρ1. The right-angled triangle ABQ has hypotenuse AB, thus AB2 = BQ2 + AQ2 = sin2(θ) + (AC − QC)2 =
sin2(θ) + (ρ1 − cos(θ))2 = ρ2

1 − 2ρ1 cos(θ) + 1. The sine rule then gives sin(α)/ρ1 = sin(θ)/
√
ρ2
1 − 2ρ1 cos(θ) + 1. On the other 

hand, we also have 
√

ρ2
1 − 2ρ1 cos(θ) + 1 = AB = AP + PB =

√
ρ2
1 − sin2(α) + cos(α).

= 1
ρd−2
1 (1 − ρ2

1)

π̂

0

(sin(α))d−2

(
cos(α)√

ρ2
1 − sin2(α)

− 1
)

dα

= 1
ρd−2
1 (ρ2

1 − 1)

π̂

0

(sin(α))d−2dα,

where the last equality follows from the antisymmetry of cos around π/2. This proves (C.2).

Remark C.5 (Proof of (C.2) using Gegenbauer polynomials). Let ρ = 1
ρ1

< 1. Using the generating function 

for Gegenbauer polynomials (1 − 2ρ cos θ + ρ2)− d
2 =

∑∞
n=0 C

( d
2 )

n (cos θ) ρn gives

π̂

0

sind−2 θ

(1 − 2ρ cos θ + ρ2) d
2

dθ =
∞∑

n=0
ρn

π̂

0

sind−2 θ C
( d
2 )

n (cos θ) dθ. (C.3)

The integral on the right-hand side vanishes for odd degree n since the Gegenbauer polynomials are odd 
functions of cos θ. For even degree n = 2k, the integral can be computed as

π̂

0

sind−2 θ C
( d
2 )

2k (cos θ) dθ =
π̂

0

sind−2 θ dθ =
√
π

Γ
(
d−1
2

)
Γ
(
d
2
) . (C.4)

To establish (C.4), use the recurrence relation [11, (18.9.7)]

C
( d
2 )

2k (x) = C
( d
2 )

2k−2(x) +
2k + d

2 − 1
d
2 − 1

C
( d
2−1)

2k (x)

and integrate against sind−2 θ to produce

π̂

0

sind−2 θ C
( d
2 )

2k (cos θ) dθ =
π̂

0

sind−2 θ C
( d
2 )

2k−2(cos θ) dθ +
2k + d

2 − 1
d
2 − 1

π̂

0

sind−2 θ C
( d
2−1)

2k (cos θ).

The second integral on the right-hand side vanishes by orthogonality, so

π̂

sind−2 θ C
( d
2 )

2k (cos θ) dθ =
π̂

sind−2 θ C
( d
2 )

2k−2(cos θ) dθ,

0 0
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with repeated application giving the first equality in (C.4). Using (C.4) in (C.3) then gives

π̂

0

sind−2 θ

(1 − 2ρ cos θ + ρ2) d
2

dθ =
√
π

Γ
(
d−1
2

)
Γ
(
d
2
) ∞∑

k=0

ρ2k =
√
π

Γ
(
d−1
2

)
Γ
(
d
2
) 1

1 − ρ2 .

The substitution ρ = 1
ρ1

then gives (C.2).

C.6. Conclusion

By combining (C.1) and (C.2), using the successive changes of variables t = ρ2
1 − r2

1, t1 = t/(r2
1 − 1), and 

u = 1/(1 + t1), and the Euler reflection formula (A.1), we get

I(y) = |S1|(r2
1 − 1)α

2

∞̂

r1

ρ1dρ1

(ρ2
1 − r2

1)
α
2 (ρ2

1 − 1)

= |S1|
(r2

1 − 1)α
2

2

∞̂

0

dt
t
α
2 (t + r2

1 − 1)

= |S1|
2

∞̂

0

dt1
t
α
2
1 (t1 + 1)

= |S1|
2

1ˆ

0

u
α
2 −1du

(1 − u)α
2

=
|S1|Γ(α2 )Γ(1 − α

2 )
2 = π

d
2 +1

Γ(d2 ) sin(π2α)
.

This completes the proof of (1.6) and thus of Lemma 1.2.
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