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Abstract

We obtain new asymptotic results about systems of N particles governed by Riesz interactions
involving k-nearest neighbors of each particle as N — co. These results include a generalization to
weighted Riesz potentials with external field. Such interactions offer an appealing alternative to other
approaches for reducing the computational complexity of an N-body interaction. We find the first-
order term of the large N asymptotics and characterize the limiting distribution of the minimizers.
We also obtain results about the I' convergence of such interactions, and describe minimizers on the
1-dimensional flat torus in the absence of external field, for all N.

1 Introduction and main results

Energy minimization methods for generating non-structured grids on compact sets in R?P have been
explored in, for example, [4, 13, 14]. For a given d-dimensional compact set A C RP, these techniques
utilize the Riesz kernel ||z — y|| ™ with s > 0 and minimize the following energy associated with an N

point configuration wy = {z1,z2,..., 25} C A:
N N
(1.1) Ey(wn) =Yz —y|~*
i=1 j=1
J#i

In the hypersingular case s > d, the poppy-seed bagel theorem [4, Thm 8.5.2] asserts under mild con-
ditions on A that minimizing configurations wj, for this energy converge in the weak-star sense to the
uniform distribution with respect to d-dimensional Hausdorff measure. More generally, by incorporating
a multiplicative weight [2] or an external field [15] in the above energy, one can generate configurations
that converge to a prescribed density on A.

An obvious drawback to this method for discretizing manifolds is the O(N?) computational cost for
evaluating the energy or its gradient. One approach [3] to reducing this cost involves radial truncation.
Instead, here we analyze truncation of F, to a fixed number k of nearest neighbors, as used heuristi-
cally in [25]. An advantage of this technique, in contrast to the radial truncation, is that memory and
computational costs depend only on k and N (essentially £N) and not on wy. Furthermore, it leads to
dimension-independent methods: optimization of an unweighted Riesz k-energy E¥, defined below, for a
fixed s > 0 and k > 1 yields a uniform distribution on the underlying set A, irrespective of the Hausdorff
dimension of A.

In addition to grid generation, repulsive interactions depending only on a certain number of nearest
neighbors arise in many applications in physics, chemistry, and engineering [17, 18, 12, 22]. Inspired
by these examples, in the sequel we introduce the Riesz interaction with a fixed number k of nearest
neighbors, and obtain the asymptotics of the minima of the energy E¥, as well as the limiting distribution
of asymptotic minimizers.

Date: December 29, 2021

2000 Mathematics Subject Classification. Primary, 31C20, 28A78; Secondary, 52A40.

Key words and phrases. Riesz energy, k nearest neighbors, equilibrium configurations, covering radius, separation
distance, meshing algorithms.



An outline of our manuscript is the following. In subsections 1.1-1.5 we formulate the main results
and explain notational conventions assumed for the rest of the paper. Section 2 gives some numerical
illustrations of applying E* to discretizing distributions, in particular on manifolds. In Section 3 we
outline the proof strategy and discuss how choosing nearest neighbors in an interaction influences the
geometry of its minimizers. The main proofs are contained in Section 4. Finally, Section 5 begins
by investigating the special case of A = T, the 1-dimensional flat torus, and finds the minimizers of
unweighted Ef on T; it also shows that the hypersingular full Riesz interaction Ej is in a sense limiting
case of E;‘“ when & — oco. This allows to establish some new results for the hypersingular interaction,
namely, the asymptotics of the combined functional, equipped with both weight and external field. The
discussion concludes with the proof of I'-convergence of energies E¥ on N-point configurations for N — oo.

1.1 Preliminaries

Throughout this paper, A shall denote a compact set in RP with d-dimensional Hausdorff measure
Ha(A) < oo. We refer to an N-tuple wy = (71,22,...,2n5) € AN as an N-point configuration (note
that this allows repeated points of A) and define the associated normalized counting measure (or empir-
ical measure)

(1.2) v(wy) ;=% > b

TEWN

Defined in this way, the space of N-point configurations wy inherits the topology from (RP)YN. We
will occasionally need to apply set-theoretic operations to wy, such as removing or adding entries. For
example, by an abuse notation we write wy \ {2} = (71, 23,...,2x5) € AV~L. In the case of repeated
entries in wy, only the first instance is removed. Similarly, € wy means that the point « is one of the
entries of tuple wy; in this case I(x;wy) denotes its index in the tuple.

For k, N > 1 and wy € AN, let Ny (2;wy) stand for the multiset consisting of the k nearest neighbors
of z from wy \ {x} (with respect to || - ||) where, in the event of ties, we select the points with the smaller
indices in wy. When N < k + 1, then we set Ny (z;wy) = wy \ {z}. For instance, when wy = (a, a,a, b)
we have N3(a;wy) = Ny(a;ws) = {a,a,b}. When it cannot cause confusion, we will omit the reference to
the configuration and write simply Ny (z).

For an external field V : A — R, a multiplicative weight w : A x A — [0, 0], Riesz parameter
s> 0,and k, N > 1, we define the k-nearest neighbor Riesz s-energy (k-energy for short) of an N-point
configuration wy = (71, T2,...,zx5) € AN as follows:

(1.3) E¥wy;w, V) = Z Z w(z,y)||lz —yl| =5 + N*/? Z V(z), E,N =1, s> 0.

TEWN yENL (T;wn) TEWN

We use the convention that a sum over the empty set is zero; i.e., for N = 1 we have E¥((z1);w,V) =
V(z1). For brevity we also write E¥(wp;w) for E¥(wy;w,0) so that

EF(wniw, V) = E¥(wy;w) + N*/¢ Z V().

TEWN

We define the optimal value of the above energy as

(1.4) EMA,N;w, V)= inf EF(wn;w,V).

wnEAN
We say that a sequence {wx} of N-point configurations in A is (k, s, w, V')-asymptotically optimal if

E¥(wy;
lim b(wNaquu

=1.
N¥»uzgf(A,PJ;w,vc

As in [2], we require that w be a CPD-weight; that is, w : A X A — [0, o0] satisfies



(a) w is positive and continuous at Hg-a.e. point of diag (A) in the sense of limits taken on A x A;
(b) there is a neighborhood G D diag (A) (relative to A x A) such that infgw > 0;
(¢) w is bounded on any closed subset B C A x A such that B Ndiag(A) = (.

Here CPD stands for (almost) continuous and positive on the diagonal. In fact, for our purposes a weaker
version of (a) suffices, assuming (c) be strengthened to the boundedness of w on the entire A x A; it
will be discussed in Section 4.3. We shall refer to a weight that satisfies only (b)-(c) as a PD-weight, for
positive on the diagonal.

We shall refer to a weight w as a marginally radial weight on A if it is of the form w(z,y) =
W(z, ||y — z||) for some W : A x [0,diam(A)] — [0, 00] and W (x,-)| - ||~* is decreasing on [0, diam(A)]
for each € A. Note that if w is a marginally radial weight on A, then the energy £¥(A, N;w,V) is
independent of the chosen tie-breaking criterion so this energy is well-defined when wy is considered as
a multiset. In Theorem 1.3 establishing that a sequence of near energy minimizers have optimal order of
separation, we find it convenient to assume that w is a marginally radial weight since a point energy is
monotonically decreasing as a function of nearest neighbor distances. In particular, this is used in the
proof of Theorem 1.3 when a point energy is computed with respect to a subset of the entire configuration
in which case the k-nearest neighbor distances can only increase when compared to those distance with
respect to the complete configuration.

1.2 Asymptotics of k-energies

For the statement of our main results, we use the following definitions and notation: a set A C RP? is called
d-rectifiable if for some compact Ay C R? and a Lipschitz map f there holds A = f(Ag) and A is called
(Ha, d)-rectifiable if it is a union of countably many d-rectifiable sets together with a set of Hg-measure
zero (see [10]). The d-dimensional Lebesgue measure on R? is denoted by L4 and the d-dimensional
Hausdorff measure on R? for d < p is denoted by Hg and is normalized so as to coincide with Lg on
isometric embeddings from R to RP. By || - || we usually denote the Euclidean norm in R? and R?, but
the arguments below apply to any fixed norms in these spaces. We recall that a sequence of measures i,
n > 1, supported on a compact set A converges weak-star to a measure p on A if lim,, f fdu, = f fdu

for all continuous f : A — R, in which case we write i, —~ u, n — oc.

Theorem 1.1. Suppose A C RP is a compact (Hq, d)-rectifiable set, s > 0, and k is a positive integer.
Then there is a constant C’f’d such that Cf’d > 0 and such that for any lower semicontinuous external
field V' and CPD-weight w the following limit holds:

. EFAN;w,V R
i ELT V) o, [ wle.)pla)  atat@) + [ Viwola) dHala)

where

d/s
o L1 — V(.Z') o
(15) p(l’) - <C§,d(1 + S/d)u}(ﬂ,’?,(l’)>+ ) ()+ T maX{O, '}3

with the constant L1 chosen so that pdHy is a probability measure on A.

Furthermore, if w(z,z) + V(x) is finite on a subset of A of positive Hy-measure and {wn} is a
(k, s, w,V)-asymptotically optimal sequence of N-point configurations in A, then the corresponding nor-
malized counting measures v(wy) converge weak-star to pdH,.

If d = p, note that Theorem 1.1 holds for any compact set A C RP. We remark that in the special
case A = g4, the unit cube in R4, V =0, and w = 1, Theorem 1.1 gives

EX(ga, N5 1,0)
k7 s ) y Ly
(1.6) Coa= Jim —— g —



Corollary 1.2. Suppose A C RP is a compact d-rectifiable set, s > 0, and k is a positive integer. Let
p:A—[0,00) be upper semi-continuous and such that pdHg is a probability measure on A. If L1 € R,
w is a CPD-weight on A X A and V is a lower semi-continuous external field on A such that

L1——V<CU)_ k s 2)5/4 or ol
(1.7) wiz,z) = C¢ (1 +s/d)p(x)™¢,  for p(x) >0,

V(z) > Ly, for p(x) =0,

then v(wy) — pdHg for any (k, s, w, V)-asymptotically optimal sequence {wy'}.
In particular, if V=0 and

(1.8) w(z,y) = (p(z) + = —yl) =/,
then v(wy) — pdHy for any (k,s,w,0)-asymptotically optimal sequence {wy}.

When 0 < s < d, it is known (e.g., see [4]) that Fs-energy minimizing configurations on a d-rectifiable
set A converge weak-star to the s-equilibrium measure on A which, except for in rare cases such as
spheres. A rather surprising consequence of the above theorem is even for .... Riesz kernel involving only
interactions with the nearest neighbor! Of course, the knowledge of the C’f’ 4 constant is required, but its
value can easily be approximated numerically and is stable with respect to the computation error. This
justifies the application of gradient flow to nearest neighbor truncation of the Riesz energy as a means to
obtain a prescribed distribution, a strategy previously used as a heuristic [25].

Let the quantity
(1.9 Awn) = min o - ;]
denote the minimal distance between entries of the configuration wy € AN. We refer to A(wy) as the
separation of wy .

The following theorem will be necessary to compare the asymptotics of k-energies to those of the full
hypersingular Riesz energies; it shows that for k-nearest neighbor interaction with k > 1, near-minimizers
are spread over the set A with the best possible order of separation. In its statement, we say that w is
bounded on D, a subset of A (as opposed to being bounded on a subset of C A x A), if the values of
w(z,x) and w(z, z) are bounded uniformly over z from D and z from A:

(1.10) M, :=sup{w(z,2) : (z,2) € (Ax D)U(D x A)} < 0.

Theorem 1.3. Suppose s > 0, A C RP is compact, Hq(A) >0, w(z,y) : Ax A — [0,00) is a marginally
radial PD-weight, and V' a lower semicontinuous external field, both bounded on some D C A, Hq(D) > 0.
If {wn}5° is a sequence such that

Efwy;w, V) < EF(AN:w,V)+ RN¥Y,  N>1
then this sequence has the optimal order separation:
Alwy)=>CNV4 N >1,

with C = C(s,k,p,d,w,V, A, R). In addition, in the case d = p, the constant C' can be made independent
of the set A.

1.3 Relation to hypersingular Riesz energies

In this section we will clarify the relation between the Riesz k-energy discussed above and the full
hypersingular Riesz energy E(wx;w, V) on RY, defined as

(L) Efeviw,V)i= 3 w@yle—y| =+ NS Vie),  N>2s>d

TAYEWN TEWN



Just as for E¥, we write
Es(A,N;w, V) := inf Es(wn;w,V).
wnCA
We will show that for k& — oo, the asymptotics of £F approach those for &,.

The asymptotics of energy (1.11) and behavior of its minimizers are known for the case of a constant
weight [15]. Similarly, they are also known for a non-constant weight and absence of external field [2]. By
the general approach outlined in Section 3.1, the results of [2] and [15] can be combined to obtain a result
identical to Theorem 1.1, with the full sum of the hypersingular interaction with s > d. We reproduce
this result indirectly, by relating the full interaction (1.11) to the energies EF.

In the following theorem, we write

Cs.q = lim £:(9a, N)

NI Nt 57

where g4 is the d-dimensional unit cube. By definition, Cs 4 > C.f)d, k > 1. We call a sequence of
configurations wy, N > 2, asymptotically optimal for E, if

. ES(OJN;UJ,V)
lim ————~ =
N-ooo E5(A, N;w, V)

Theorem 1.4. If A C R? is an (Hgq, d)-rectifiable compact set, s > d, w is a CPD-weight, and V a lower
semicontinuous external field, then

(112) lim Oj:d = C’s,d,
k—o0 ’

and

; . 85(14» N;w, V) T Es(A,N;w, V)
(1 13) lcli}Holo J\/lgnoo N1+S/d o l&gnoow

= Cua [ wla)ple) T dHate) + [ V) (o)
A A

where

B Ly — V() dfs
plz) = (cs,da n s/d)w(ac,x))

with the constant Ly chosen so that pdHg is a probability measure on A.

Furthermore, if w(xz,x) 4+ V(z) is finite on a subset of A of positive Hq-measure and {wn} is an
asymptotically optimal sequence of N -point configurations in A for Eg, then the corresponding normalized
counting measures v(wy) converge weak-star to pdH,.

+

We wish to emphasize that the last equality in (1.13) for the minimal full Riesz interaction energy is
also new since it includes both a weight and an external field.
The value of Cy 4 is given by

d/2

(1.14) Caa = Ha(B?) = T -

a1,
(d/2+1)’

where T is the standard gamma function, [13]. Furthermore, for d = 1, s > 1 there holds

(1.15) Cs1=2((s), s>1,

where ( is the Riemann zeta function, see e.g. [19]. The universal optimality of Eg and the Leech lattice
means that they minimize all energies with completely monotonic kernels as functions of the distance
over discrete sets with fixed density. Such optimality of these lattices was shown by Cohn, Kumar,
Miller, Radchenko, and Viazovska [7], following the methods of Viazovska [23]. The Riesz kernel 1/r° is



completely monotonic (that is, its derivatives have alternating signs), and as a result, Cs 4, d = 8,24, is
related to the respective lattice as

(1.16) Coa = |Mal¥p, (), s>d, d=8,24.

Here A4 denotes either Fg or the Leech lattice; |A4| stands for the volume of the fundamental cell
of A4, and (p, is the corresponding Epstein zeta-function. The exact value of Cs 4 is unknown for all
the other pairs s,d. In dimensions d = 2, 4, the conjectured value is also given by the expression (1.16)
with A4, respectively, the hexagonal and D, lattices [6, Conj. 2]. It is easy to show [6, Prop. 1] that the
conjectured values (1.16) are upper bounds for their respective C; 4.

1.4 TI'-convergence

For the hypersingular kernel, uniqueness of the limiting distribution of global minimizers is due to the
displacement convexity, in the sense of McCann [21], of the limiting continuous functional (see equation
(1.17) below), which can be obtained by treating E* as defined on counting probability measures, and
then passing to the I'-limit. In the paper [16] we demonstrate that this property is common to all short-
range interactions with scale-invariant minimizers. In the present discussion we will derive the I'-limit of
k-nearest neighbor energies, as a typical case of a short-range interaction.

We first recall the notion of I'-convergence:

Definition 1.5 ([9]). Let X be a metric space. Suppose that functionals F, Fy : X — R, N > 1, satisfy
1", for every sequence {xx} C X such that x — x, N — oo, there holds liminf y o Fy(zn) = F(z);
20, for every o € X there exists a sequence {xx} C X converging to it and such that lim,, ;. Fn(2zy) =

We shall then say that the sequence {Fx} is I'-converging to the functional F' on X with the metric

topology; in symbols, T'-limy_ oo Fxy = F.

In our setting, the underlying metric space X = P(A), the space of probability measures on A
with a metric corresponding to the weak* topology; functionals Fy (1) are given by EF¥(wxn;w,V) when
1 = v(wy) is a counting measure for some wy, see (1.2), and equal to +0oo otherwise; see Theorem 1.6.
To give the formal definitions, denote by Py (A) the class of counting measures of N-point subsets of
A CRP:

PN(A) = {I/((,UN) TWN € AN}
In the following result, C’slid is as in (1.6).
Theorem 1.6. Suppose A C RP is (Hq, d)-rectifiable, w is a CPD-weight and V is a lower semicontinuous
external field. Let a sequence of functionals on P(A) be given by

E(wniw, V), if p=r(wy) € Py(A);
+00, otherwise,

Fn(pyw,V) = {

and

111 FwwV) = {Ciﬁd Sl 2)p(@) /1 dHa(a) + [V (@)ple) dHala), i 1< Ha
+00, otherwise,
where p is the Radon-Nikodym derivative of u with respect to Hq. Then

. Fn
i 7

on P() equipped with the weak-star topology.

= F

Comparison of Theorem 1.6 with the classical results for 2-point interactions with integrable kernel
reveals the difference in the asymptotic structures of energies for the long-range and short-range ener-
gies: limiting functionals of the former depend quadratically (through a double integral) on the limiting
measure; on the other hand, in (1.17) we have single integrals.



1.5 Notational conventions

It is assumed that p,d are integer with p > d > 0. By | - || we denote fixed norms on R? and R”, not
necessarily Euclidean. Closed balls in the ambient space (either R? or RP) with respect to these norms
are denoted by B(z,7); here z is the center of the ball, r stands for the radius. For r > 0, the closed
r-neighborhood of a set A is denoted by A, = |J__ 4 B(z,r). Notation v, stands for the volume of the
unit ball in R?,

A “cube” always refers to a closed cube with sides parallel to the coordinate axes. The unit cube in
R?, centered at the origin, is denoted by ¢q = [~1/2,1/2]¢.

The d-dimensional Lebesgue and Hausdorff measure are denoted by L4 and H4; the latter is normalized
so as to coincide with £4 on isometric embeddings from R? to RP. Weak* convergence of a sequence of
measures fin, n = 1, to p is denoted by p, —~ p, n — co. Notation My stands for the d-dimensional
Minkowski content in RP.

The adjacency graph of wy, introduced in Section 3.1 and corresponding to the nearest neighbor
relation, is denoted by Ay(wy). Notation <, stands for the ordering of points in wy by indices and
distance to a given point x € RP. The I-th element of wx \ {x} under the ordering <, is written as
(z;wn); (note that the set difference here removes only the first occurrence of z in wy). Given z € wy,
we write I(z;wy) for the (first) index of z as an entry of wy.

A bijective map ¢ : R? — RP is said to be bi-Lipschitz with the constant (1+ c), ¢ > 0, if there holds

z€A

(140 o =yl < ) —p(w)l| < (1+)llz — o]

for every pair z,y € R%.

In cases when the multiplicative weight and/or external field are absent from our considerations,
we write simply E¥(wy;w) and E¥(wy) in place of E¥(wy;w,0) and E¥(wy;1,0), respectively. Finite
positive constants that may depend on some arguments are denoted C(.. .); we can sometimes refer to
different constants of this form in different parts of an equation, using the same symbol C.

2 Numerical aspects and experiments
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Figure 1: Left: approximate minimizer of the full Riesz interaction with s = 1; right: approximate
minimizer of the k-nearest neighbor interaction with £ =2 and s = 1. In both images, N = 80.

The worst case complexity for constructing the k-nearest neighbor (k-nn) graph for an N-point con-
figuration is O(N log N) floating point computations (FLOPS). Thus, the cost of evaluating E¥ (or its
gradient) is also O(N log N) compared with order N? FLOPS for the full interaction energy Fs. However,
for sufficiently well-separated point configurations, the k-nn algorithm reduces to O(kN) and thus the
cost of one energy or gradient evaluation is also O(kN).



Figure 2: Approximate minimizing configuration of 20,000 points on a genus 3 surface in the zjz2z3-cube
[—2,2]3 for the energy E¥ with s = 4, k = 30 and weight w chosen to give density p proportional to 23
(external field V' = 0). Left: Delaunay triangulation; right: Voronoi tessellation.

An interesting question is how the choice of k influences the speed of convergence of a given optimiza-
tion algorithm such as gradient descent (we remark that E* is not differentiable when there are ties for
the k-th nearest neighbor). This issue is not explored here, but is left for future investigations.

In Figure 1, we show approximate energy minimizers for N = 80 points in the unit square for the
full E, energy (left) and E¥ energy (right) with s = 1, k = 2, w = 1, and V = 0. Notice that the full
kernel energy yields higher density distribution at the boundary of the square while, in accordance with
Theorem 1.1, the points are more uniformly spaced when the interactions are restricted to the k-nearest
neighbors. The two minimizers were computed using Mathematica’s IPOPT interface and the built-in
simulated annealing algorithm, respectively.

It has been demonstrated that the energies E¥ can be used for efficient discretization of complicated
surfaces, see [25, 24]. Here we illustrate the effectiveness of the algorithm in Figure 2 which shows
an approximate minimizing configuration of N = 20000 points on an algebraic surface with s = 4,
k =30, V =0, and with a nonuniform weight. The left image shows the Delaunay triangulation of this
configuration colored according to density where lighter colors reflect higher density. The right image,
shows the Voronoi tessellation generated by the configuration where cells are colored according to their
number of edges. Notice that the majority of cells are hexagons (light green).

3 Geometry of nearest neighbor interactions

3.1 Proof strategy and adjacency graph of nearest neighbors

Our strategy, as put forward in [16], is to show that unweighted functional E* is a so-called short-range
interaction, that is, it has the following four essential properties. Note that compared to paper [16], we
strengthen and simplify the formulations, as appropriate for our context.

(i) Monotonicity: If A C B C RP, then, by definition,

(3.1) ES(A,N) = EF(B,N), Nz=1.

(i) Asymptotics on cubes: For the unit cube ¢ € R?, the following limit exists and is positive and
finite

, E¥(qq, N)
k . 71 s )
Coa= 0 “NTword
This fact will be established in Lemma 4.1.



(iii) Short-range property: The energy of a sequence of configurations contained in a pair (or finite
collection) of disjoint compact sets is asymptotically the sum of energies on individual sets. Suppose
Ay, A2 C R? are disjoint compact sets. If (wy) is a sequence of N-point configurations in A; U Ay
for N > 2, then

(3 2) lim E?(wNﬁAl)'FE?(WNﬁAQ)

=1.

The short-range property will be obtained in Lemma 4.4.

(iv) Stability: The minimum energy asymptotics is stable under small perturbations (in terms of
Minkowski content) of the set; that is, for every compact A C R? and € € (0,1) there is some
0 =46(e, s,k,p,d, A) > 0 such that for any compact D C A satisfying My(D) = (1 — §) My(A), we

have
. EL(AN) L EEDN) EL(AN) , £5(D,N)
(3.3) lﬂlilof “NiFed = (1-¢) lgrl_ggof N hzrvnj]:op “NiFed = (1—¢) I%njllop NI

In addition, for p = d, ¢ is independent of A. This result will be established in Lemma 4.5.

The above properties allow to extend the existence of asymptotics for £ from cubes (shown in Section 4.1)
to general compact subsets of R? and subsequently, to (Hg,d)-rectifiable subsets of RP, p > d. Once
these properties have been established for the unweighted interaction E¥, existence of the asymptotics on
compact sets in R follows. Finally, the statement of Theorem 1.1, applying to (H, d)-rectifiable subsets
of RP is derived by approximating such sets with bi-Lipschitz parametrizations, an argument going back
to Federer [10].

For some of the proofs in the sequel it will be useful to order the entries of wy € (RP)V by their
distance to a given x € RP; as was mentioned in Section 1, the interaction E* selects points with smaller
indices in the case of equal distance, so we will order lexicographically, first by distance, then by index.
Formally, the order <, on entries of wy is defined like so:

ly — |l <]z —=|
Y <zZz <~ or
ly — 2l = |z — = and I(y;wn) < I(z;wn),

where as before, I(y;wy) is the index of the first occurrence of y as an entry of wy. The notation
Nj(z; wy) introduced above then stands for the multiset of the first & entries of wy \ {x} with respect to
the ordering <,. We further write (x; wy); for the I-th entry of wy \  with respect to <, 1 <I < N—1.
In particular, distances ||z — (x;wn);|| are nondecreasing in [ for a fixed x and wy.
Let
Ak(wN) = {(xay) 1T,y EWN, YE Nk(f;WN)},

the set of ordered pairs of entries of wy, corresponding to the relation “y is among the k nearest neighbors
of 2”. Notice that this relation is not symmetric. In what follows, it will be occasionally convenient to
think of Ay(wy) as the set of edges in the oriented graph (V,€) = ({z;}1’, Ag(wy)) with {z;}{’ being
the multiset of entries from wy. Due to this, we will refer to Ay as the adjacency graph of wy.

3.2 Main geometric lemma and local properties of near-minimizers

Using Ag(wn), we can write

(3.4) Efwniw, V) = Z w(z,y)|z—yl| =5 + N3/1 Z V(z), s #0.
(z,y)EAR (wnN) TEWN

As before, the function w is assumed to be a CPD-weight on A x A. The external field V' is assumed to
be lower semicontinuous on A (and therefore bounded below there).



Figure 3: If the closed spherical cap of radius m/3 around projection mg(x;) (dashed) contains the pro-
jection of z;/, it follows |z; — x| < max{|z; — =, ||z; — xi||}. Hence, as Lemma 3.1 shows, at most
k points among {x € wy : z; € N(z;wy)} can be projected into any given cap of angular radius 7/6
(shaded).

Our eventual goal is to verify the properties from Section 3.1. It is easy to see that restricting
interactions to k nearest neighbors guarantees that E¥ is in a sense local. Without such restriction, the
locality does not hold when s < d, as is well-known from classical potential theory. Since s > 0, the
singular nature of the interaction on the diagonal results in that the pointwise separation is of the optimal
order for near-minimizers, as will be shown in Theorem 1.3.

We will first obtain the following basic fact about the set Ag(wn).

Lemma 3.1. Fiz a configuration wy € (RN of N distinct points. For any y € wy, the number of
points x in wyn such that y is one of k nearest neighbors of x is bounded by n(k,d), depending only on
the number of neighbors k and the dimension d. That is,

#{z € wy 1y € Ni(z;wn)} < n(k,d).

This lemma can be interpreted is graph-theoretic terms as follows. Consider expression (3.4); the first
sum involves terms w(z, y)||z —y|| ~* for oriented pairs (z,y) € Ap(wy). By definition, the outgoing degree
of every vertex in the graph ({z;}{', Ax(wy)) is k; the above lemma shows further that the maximal
incoming degree in the graph is bounded by n(k, d).

Proof. Fix y = z; € wy and denote wy,; = {z € wy : x; € N(z;wn)}. Choose the radius r; > 0 so
that B(xj,r;) does not contain any points from wy apart from ;. Let mg be the radial projection onto
S := 0B(xj,r;) and consider the image of points in wy ; under this projection, see Figure 3. Suppose
that a closed geodesic ball on S of radius 7/6, denoted Bg(z,7/6), z € S, contains more than k elements
of this image. Let
x; = argmax{||z —y| : * € wn,j, ms(x) € Bg(z,7/6)}.
Then Bg(z,7/6) C Bs(mwsg(x;),7/3), implying that Bg(ws(x;),7/3) contains k projections different from
Ts(xi).
On the other hand, for any xy € wn ;, from wg(z) € Bs(ms(x;), m/3) it follows Lz,x;xy < /3, so
that
i — @il < max{{lz; — @ill, |2; — 2 ||} = [l2; — 2],

since x; was chosen the furthest from z;. Thus, every other point projected into Bg(ws(z;),7/3) is closer
to ; than x;, and it must be z; ¢ Ny (z;;wn), a contradiction. By this argument, the constant n(k, d)
chosen as

n(k,d) == max {n : Jw, C S*! such that #(Bs(z,7/6) Nwy) <k, Vz € S*1}

has the properties stated in the claim of the lemma. O
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We will also need a classical result from potential theory, due to Frostman.

Proposition 3.2 (Frostman’s lemma [20, p. 112], [11]). For any compact A with Hq(A) > 0 there is a
finite nontrivial Borel measure p on RP with support inside A such that

w(B(z,7)) <r? xcRP.

This statement is specifically used to obtain a lower bound on the optimal covering radius of the
compact set A. Indeed, let the measure p be as in Frostman’s lemma. Given any collection wy =
(x5)Y € AN for the radius 7o = ¢, (A)N~Y4 = (u(A)/2)"/¢N—/4 and the set

D= A\UB(I’i,TO)

K3

there holds u(D) > p(A)/2. In particular D # (), so that at least one point of A is distance r¢ away from
the points in wy. It follows that the covering radius of A for any collection of N points wy € AV is at
least ¢, (A)N~1/4. Observe also that for d = p, it suffices to use u = v; 'L, and hence y is independent
of A in this case.

Proof of Theorem 1.8. Fix an N > 2. Since s > 0 and the product w(zx,y)||z — y||~* is infinite on
the diagonal of A x A, assumptions of the theorem imply that all entries of wy are distinct. It will be
convenient to assume that configuration wy = (x1,...,zy) is numbered in such a way that minimal
separation is attained for the pair x1, xo:

Awy) = ||#1 — 22| = en N~V
It will also be convenient to assume V' > 0 on A; by lower semicontinuity this can be achieved by adding
a sufficiently large constant to V', which does not change the behavior of minimizers.

We need to show ¢y > C(s,k,d,w,V,A,R) > 0, N > 1. By definition, a PD-weight satisfies
properties (b)-(c) of a CPD-weight; thus there exists a 6 > 0 such that {(z,2) : ||z — z|]| < J} C G for the
neighborhood G as in the definition of CPD-weight. This implies

0 < My = inf{w(x, 2) : ||z — 2| <}

Let further M, as in (1.10) — a finite quantity, due to the boundedness of w on D.
In view of boundedness of V on D, a set of positive Hy-measure, and the discussion after Proposi-
tion 3.2, there exists a point z € D, such that

|z — x| > ¢, N~V i=1,...,N,
where ¢, = c¢(A,V,L) = (u(D)/2)"/* is from Frostman’s lemma for D. Let
Wy = (2,22,...,TN),
the configuration obtained by replacing z; with z. If ||z; — 2a| = eNN Y% > §, ¢y > 6, and there

is nothing to prove. Otherwise, suppose ¢y N~/ ¢ < § for some N. Since Ef (wn;w) is close to being
optimal, replacing ; with z can lower the value of E¥ by at most RN s/d,

E¥(Why;w, V) — E¥(wn;w, V) = EF(Whysw) — E¥(wn;w) + N4V (2) = V(1)) = —RN*/¢,
so that, since V(z) — V(x1) < V(2) < L,
(3.5) EF(Wy;w) — E¥(wn;w) > —(R + L)N*/4.
Let us determine the terms remaining after cancellation in the left-hand side of this equation. Since

Ef (wiysw) — Ef (wyyw) = > - > w(z,y)llz =yl

(y)ehr(wy)  (z.y)€rk(wn)

11



A1(ws) 21//";
Y —’//22
Z2
T3 Ts

Ay (w)) 25;3
X
g 9

T3 L5

Figure 4: Elements of Aj(ws) compared to those in Aj(wf). Arrow from node = to node y means that
pair (z,y) is present in the respective adjacency graph. Solid arrows show pairs present in both graphs;
wavy arrows represent pairs appearing only in A;(wf); dashed arrows those appearing only in Aj(ws).
For this small example, each of X, contains exactly one term/edge.

we can describe all the terms that occur only in E¥(wy;w), and therefore do not cancel out, as

Ti+ T+ g = oo+ Y+ > w(@, y)z -yl

(wy)ern(wn), (@Y EAR(wN),  (z,y)EAR(WN)\Ak (W)
=1 Yy=x1 T,y#x1

Likewise, the terms occurring only in E¥(w/y;w) are as follows:

ST B 3 w(a,y)lle —yll =
(@) €Ar(wh),  (@y)€AR(w),  (wy)EAR(WN)\Ak(wN)
T=2z Y=z T, YF£z
The term ), above arises due to the number of terms originating from each point being fixed at k, so
any terms incoming into z must have had different terminating nodes in wy; similar logic applies to > .
To summarize, there holds

EMwhyiw) — Ef(wn;w) =S4+ X5 + 86 — X1 — Xp — 53,

As an illustration, all the six sums i, are present when point x; is replaced with z in the tuple
ws = (z;)}, shown in Figure 4. In this figure, ordered pairs (x,y) € A; for either tuple are represented as
directed edges of a graph.

To finish the proof, we will need an upper bound on ¥ — ¥5. To that end, note that each pair in Yg,
that is,

(z,y) € Ap(wly) \ Ax(wn) such that z,y # 2,
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must be replacing a pair having the form (z,z1) in Ax(wy), to keep the total number of outgoing edges
from z equal to k. Grouping the new pairs in Xg with the removed ones in Y5 by their starting node

gives
S Yy = 3 < w@, (@wn)e)  w(@,2) ) <0,
e = (zwn)kall® e — 2

z: (x,z1)EAL(wN),
2E Ny (25 wiy)

since ||z — z1|| < ||z — (z;wN)k+1]], and w is marginally radial, so the expression w(z,y)/||z — y||~* is
nonincreasing with the distance ||z — y|| for every fixed z. We used here the notation (z,wy)g+1 for the
(k 4+ 1)-st nearest neighbor to z in wy, as introduced in Section 3.1. Finally, equation (3.5) implies

—~(R+L)NYE <y + 854+ 56 — %) — %o — U3
<Y+ 35+ (B — X2) — %y
w(z, ) n Z w(z,z)  w(w, )

z -zl [ —=zll* flzy = 22l

N

xEN (25W) H

< (EMycy? +n(k, p)Myc, s —muyey”) N4,

x:z€Ng (w5wy)

where in the fourth inequality Lemma 3.1 is used to estimate the number of terms in the second sum.
This implies that whenever ¢y < SN'/4, there holds

MMy

1/s
- -
o <(R +L)eg, +(k+ n(k,p»Mw) e

as desired. |

(3.6)

Corollary 3.3. Let w = 1 and p = d; let also wi be such that E¥(wy) < EF(A,N) + 1. Then
equation (3.6) implies

1 1/s
G d)> oo N7V, N > Ny(d, Ly(A)),

* > -
Alwy) 2 <1+k+n

where ¢, = c(d)Lqa(A)/9, as in the discussion after Proposition 3.2.

Proof. 1t suffices to note that under such assumptions on wy, L =0, R < N—%/4 and m, = M, =1
in equation (3.6). |

Corollary 3.4. The proof of Theorem 1.3 shows that there holds an optimal covering result, at least for
some sublevel set of V +w. In particular, when V =0, w =1 one has an optimal covering result: For a
compact set A C R with 0 < Hy(A) < 00, and a sequence of configurations {wi }$°, such that

E*(wy) < EF(A,N)+ RN*/?, N >1,

for every y € A there holds
dist(y,wn) < C(s, k., d, A, Ry N~1/4,

Proof. Tt suffices to note that in the proof of the theorem, one obtains the inequality (3.6) between the
covering radius at z € D, equal to ¢, N —1/d " and the minimal separation, equal to ¢y N~/ Using
H4(A) < oo and a standard volume argument, one easily obtains an upper bound of C(A)N~'/¢ on
the optimal separation, at least for p = d. In the case p > d, one uses instead that Minkowski content
M4(A) < oo, to the same effect. In the sequel, we shall only need the optimal covering property for the
unit cube in R? in Section 4.1. It is not hard to see that the optimal covering holds on the L;-sublevel
set for V, with L; from the statement of Theorem 1.1, and not on any larger sublevel set. O
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Existence of minimizers of E* The above theorem concerns configurations with near-optimal value
of energy. A natural question to ask is, under which assumptions on w the functional (3.4) attains its
minimum on A%; that is, whether E* is lower semicontinuous. Recall that the topology on AY is the
product topology induced by the restriction of Euclidean metric to A. In the following proof it will be
convenient to use /* norm on AV, so that distance between two configurations is

Py we) = max [ — |

Lemma 3.5. Let V, w be lower semicontinuous on A and A X A, respectively. If w is a weight of the
form

(3.7) w(z,y) = Wz, |z —yll),
with lower semicontinuous W, then E¥(wx;w, V) is lower semicontinuous on AN for a fized N > 1.

Remark 3.6. To see that w must indeed only depend on the distance ||z — y||, let d = 2 and

Wi = {a1,25", w5} = {(0,0), (0,1+27"), (1,0)}

be a sequence of 3-point configurations, converging to wz = {z;}3 := {(0,0), (0,1), (1,0)}. Let further
w be continuous, symmetric, and such that

U)((0,0), (0’ 1)) =3, ’LU((0,0), (170)) =1L

Then
ELw$™) = 3[ad)| 7! + 2las| " =5, n— oo

while
Bl (ws) = 23|z ™" + llasl| 7t =7,

since the tie-breaking convention in E] prefers points with smaller indices (see page 2), thereby violating
the lower semicontinuity.

Proof of Lemma 3.5. Fix a configuration w@ = {x9,...,2%}. In this proof, points and indices related
to wR will be denoted by the ° superscript. Objects related to a variable configuration wy, approaching
wy in the product topology, will not carry this superscript.

If 27 = 27 for some i # j, Ef(w}’v; w, V) = +00. Due to the lower semicontinuity and nonnegativity
of |- ||7° and w, and lower semicontinuity of V, there holds

E¥wn;w, V) = +oo, whenever wy — w3y in AV,

Let now w$, consist of distinct points and V = 0. Fix an ¢ > 0. Note that when wy = {z;}} is
sufficiently close to w$; in the [° metric on AV, so that

H‘Tl_w:”<A(w?V)/37 I<i<N,

the value of E¥(wy) continuously depends on ;. In addition, by lower semicontinuity of w, for a
sufficiently small §; = d(¢), one has

- _s €

wz, zj)lle: — 257 2 wlzg, af)llei — 2507 =+

whenever r; := [[x; — z;|| and rf; := [laf — 23| differ by at most §; for 1 < i,j < N (we used here the
specific form of w).

We shall further need to show that the nearest neighbor structure Ay (wy) does not change much in a

neighborhood of wf, — or more precisely, distances to the k nearest neighbors remain approximately the
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same, even if the points themselves may be different. Fix an index 4. To obtain lower semicontinuity of
E¥(wn;w), it suffices to verify the semicontinuity at wg, only for the sum

S lwi—al
z; EN(zi50N)
as a function of configuration wy. Consider distances from 3 to the other entries of wy;:
dp = o = (zi;wyll,  1T<IE<SN.

By the definition of (z;;wS;)i, di+1 > d;. Let {Dl}f be the strictly increasing sequence of unique values
among {d;}, K < N. Partition the multiset of entries of wg; as

K
L7 I ={yewk s laf —yl = Di},
=1

according to the unique distances to x2. Note that when a configuration wx = (71,...,2x) € AV is such
that ||z; — 29| < d, 1 <1i < N, with

0 < min {51, min {(Dj41 — Dl)/4}{(_1] )
there holds
lzi — @) || <llwi —@gll, 25 € i, a5, € J,, b <la.

That is, the entries of wy \ {z;} can be collected into K groups, {.J;}¢, with any element of a group .J;,
closer to x; than any element of another group J;, when /3 < ls. By construction,

#JlO:#Jla 1<Z<K7
so there is a bijection between elements of corresponding groups. Observe also that for every pair of
elements y, 2 € J; and a pair y°, 2° € J, belonging to corresponding groups, there holds

[ly ==l = lly® —=°[l| < 20,
which by the definition of §; gives

I

— o _o o o €
w(y, 2)lly — 277 = wly®, 2°)[ly” — 2° T

By the aforementioned bijection between corresponding groups J;° and Jj, it implies
Yoo wlwallr - Y w(ag,af) e — a3 -,
z; EN(zi5wnN) ziEN (22;w%,)

proving the lower semicontinuity of the point energy for a single x;, and therefore lower semicontinuity
of E¥(-;w) = E¥(-;w,0). Addition of an external field is only introducing another lower semicontinuous
term, which completes the proof. O

Corollary 3.7. Under the assumptions of Lemma 3.5, minimizing the k-energy for any k > 1 and s > 0
yields a separated configuration.

4 Proofs of the main results

4.1 Asymptotics on cubes

Let us demonstrate how to establish the existence of asymptotics on cubes for the Riesz k-energy func-
tionals, following the outline in Section 3.1. We shall need this fact only for the unweighted E* — or,
equivalently, for the constant weight w and zero external field V. In this section, the ambient space is
R,
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Lemma 4.1. For s > 0 and k,d positive integers, the following limit exists, and is positive and finite:
E¥(qa; N)
k. : s )
(4.1) Coai= Jm =7
which is the constant appearing in (1.6).

Proof. Set
EF(A,N)

S R e

Fix ¢ > 0 and let {w,, }nes be a subsequence of n-point configurations in A for which
Ef(w,) < (L +e)n'Ts/? ne.N.

‘We shall show that
& k(A, N)

S

g .= lim sup W7

N—o0

equals £ establishing the existence of the limit (4.1).
Fix N > k and let {wn} be an N-point configuration in A such that

(4.2) E¥@N) < EF(A,N) + 1.
Let n € 4 and L be the unique positive integer such that
(4.3) n(L — 1) < N < nL?

By Corollary 3.4, there is a positive constant c(s, k, d) such that the distance to the k-th nearest neighbor
in w,, is at most ¢(s, k,d)n~1/4. Let

vi=1-—c(s,k, d)nil/d,
and consider the following configuration obtained by tiling g4 with copies of Fw,:
- Yo 1 2
i€ (LZ)d

where LZ := {0,1,...,L — 1}. We observe that with this choice of v the k nearest neighbors in w for
every point in the subset Fw, + 7 also belong to this subset.
We next obtain an upper bound for E¥(@y) using w. By the scale invariance of EX there holds

£t (L) = (%)E’m)

and so from (4.2) and (4.3), we have
d (L gk
Ef@n) _ BEw)+1 _ L (;) E(w,) +1
N1+s/d = N1+s/d - N1+s/d

(4.4) L (£) i)
S o~ 1y

+ N*lfs/d

I s+d
< —s g N_l_s/d.
v (—L1> (L+e)+ ,
where in the first equality we used that due to the choice of -, no interactions between different tiles
enter the sum for E¥(w). Taking the limit superior as N — oo in (4.4) for fixed n which implies L — oo,
gives _

Ly 5 (L+e).

16



Then taking n — oo, n € .4/, (in which case v — 1) shows that £ < £ + ¢. Since ¢ is arbitrary, £ < £
and so the limit C¥ ; in (4.1) exists in [0, o).

It remains to show that Cf’d is finite and positive. Notice that £F(A, N) = O(N*+5/4) follows by
placing the points in wy in the vertices of the cubic lattice which shows that C’f’ 4 is finite. To see that

Cﬁd is positive, observe that for any configuration wx C [0, 1]% of N distinct points there holds

N

N N
o)=Y 0 la—yll > 3 e — (wgwn )l = S
=1

i=1 yeNg (zi;wWN) i=1

where as before we write (z;;wy); for the nearest neighbor of z;. Notice that the interiors of balls
B(x;,7;/2) are disjoint and contained in [—v/2,1 4+ /2], so vy 3, ré < 2926, where v, denotes the
volume of d-dimensional unit ball. In conjunction with Jensen’s inequality this implies

N N | —s/d
-5 __ dy—s/d d 1+s/d (9d/2pd —s/d
r, = T >N | — T >N 297°6% /v, ,
S =Y (N > ) 29726
which is the desired lower bound. O

From scale- and translation-invariance of E¥, we obtain also the asymptotics for a general cube in R

Corollary 4.2. For s > 0, k,d positive integers, and a cube Q = =+ aqq C R the following limil exists:

Ii g?(Q7N) _ C?,d . Cf,d
Nose N/~ s Ha(Q)s/d

The lower bound on ¥ derived in the proof of Lemma 4.1 relied on the condition A4 = [0,1]?. To
verify the short-range property, it will be necessary that £¥(A, N) grow to infinity with N, for which it
suffices to assume that A is compact. In the following lemma we establish such growth for energy on
compact sets.

Lemma 4.3. Suppose A C R is a compact set, k > 1, and s > 0. Then

EF(A,N) ,
. s ) —s/d

lim inf =275 > O(s, ) (La(A)) 7/

Proof. Clearly, it is sufficient to assume k = 1. Fix an € > 0. By Besicovitch’s covering theorem [20,
Theorem 2.7], for every sufficiently small r > 0 there exist a collection of balls {B,,}M := {B(x,,r)}M_,
that cover A and satisfy

M
Z var® = Mugr? < e(d)Lq(A,)
m=1

where as usual, A, is the r-neighborhood of A. In fact, each point of R? is contained in at most c(d)
among {B,,}. Let wy € AN be an arbitrary configuration of N points and denote by wh the subset
of its elements x, contained in some B,, that also contains at least one other element of wy. Then
#(wn \ wly) < M. In addition, whenever B,, contains at least 2 elements of wy, for every such element
x € wiy N By, there holds

re = ||z — (z;wn)1]| < 27

Note that the balls {B(z,7:/2)}scw,y are disjoint, which gives

Z Ud’r’g < Ud(3T>d7

2EB(Tm,T)
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Applying Jensen’s inequality, one has

Efwn) = > r 2 > rt= ) (i

TEWN TEW TEWN
—s/d
1 s —s
>(N=M) | 7 2 rd > (N — M)+s/d(34 pppd)y—s/d
x wl\{

> (N — M)'/40 (s, d) (Lq(A,)) /4.

Since M is fixed, this gives further

By taking r | 0, the lemma follows. O

We conclude this section with the proof of the short-range property for the functional E¥. The proof
will use that £F(A, N) grows to infinity, as we just established for all compact subsets of R?.

Lemma 4.4. Let Ay, Ay C RP be disjoint compact sets. If {wn} is a sequence of N-point configurations
in A1 U Ay for N > 2, then

Ef(wN N Al) + E!:(UJN n Az)

4. li =1.
(4:5) NEB, EF(won)
Proof. Notice that for any = € wy,
v — (@wn)l < llz— (wy VARl 1<ISk m=1,2

As a result, there holds
Yo lz—yl = > lz—yl™*  x€wn, m=12,
YEN (z;0N) YEN L (T3wN NAL,)

which gives
E‘]:(UJN N Al) + Ef(wN n Ag) S Ef(UJN)

and

< L

Ef(wynA Eflwyn A
lim sup G 11+ s (wy 2)
N —s00 Es' (WN)
It remains to derive the converse estimate. Since A;, Ay are compact and disjoint, dist(A1, As)

h > 0. Pick an element z € wy; without loss of generality, z € A;. There are two possibilities: i)
(z;wN )k € Ay, in which case all the terms of the form

o a—yl®
YyENL (230N )

are shared by the two sums E¥(wy N Ay) + E¥(wy N As) and E¥(wy); i) (z;wn)k € Ay, in which case
(see Section 3.1 for the adjacency graph notation)

Ap(wn) \ [Arlwn N A UAg(wy NA2)] D {(z,y) : y € Nk(z;wnN), y € Az}

in other words, some of the edges connecting = to its nearest neighbors in wy are missing from the union
of adjacency graphs U?ﬂ:l Ak(wn N Ay,). On the other hand, all the terms occurring in E¥(wy) but not
in E¥(wy N Ay) + E¥(wy N Ag) are precisely of this form, so collecting all the pairs with € A; into

G = U {(z,y) :y € Ne(z;wn), y € Az}

TEWNNA;
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and those with x € A, into
Gy = U {(z,y) : y € Np(z;wn), y € A1},
rEWwNNA2

we conclude

Ak(wN) \ [Ak(wN n Al) U Ak(wN n Ag)} = G1 UGs.
It follows

Efwv)= > llz—y|™

(z,y)EAR (wN)

< )R D DI D DS S W B ]

(x,y)eAk(wNﬁAl) (I,y)eAk(wNﬂAg) (z,y)€G1 (x,y)GGg
< Ef(wN n Al) + E]:(WN N A2> + NEh™%.
Here in the last inequality we used that ||z —y||~® < h™* for x, y placed in different A,,, and that the total

number of edges in Ay (wy) is Nk. Using Lemma 4.3 with p = d, we conclude that Nk h~* = o( E¥(wy)),
whence dividing the last display through by E*(wy) and taking N to infinity yields

L. Ef(wNﬂA1)+E§(wNﬂA2)
lim inf -
N—o0 E;‘(WN)

/17

completing the proof of the lemma. O

4.2 Stability and poppy-seed bagel asymptotics for E*
In this section we establish a set-stability result for E¥ as described in (3.3). This lemma will play a key
role in the proof of Theorem 4.7 which is the main goal of this section.

Lemma 4.5. For a compact set A C RP with 0 < My(A) < oo, s > 0, and any € > 0, there exists a
0 =46(e,s,k,p,d, A) > 0 such that the inequalities

L ERAN) LSO ERALN) L EHD)
lin Inf e > (- liminf Zgs, - limsup St > (19 limsup o

hold whenever a compact set D C A satisfies Mq(D) > (1—0)Ma(A). In the case d = p, § can be chosen
independently of A.

Proof. Let w} be a sequence of configurations satisfying E¥(wk) < E¥(A,N)+1, N > 1. According to
Theorem 1.3, the separation for this sequence satisfies A(wy/) = CN-Y4 for C = C(s,k,d, A).

The proof will consist in demonstrating a way to retract configurations from A to D without increasing
the value of E¥ on them too much. We will first show that most of z; € w} have a point from D close
to them, for N sufficiently large. In this proof let us write S(r) = S, for the closed r-neighborhood of a
set S; observe that D(r) C A(r) for any r > 0.

Let 6 € (0,1) and D C A be a compact set satisfying Mg(D) > (1 — §)My4(A). Then for all
sufficiently small r > 0, £, [A(r)] — £, [D(r)] < vp_ar?*36M4(A), by the definition of Minkowski
content. In particular, for N > Ny = Ng(A4, D, ) and any 0 < v < C'/4 there holds

Ly, [A('yN*l/d)] - L, {D('yN*l/d)] < vp_gyPTEINTPD/AZF AL, (A).

Thus the number of disjoint balls of radius YN ~'/¢ that can be contained in A(yN~1/4)\ D(yN~1/4) is
at most
Vp_ g VP IN == D/ 35 M4 (A)

N — S c(p,d)y NMa(A).
p
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It follows that for at least N (1 —dc(p, d)y~4M4(A)) points in w¥, a closest point in D is at most distance
2,_YN—1/d

away. Consider the subset {x}} C w4 for which this is the case, and for each z} find a closest point in
D. Denote the resulting set by w. By the preceding discussion, it can be assumed

(4.6) N, i=H#w=|N (1 -6c(p,d)y""Mq(4))|, N=N,.

Consider a pair z}, mg; let their nearest points in w be y; and y; respectively. Since the separation between
entries of wjy; is at least C'NV —1/d_there holds

Iy —y;ll > (1 —29/C)lz; — 25 >0, i #],
where we used that 2y < C/2. Due to the scaling properties of the kernel ||z — y|| =%, this implies in turn
E(wy) = (1 - 29/C)°E{ ().
By the estimate (4.6) on the cardinality N, we have finally

1+s/da EF(D,N,)

EE(wi) : -
—I > (1-29/C)* (1 = de(p, d)y~"Mq(A)) NLte/d

N1+S/d = ) N>NO

Setting v = C§/2% gives

EE(AN) +1
N1+s/d

1+s/d gk(D N,)

(47) Nu1)+s/d

> (126424 (1= V3 e(p, ) Ma(4)/C?) . NN,
implying the claim of the lemma for liminf and a suitably small 6.
To prove the claim for limsup, observe that following the above construction, given a cardinality

N > Ny, one obtains cardinality
N, = {N (1 - \/Sc@,d)Md(A)/cd)J = |[N(1— V)],

for which inequality (4.7) holds. Here ¢ = ¢(s, k, p,d, A). Furthermore, the inequality (4.7) is also satisfied
if N, is replaced with N, — 1. Since the image of the set {N : N > Ny} under the mapping

n— |n(l—eVd)]

contains {N : N > Ny} for § < (1/2¢)?, for every given N, > k + 1, there exists a cardinality N, such
that the inequality (4.7) holds with these particular values of N and N,,. Now let .4 C N be a sequence
along which

EF(D,N)

S

lim sup W

N—o0

is attained; taking .4 3> N, — oo in (4.7) completes the proof for lim sup.
Finally, for d = p, notice that by Corollary 3.3, My(A)/C? = c(s,d, k) for sufficiently large N, so
indeed ¢ in (4.7) is independent of A. This proves the last claim of the lemma. O

In the last auxiliary result before the main theorem of this section, we show that any functional
equipped with the monotonicity, short-range, and stability properties from Section 3.1, and for which the
asymptotics are known for all compact subsets of R?, also has asymptotics on (Hg, d)-rectifiable subsets
of RP, p > d. In addition, the formula for the asymptotics coincides with that on the compact subsets of
R?. The precise statement follows; in it, we say that a functional acting on collections wy is continuous
under near-isometries, if for any € > 0, there is a « such that for every bi-Lipschitz map ¢ : RP — RP
with constant less then (1 + ),

(14e) Ten(wn) Sen(¥(wn)) < (L+e)en(wn),  f(¢) 2 0. lim f(c) = 0.
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Lemma 4.6. Suppose eny : (RP)N — [0,00] is a sequence of functionals, continuous under near-
isometries. For a compact A C RP, denote e} (A) :=inf, caen(wn). Assume that e have the following
properties:

1. e (A) > ey (B) whenever A C B C RP are compact sets.

2. Suppose Ay, As C RP are disjoint compact sets. If (wy) is a sequence of N-point configurations in
A1 UAs for N > 2, then

lim eN, (LUN N Al) +eN2(wN n AQ)

=1
N—oo CN(LUN)

)

where Ny, are the cardinalities of the intersections wy N Ay, m=1,2.

3. For every compact A C RP and ¢ € (0,1) there is a 6 > 0 and s > 0 such that for any compact
D C A satisfying My(D) = (1 = §(e)) My(A), we have

e (A e (D)
linf Nsya 2 (1 - o) liminf Ao,

4. For every compact A C R? and some s > 0,
en(A) Ce

lim & =

Then, for every (Hgq,d)-rectifiable compact set A C RP,

. 27\7(14) . Ce
am g = Ha(A)s/d

Proof. Fix an € > 0 and let 6 > 0 be as in the stability assumption 3. Without loss of generality,
0 < ¢ < e. By a standard fact from geometric measure theory [10, Lemma 3.2.18], there exist bi-Lipschitz
maps ¥, : R — RP with constant smaller then (1 + ), and compact sets K,,, C R%, 1 < m < M such
that sets {¢m, (K,,)} are disjoint, contained in A, and

M
Hy <A\ U ¢(Km)> <.

m=1

Without loss of generality, 0 < v < . Denoting A = U, ¥(Km) C A, we have from monotonicity
assumption 1.:

: ev(4) o ey (4)

On the other hand, both A and A are compact, (Hg,d)-rectifiable, and Hg(A) = My(A), Ha(A) =
M (A), see [3, Lemma 4.3]; combined with the assumption on §, this means the stability property 3.
applies, so that
e en(A) o en(A)
NV S (1 = NV

(4.9) l}\I;ILI?Of NTred 2 (1—¢) l}\r}riglcf NTHs/d-
By the last two displays, it suffices to derive the asymptotics of e}, for A. This is where the short-range
assumption 2. comes into play. ~ ~ ~

Consider a sequence wi C A, N > 1, such that ey (w}y) < ejy(A) + 1. Let A, = ¢, (K,,) C A and
Ny, := #(wy N A4,,). By passing to a subsequence, the following limits can be assumed to exist:

N
Bm = lim N 1<m< M.

N—oco

21



Using assumption 2., the fact that A,, are disjoint, and the choice of 1,,,, we have

A)+1 A NN An
limi f ( ) + hml f eN( N) . Zm e]\/vm(wN )
No5oo N1ts /d N—o00 Z eN,, (W*N ﬁAm) N1+S/d
Nm 1+s/d « Am
= lim inf Sm N, (Wi N Am)
N—oo N N1+5/d
1+s/d en,, (Wi N Am)
P Zﬂm hml f—Nl+a/d

Now (U (W) N Ko
N1+s/d ’

(1+¢)” Zﬁ}yj_&/d hmlnf

where the last inequality used that ¢,,'(A;,) = K, with a bi-Lipschitz constant (1 + ). Using the
asymptotics on subsets of R? in assumption 4., we conclude further

EF(A,N)+1 s Ce
(410 i S > (4 DA gt
Observe that the right-hand side of the previous display is minimal over nonnegative {3,,} with > 3, =
1 when B, = Ha(Kpm)/ Y. Ha(Kp). As a result, to obtain an upper bound for the asymptotics, we choose
Ny, in such a way that > N, =N, Np,/N = Hq(Kp,)/ Zm Ha(Kpm), N — oo; then an upper bound
on ¢4 (A) is obtained by taking the union of configurations w’ ~,, C Ay, for which ey (wy ) < ey (An)+ 1.
Indeed, by the short-range assumption 2. and the same argument as above applied to Um wN,

. ) 1+s/d . e}kvm(Am)
hmsup Nl"!‘q/d \Z ZHd -llmsupw

N—oo N—o0
) 1+s/d * (Km)
(4.11) < %: <E'Hd > “(1+¢) h]{;nj;lop W
Ce Ce
-1 . < (1 1+s_—.
(1+e) (X Ha(Kom))™ e (Ha(A))**

Here we again used that {4, } are bi-Lipschitz with the constant (1++) < (1+4¢). Finally, the substitution
of (4.10)—(4.11) into (4.8)—(4.9) yields

Ce
(Ha(A) — )/’

so that taking € | 0 finishes the proof of the lemma. O

Ce < lim inf ~2V (4) < lim Qllp i (4) < (L+e)tts

— 71— —_—
(1-e)(1+¢) (Hd(A))s/d S Nieo Nlts/d ™ Nosoo N1ts/d =

We are now in the position to prove our main theorem for the case with no weight or external field.
Note that we have verified that E* satisfies the properties formulated in Section 3.1, and is therefore an
example of a short-range interaction [16].

Theorem 4.7. Suppose A C RP is a compact (Hg, d)-rectifiable set with My(A) = Hqa(A), s >0, k>1
and p = d. Then

ES(AN) Cla
(4.12) R vEwyr = Ha(A)d

where the constant Cf,d was introduced in (4.1).

Note that this is a special case of Theorem 1.1, in which p(x) = 1/H4(A). We obtain the result about
limiting distribution in the general situation (with weight and external field) below, in Section 4.3.
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Proof. This proof uses the approach developed in [16] for general short-range interactions. We proceed
by establishing the asymptotics for unions of cubes, then for compact sets in R? (p = d case), before
finally proving that (4.12) holds for compact (Hq, d)-rectifiable sets A. Let H4(A) > 0 first.

We first consider the case A = Ui\/l Qm, a union of equal closed disjoint cubes. Fix a sequence wiy,
for which E¥(w%) < EF(A, N) + 1. Passing to a subsequence if necessary, it can be assumed that the
following limits exist

N,
o= lim —, 1<m< M,
B Ngnoo N’ m

where we set Ny, = #(wi N Q). On the one hand,

L EFAN) T B (W) EF(wh) > B (Wl N Qm)
= 2 > RS\ A | . m s
Wt T w2 R TS By N0, T N
(Qm7 771) 1+s/d (Ql’ )
>th;§;fw DB Hliminf =

> liminf 2——"—= £:(Q1.N) . Zﬁl-i-@/d Ck . Zﬁ1+s/d
N 00 N1+ CNi+s/d Hd(Ql)

m

where we used the short-range property for E¥, Corollary 4.2, and that all the cubes Q,, are equal, hence
the value of £¥(Q,,, N) is independent of m. On the other hand, given 3,,, = 1/M, 1 < m < M, it suffices

to place in Q,, a configuration wy, ~of cardinality N,, = [N/M] with Ek (wy,,) < E¥(Qu, Niw) + 1 to
obtain
1JrVn:up N1+ s/d 111\}1:“1) N1+5/d = 1]1\/11:;10p Z Ek( ) N1ts/d
wx,) 1+s/d7: Ef (wi,)
< D timsup —= Te) = 2B i —
EF(Q1, N) Cly
= limsup =5~ ~. flts/d — 8¢ L Msld

e Sy 2=

Since the minimum of )" ,ByanrS/ 4 for nonnegative S, with >~ B, =1 is obtained for f; = ... =y =

s/d times the asymptotics for one such cube, in

1/M, asymptotics for the union of M equal cubes is M~
agreement with (4.12).

The case of a union of closed equal cubes with disjoint interiors (but not necessarily disjoint) follows
by an application of stability and monotonicity by approximating the cubes of the union from the inside
with disjoint equal cubes. We shall omit the details and instead discuss obtaining (4.12) for general
compact sets from unions of cubes with disjoint interiors. The omitted argument follows the same lines.

It suffices to assume Hq(A) > 0, since otherwise A can be covered with a union of equal cubes of
arbitrarily small measure, and monotonicity property directly implies that the limit from (4.12) is infinite.
Now fix an € > 0. For § = d(e, s, k,p,d) as in Lemma 4.5 (note that ¢ is set-independent!), let J. D A
be a finite union of closed equal dyadic cubes with disjoint interiors, such that Hg(A) > (1 — 0)Ha(J:);
then formula (4.12) applies to J.. Without loss of generality, § < & < 1. On the one hand, monotonicity
property together with asymptotics on J. give

g?(‘[i, N) _ Cfd Cj,d

gk<AaN) s/d
lim inf 2 1 (].—E) / W

Nooo N1+s/d Nooo N1+s/d 77'[(1( )a/d =

On the other, by the choice of J. and stability property from Lemma 4.5 applied to the pair of sets
AcC Je,

5(A,N E(J., N c¥ s
(1-¢) limsup% < lim & (Je, d> = o.d 7 S e 7
Nooo N +s/d Nooo N1l+s/d Hd(Je)s/ fHd(A)s/ l
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which completes the proof when A is a general compact subset of R%.

To obtain the desired result for (Hg,d)-rectifiable A C RP with H4(A4) > 0, note that Lemma 4.6
applies to E¥ in view of Lemmas 4.4 and 4.5. It thus remains to discuss the case Hq(A) = Mgy(A) = 0.
We can argue by contradiction: suppose

2
liminf £ (A N)

iminf = = ¢ < oo,

and let {n : n € A4} be the subsequence along which the liminf is attained. Without loss of generality,
k = 1. Let further w? be the sequence of configurations with El(w}) < EL(A,n) + 1 for every n € A Tt
follows that for ng sufficiently large,

Z | — (2;w2)1]| 7% < 200t/ n = ng,
TEWR
implying that for any v > 0, the number of elements x € w? such that ||z — (z;w)1| < yn~/¢ is at most

2Cy*N. Taking v small enough gives at least n(1 — 2Cv*) elements x € w,, for which ||z — (z;w})1]| >
yn =1/, Denote the set of such z by w!, C w,. It follows that the balls {B(z,yn /%) : z € W/} are
disjoint, and so in view of

U B(z,yn~ V) ¢ Ap-iya,

’
TEW,,

for any £ > 0 and all large enough n; = nq () there holds
Heonop(yn P < (Ma(A) + €)vp—a(yn™ VNP7 nz .
Using that #w/, > (1 — 2Cy*)n and M4(A) = 0, from the last display we have
(1- QC”yS)vp’yd < vp—gs,
which is the desired contradiction for sufficiently small € > 0. This proves

EF(AN
liminf s (4, N)

Nooo N1ts/d -

4.3 Adding a multiplicative weight and external field

We will now extend the results of the previous section by introducing an external field and a weight, so

that the problem at hand is optimization of the functional (1.3). An essential ingredient in the proof is

the partitioning of the set A according to the values of V; similar ideas were used by the authors in [15].
First, some remarks about the positivity of weight w and external field V' are in order.

Remark 4.8. Since V is assumed to be lower semicontinuous and A is compact, it follows that V is
bounded below on A and, by adding a suitable constant, we may assume V > 0. Furthermore, by
the definition of CPD-weight w, there exist positive numbers ¢ and wqg such that for any pair x,y € A
satisfying ||z — y|| < ¢ we have w(x,y) > wo. Let {B;}] be a covering of A with n = n(J) balls of radius
d/2. For wy C A and any ball B; containing at least k + 1 elements from wy, we have ||z — y|| < § for
z € wy NBj and y € Ny(x, wy). On the other hand, there are at most nk? pairs x,y with 2 € wy N B;
and y € Ny (z,wn) satisfying ||x — y|| > d since in such a case  must belong to a ball B; with at most &
elements. Defining @ := max{w, wp}, we then have

EF w) — EF
lim s (UJN, ’LU) s (wN, w)

N —o00 Nlts/d =0
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since
0 < E¥wy,w) — E¥(wy, w) < Z Z wollz —y)| ™ < nk*wed .
TEWN yEN (T3wN ),
lz—yll>o
Hence, for the purpose of asymptotics, it may be assumed w > wg. We employ this fact in the following
useful proposition.

Proposition 4.9. Let the assumptions of Theorem 4.7 hold. If wxy € AN, N > 1, is a sequence of
configurations for which
E*(wn;w)

lim sup N1ts/d

N—o00

< 400,

then any cluster point of v(wy) is absolutely continuous with respect to Hg.

Proof. As remarked above, we may assume w > wo > 0. Then E¥(wy;w) > woE¥(wy), and we may
argue as in [15, Lemma 4.9]. O

Remark 4.10. The discussion in Remark 4.8 can also be used to estimate the terms in E¥ for pairs (z,y)
with a fixed positive separation. Namely, by property (c¢) of CPD-weight, for every § > 0 there exists a
constant M; such that ||z — y|| > § implies 0 < w(z,y) < Ms. Using a covering of A with n = n(Jd) balls
of radius §/2 in the same way as in Remark 4.8, we conclude

(4.13) 0< > Y wEylr—yl™< Y, > Ml -yl <nk*Mss0,

TEWN yENg (z5wN ), TEWN yEN (T5wN ),
lz—yl|>é lz—yl|>é

Using the above observations we further derive an analog of the short-range property (3.2) for weighted
interactions. For the purposes of the proof of the main theorem, it will be enough to establish an inequality
corresponding to the local behavior of asymptotically optimal configurations. For the rest of the section,
set

(4.14) elwniS) = > (wlwy)le -yl + NV ()
(w,y)efe&g(wzv),

for the sum of terms in E¥(wy;w, V) corresponding to edges of Ag(wy), emanating from the entries
x € wy NS with S C A. Notice that as a function of set S, e(wn;.S) is a positive measure (as usual,
V > 0 is assumed without loss of generality). Thus, for a sequence of configurations wy, N > 1, with
lim sup y e(wn; A)/NH““/d < 00, up to passing to a subsequence there exists a weak™ limit of measures
e(wy; - )/N1$/4 which will be denoted by .

Lemma 4.11. Suppose A C RP is a compact (Hgq,d)-rectifiable set with Mq(A) = Hq(A), Ha(A) < oo,
and let w be a CPD-weight and V' a lower semicontinuous external field.

Assume that w} is a sequence of asymptotically optimal configurations for E¥(-;w,V) on A, converg-
ing weak™ to the measure u. Let x1,x9 € supp p and B, := B(Zy,,rm), m = 1,2, be disjoint and such
that max(Hq, p, A)[0Bm, N Al = 0. In addition, let w(z,y) be bounded when x,y € B(xy, 2rym,).

Then for any compact Sy, C AN By, m=1,2, and B = By U By,

. e(wy; B) : ( 14+s/d39Pz yes w(z,y) >
4.15 limsup ——=——+ < min o, = + ay sup V(x) | .
( ) N—>oop N1+S/d a1 +az=p(B) m;& Hd(sm)s/d rESI:n ( )

Proof. In view of the asymptotic optimality of w}, it suffices to present a sequence of configurations wh,

with the energy asymptotics corresponding to the right-hand side in (4.15). Recall, asymptotic optimality
means for any w) € AN we have

EF(wiw, V)

limsup ——N" 7 2 < 1.

N—oo E?(WEV, w, V) =
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Fix v € (0,1) and ay,as > 0 such that a3 + ag = p(B). We further denote vB,, := B(Zu, m),
B := By U By, and vB := vB; UyBa. Let n = #(wi N B), n1 := min(|a1N|,n), and ny :=n —ny
and note that n,,/N — a, as N — oo for m = 1,2, since n/N — pu(B) by weak* convergence and
the assumption that (0B N A) = 0. Choosing an n,,-point configuration w,,,, C S,, N ~yDB,, such that
EX(wp, ;w0, V) < EF(AN By, nm; w, V) + 1 for m = 1,2, let w,, = w,, Uwy,, and define wj by

(4.16) Wy = wyp U (wy N(A\ B)).

By the definition of e,

E{(wiiw, V) = e(wy, B) + e(wy, A\ B),
B (wyiw,V) = e(wy, B) + e(wy, A\ B).

Let us now compare the asymptotics for N — oo of e(w};, A\ B) with that of e(wy, A\B). By (4.16), these
sums differ only by the terms corresponding to pairs (z,y) € Ax(wy) with € wiy \ B and y € wjy N B,
which are replaced in Ag(w)y) by pairs x,y € wiy \ B for sufficiently large N, in view of the positive
separation between vB and A\ B. Thus, we have

(4.18) e(wi, A\ B) —e(wy, A\ B) = 3 ( w(z,y)  w(z, (ﬂc;wlfv)i) ) _

— S — . Rk
o, Ereniony, = 3l* o= (@)
y=(z;wy):€B

(4.17)

Note, for any r > 0 we can decompose the sum in the right-hand side of (4.18) as

w(z, w(z, (T; W)
Y+ g = Z + Z ( y)'_ ( ( /N)Z). -
lz—yll* - (z;wy)il?®
zewn\Br, (z,9)eAr(wy), zewnNNBA\B, (z,y)eAr(wy),
y=(z;wy)i€B y=(z;wyx)i€B
By property (c) of CPD-weight, absolute value of the first sum % is at most 21— M, (r)Nk = o( N1T5/4),
To estimate the second sum, let r < min(rq, 73), so w is bounded uniformly in x,y € B(z,, 27,,) by some
constant M, > 0. Note that since ||z — (z;wh)i|| = ||l — (2;wk):ll, there holds

w M, .
(4.19) ““”N / “"N Do Moo\ B i1
||l’— ziwi)ill*/ Nl = (@swi)ill® — wo

with wy from Remark 4.8. Using the definition of measure A and (4.19), we have for N large enough

%) AB.\ B).

22 g N1+S/d2 <1+
wo

Observe that by our assumptions, for r | 0, A\(B, \ B) — 0, so the right-hand side can be made smaller
than e N1T#/¢ for any given ¢ > 0. It follows

le(wi, A\ B) = e(wiy, A\ B)| = o(N'*/%), N — cc.
Combined with equation (4.17), asymptotic optimality of w}, now implies

e(wy,B) _.. . .ewy,B)
NPT~ N2
limsup 707 < winf =520
Writing S}, := Sy, Ny By, by the separation between vB and sets A\ B, and B, being disjoint, we infer
from the above inequality and Theorem 4.7:

. e(wjvé B) sk N l+s/d Ef (wn y W, V)
. < m
hj{fn:;lop Nite/d S 1}\1{?(1%1?; 2 ( N ) n,},j's/d
su ~ w(z,
= Z alts/d Pzyes S§d Y) +apm sup Vi(z).
m=1,2 Ha(S7) z€Sy,
Taking v 1 1 gives (4.15), since Hq(0B N A) = 0. O
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Before proving Theorem 1.1, let us discuss an alternative form of condition (a) in the definition of
a CPD weight. It transpires from the proofs of Lemma 4.11 and Theorem 1.1 that in place of Hg-a.e.
continuity in condition (a) one can assume

(a") w is bounded on A x A and lower semi-continuous (as a function on A x A) at Hg-a.e. point of
the diagonal diag (A) := {(z,z) : © € A}, and such that for H4-a.e. x € A and any € > 0 there
is an 1), > 0 such that for 0 < r < 7/, there exists a closed set A,, C AN B(z,r) for which
Ha(Azr) = (1 —e)Ha[AN B(x,r)] and

(4.20) w(y, z) < w(z,x) + ¢, Y, 2 € Ag r.

In particular, condition (a’) holds if w is symmetric and lower semicontinuous on A x A and H4-a.e. point
of diag (A) is a Lebesgue point for w(x,y) with respect to the measure Hqy ® Hqg on A x A. Another
version of (a), not requiring boundedness on the diagonal, is as follows.

(@) w is a marginally radial weight, lower semi-continuous at Hg-a.e. x € diag (A), and such that for
Hg-a.c. © € A and any € > 0 there is an r,, > 0 and a closed 4., C AN B(x,r), 0 <r <7l as in

property (a’).

Proof of Theorem 1.1. Let the assumptions of Theorem 1.1 hold. In view of Remark 4.8, we hereafter
let V' > 0 and suppose there is a wy > 0 such that w > wg on A x A.
If Ha(A) =0, it follows from the latter assumption and Theorem 4.7 that
y EX(A, N;w,V)
N T NTRed T o0

and so there is nothing to prove. Now let H4(A) > 0 and w(z,z) + V() < oo on a closed subset of A of
positive Hg-measure. Minimizing E¥ on this subset gives an upper bound on £¥(A, N;w, V), implying
that

ER(A, N;w, V)

(4.21) lim sup NTFs/d

N —o0

< 00.

Fix 0 < ¢ < wy/3. For r > 0, let Ba(z,r) := AN B(z,r) denote the ball of radius r relative to

A. By the (semi)continuity properties of V' and w, for almost every x € A and a sufficiently small rg(yl),

if y,2 € Byl(x, ra(yl)) then (cases when e.g. w(z,z) = 400 satisfy the appropriate modifications of these

inequalities)

(4.22) lw(y, z) —w(z,z)| <e V(y) =2 Vi(z) —e.

Furthermore, the set A can be divided according to the values of V' into subsets of the form
Api={ze€Ad:le<V(x) < (l+ 1)},

and we set Ay = {x € A: Me < V(x)} with M chosen so that Hq(Ap) <e. Thus A = |_|éw A
Applying the Lebesgue density theorem [20, Corollary 2.14] to each A; gives that for Hg-almost every

x € A; there exists some 7'3(02) > 0 such that for every r < 7'3(52),

HalA; N B(z,r)] = (1 —e)Hq[Ba(z,7)],

implying, since every x € A is in exactly one A;, that for Hg-a.e. z € A and r < rg(cz):

(4.23) Hi({y € Ba(z,r): V(y) < V(z)+e}) = (1 —e)Ha[Ba(z,r)].
Thus for r < min(rg(gl)7 rg(f)) there is a closed set A, , C Ba(x,r) satisfying

(4.24) lw(y, z) —w(z,x)| <e Viy) < V(x) +e¢, y,z € Ba(x,r),
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and Hq[Agr] = (1 —e)Ha[Balz,r)].

Let wy € AN, N =1,2,3,..., be a (k, s,w, V)-asymptotically optimal sequence and let p denote a
cluster point of the normalized counting measures v(wjy;). From (4.21), the assumption w > wp, and
Proposition 4.9, it follows that p <« Hg. In addition, both pu and Hy are Radon measures since A is a
complete metric space [1, Theorem 7.1.7]. The differentiation theorem for Radon measures [20, Theorem

2.12] implies that for Hq-a.e. € A there exists an rg(g ) > 0 such that whenever r < r;(f), we have

e e
HalBa(z,7)] dHg

p[B(z, r)] dp dp
1—5<Hd[BA( )]/d%d()<1+5’ m(az)>0.

< g, and

(4.25)

Setting for Hg-a.e. x € A the quantity r, := min{rg(rl), r@, ng)}, it follows that the properties (4.20)
and (4.22)—(4.25) hold for Hg-a.e. x € A and closed balls B(z,r) of radius r < r,,. Denote the set of such
z by A.

In the next part of the proof we shall derive two-sided estimates for the sum of terms in E¥ corre-
sponding to (z,y) € Agx(wy ), such that x is within a small distance from a pair of fixed points z1,z, € A.
This will allow to derive estimates for the densities du/dHq(zm), m = 1,2. Fix a pair of elements
1 # 29 € ANsuppp. We will consider two sequences of balls relative to A: B](-m) = Ba(zm, § )),
( ) < )

(m)

(m)

m = 1,2, with vanishing radii ;" | 0. Without loss of generality, r;"” < min(r,,7,,) and B_;m are

positive distance apart. Since Hd( ) < 00, the sequences of radii r; can further be chosen to satisfy
Hd(aBJ(-m) NA) =0, m=1,2, since at most a countable number of possible r](m) have a positive value of

Hq(0B; N A); likewise, we chose them so that A(0B ;m) N A) for the energy measure A, introduced before
Lemma 4.11, associated to the sequence wjy;.

The absolute continuity of p with respect to Hg implies that ,u(aB](-m) N A) = 0 for each j,m and by
the weak-star convergence of v(w}/) to i we have

N B;
(4.26) lim M

Jim ~ =u(B™) =™, m=12 j>1

We shall further estimate the asymptotics of e(wy;; B;)/N'T%/¢, defined in (4.14), for the set B; :=
Bj(-l)UB](-Q). With wy, = w(Zm, Tm), Vin := V(24 ), remark that for z,y € B]Q ") we have w(z,y) = wm—¢
and V(x) > Vm e. Pick a v € (0,1) and write WBJ(.m) for the ball B4 (2, fyrj( )) relative to A; also, let
vB; =U,, yB Observmg that by (4.13), for j fixed,

Zi= ) Syl -yl < n(0) KM = o(NHIY,

TEWY ﬁ’yB(m) YENL (x5 )\B(m)

where 6 = (1 — ) min,, Ty”)

e(wy; Bj) for a fixed ~:

and M;s as in Remark 4.10, we obtain the following lower estimate for

.. ecelwyiBj) .. e(wyivBj)
FAE TR Gk G
Z liminf N~ (14s/d) (Ek(w 0 B(hl) —e, Vm) _ Egm)>
(427) 1.2 N—o0
> li . Ef (w7\7 N fYB‘g'm); Wy — &, ‘/m)
> 3 RS ,
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where the last inequality is due to the distance to nearest neighbors non-decreasing when passing from a
configuration to its subconfiguration. Using Theorem 4.7 and (4.26), we then deduce that

* . B Ef (0wt N B('m); Wi — &, Vi — €
HIH inf e(wN—’j) 2 hIIl hl’Il mf s ( N Y j )
Nooco Nlts/d 1 = N—so0 Nl+s/d
m m 1+s/d
; EFwi N B wn — e,V —2) [ #(wi nyB™)
> lim limin o
M= Ve #(wi NyB;™)+s/d N
(4.28)
(m)s/d
(m) C;Cdﬁj (m)
- ;2 b lum =€) HaB) 7T P (Vin —¢)
(m) w (du S
> 3 (w9l ) 00 ).

By Lemma 4.11, we also have an upper estimate on the asymptotics in the left-hand side above.

Recall, by (4.24) and the choice of 7., for each B](m) there exists a closed subset SJ(-m) C Bj(m) satisfying

Hd(S](m)) > (1- E)Hd[B](m)], for which w(y, z) < wm + ¢ and V(y) < Vi, + € whenever y, z € S](-m).
Applying Lemma 4.11 with sets S](-m) gives for any pair of positive numbers a(-m), m = 1,2, with

J
RS

de(a(7”))1+s/d

) e(wk; Bj)
lim su #g wm+5.%
N—>oop N1l+s/d (( ) Hd(sgm))s/d
< W+ € C,f’d(a]("m))lJrs/d
<
m=1,2

— \s/d (m)\s
(1-¢) Ha(B™)s/d

+ a§m) (Vi + e))
(4.29)

+ ™ (Vi + s))

where we used (4.25). Note that for the above to hold, we do not need w., + V;,, to be finite. For instance,

suppose w1 + V) < +00 = wy + Va; then the above inequality is trivial unless aéz) = 0, in which case we

apply the argument of Lemma 4.11 to the ball B](-l) only.

Inequality (4.29) holds if the values aE-nl) = &;m) are chosen to minimize the right-hand side over

positive oz;m), m = 1,2, with ) ag»m) => . 5J(-m). Using Lagrange multipliers, we see that such dg.m)

must satisfy
s
— W2 —(2)
(1—e )Hd(Bj )

Note that the left-hand side in the above equation is independent of Hd(BJ(-l)) / ’Hd(BJ(-z)). As a result,
limit of the right-hand side for j — oo is also independent of this ratio. This fact will be essential in
completing the proof.

Observe that equations (4.28)-(4.29) hold for any pair of sufficiently small radii rj(-m). To obtain

estimates for the density du/dHq, divide (4.28) and (4.29) through by H4(B;) and take j — co. Without

loss of generality, the limit lim;_, . Hd(B](-m)) /Hd(Bj) = 7., exists; otherwise we pass to a suitable

s/d s/d

~(1
Cly(1+s/d) (1—e)Hq(BY)
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subsequence. We have from (4.28)-(4.29) and optimality of dgm),

Z Ym (Cf (wm - 6)(pm - 5)1+S/d + (pm - 5)(‘/'m - 5))

m=1,2

~(m) E (7(m)ys/d
W + € C ( )
4.30 Ym - — - + (Vin+¢)
( ) mzl:Q er B( )) ((]_ — E) /d Hd(BJ( ))s/d )

Wy + € s
< Z Ym (C W(pm + 5)1+ /d + (pm + €)(Vm + E))

m=1,2

Here p,, = du/dHq(x,,), m = 1,2. Since the above holds for every fixed € > 0, after one takes ¢ | 0, the
inequalities turn into equalities:

> v (CEatomph "+ praVin)

m=1,2

d
Z YmQm (Cs,dwrn : afy{ + Vrn) ’
m=1,2

(4.31)

where we denote oy, 1= limy_ 00 &J(f'”) / Hd(B](-m)); we ensure these limits exist by passing to a subsequence.

Recall that the ratios &§m) /Hd(Bj(m)) do not depend on the ratio ”Hd(B](-l))/Hd(Bj(-Z)). On the other hand,

the double estimate (4.30) holds for any pair of sufficiently small radii r](-m)

. This allows us to vary the
two radii independently, to produce sequences of balls B} and B2, centered around 1 and x5 respectively,

for which the limiting ratios (y1,72) are (1,0) and (0,1). For such sequences, equation (4.31) gives

am
Pm = hm . m)y’ m=1,2
j—o0 Hd(Bj )

whence we conclude the equation

Voa—W1 s/d s/d
CF (1+s/d) Pr — 1

holds for Hg-a.e. pair 1,z In particular, w(x,z)p(z)*/* + V1 /(CF ,(1 + s/d)) = const =: Ly < 0o Hy-
a.c., since we can pick z; among the points for which w(z1,x;) 4+ V(x1) < oo and p(z;) < co. Combined
with the condition [ p(z)dHq(z) = 1 that p = dp/dHs must satisty as the density of a probability
measure, this yields (1.5).

In the remaining part of the proof we derive the formula for the asymptotics of minimizers of E¥ on
A. To begin, note that when w(z,z) + V(x) = +oo for Hg-a.e. x € A, lower semicontinuity implies the
equality for all z € A. Arguing as in (4.28), we immediately have that the asymptotics with respect to
N1+s/d are infinite. Tt suffices to assume for the rest of this proof that w(z,z) + V(x) < co on a set of
positive H g -measure.

By the above argument, w(z,z)p(x)*/¢ + V(x) is bounded on suppp by Li; hence, wp'™*/? ¢
LY(A, Hy); similarly, Vp € LY(A, Hg). As a result, Hg-a.e. point in A is a Lebesgue point for func-
tions wp'T/% and Vp, and the measure Hq: for any fixed ¢ > 0, at Hg-a.e. © € A there exists a small
enough 7 > 0 such that

w(%l’)P(x)HS/d'Hd[BA(fUaT)]—/B ( )w(%y)P(y)Hs/dde(y) < eHalBa(z,r)],

(4.32)
< eHg [BA(;L', I)]

V(@)ple) - HalBalwsr)] — /B Ve dHaty
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To obtain the expression for optimal asymptotics, we argue in the same way as in (4.28), to derive for
every € > 0 the following inequalities satisfied at p-a.e. x € A, with r < r, . sufficiently small:

iint S5 ) (Bt m) ) (1= 2ol + (V) )

> (1 e)t+e/d / (Chaw(a,a)p!® + V(@) dpe) = ep(Ba) (CEapl,) /4 1)

Bz

where B, := Ba(z,r). Using the Vitali covering theorem for the Radon measure H4, we can cover H4-a.c.
of A with a countable collection of such disjoint B,; since

L Ef(w}k\,;w,‘/) L e(wy; Bz;)
A TR LD D
i

> (1= [ (Chaula,a)ola)/? + V) du(o) = e

for a suitable constant ¢ (we used that p*/¢ is bounded because w > wy), it remains to show that
Cf,d Ik wp' T/ dH g + [ VpdH, is also an upper bound for the asymptotics.
Such upper bound follows by placing optimal configurations of cardinalities |u(B;,)N | into the sets

Sz, C Ba(xj,77¢, ), defined in the same way as SJ(."") above, for v € (0,1). Indeed, for any finite
collection of disjoint closed balls B, with H4(0B,, N A) = 0 by placing the minimizers in a suitable
closed subset S,,, C B,, satisfying (4.22), (4.24), with Hq(Sm) = (1 — &)Ha(Bpn):

wy =Jwn,,  Efwn,iw,V) <EF(Nm, Smsw, V) +1, Ny = [1(Bpn)N]

arguing as in the right-hand side of (4.30) one has

Ek * Ek .
limsup —=————> (Wi w, V) < limsup —=——~—~——= (wy;w, V)

N—oo N1+s/d N—oo N1+s/d

M
Wy + € R
< Z_l <C§,dm((1 +€)pm) T+ (14 ) pin (Vi + g>> Ha(B),

where as usual, we write w,,, and V,,, for the values of the respective functions at the centers of B,,, and
B =,, B Choosing the centers of B,,, in supp p and such that u(B) > 1 — ¢, and using (4.32) gives

B (wisw, V) < (14¢)* (Cf’d/B ((w(;c,x) +e)p(x)* ! + V) dp(x) + 50) ;

nsup == ira— S Lo ayrea

where it is used again that p/? is bounded on supp p. This finishes the proof of the theorem. O

5 Connections to other short-range interactions

5.1 Convex kernels on the circle

When d = dimyg A = 1, we can compute explicitly the values of C’fﬁl for any s > 0 and k > 1. Moreover,
we will show that on the periodized interval [0, 1], the minimizers of the energy Ef; defined below are
equally spaced, for any convex decreasing function of distance ¢. Equivalently, minimizers of such energies
on S! with embedded distance are equally spaced points for any convex decreasing kernel.

Theorem 5.1. Let A = S with the distance ¥ = s/2m for the arc length s, and assume that g(x,y) =
o(Hx,y)) for a convex decreasing ¢ : [0,1/2) — [0,00]. For any N > 1 and k > 1, the energy

Biwn)= Y. Y ey).

TEWN yEN (T;wN)

is minimized by every set wy consisting of N equally spaced points.
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Proof. Consider an arbitrary set wy of N distinct points in A. It suffices to show that its energy is
at least the one of wy, as defined above. We will assume that the entries of wy = (z1,...,2n) are
enumerated clockwise, so that for example x; and x3 are adjacent to the point x5, etc. We will also use
indices of x; modulo N, so for any z; the two adjacent points in the above ordering are given by x;_1
and Tit1-

Consider the following sets of k£ indices

k k k k
Lipi=<i—|o|i— |2 +1,. . i—1i+1,.. it |=|—1i+|=|p.

Lgt ygi), . ,y,(f) be the entries x; € wy with j € I; ;, ordered by the nondecreasing distance from z; to
ygl). Then there holds

I, (r5wn);) < Iy,

where as before, (2;;wn);) is the j-th nearest entry of wy to ;. This inequality follows from 9J(z;, yl(i) ) <

I, yf )) for I < j, so there are at least 7 — 1 entries of wy that are closer to x; than l/EL) By the
monotonicity of ¢, then

k
(5.1) > 9z, y)) Zw( xz,y](’)), 1<i<N.
j=1

yeNk($i§WN)

Now observe that for any set of NV distinct points wy C A,

N
Z 19(1“ IL‘Z‘+1) =1
=1

Indeed, the above sum contains the distances between adjacent points, which add up to the length of A.
Similarly, one has

N N 1

(5.2) Z V(@i zitt) = Z Z Wit jsents Tivj) =1,

i=1 i=1 j=1

whenever 2|l < N
In view of (5.1), (5.2), convexity of ¢, and that without loss of generality k¥ < N — 1, we obtain

DD HRPIUENIE 9 W ()

i=1 yeNi(z;wnN) =1 j=1
k2l N /2] s
= Y D eW@nmig) = > N@(NZ (@i, Tigj )
Jj=—lk/2] i=1 j=—1k/2] =1
70 70
[k/2] I
N Y e(y) =B
j=—1k/2]
j£0

In the second line of the above equation we used Jensen inequality. Here, as defined in the statement of
the theorem, w}, consists of N equally spaced points in 4 = S. O

Corollary 5.2. The value of the constant Cﬁl is given by

[k/2]

1
k
Cs,l - Z |l|s
l=—|k/2]
1£0
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Proof. The unit circle S! with the metric ¥ above can be identified with the periodized unit interval
[0,1) equipped with the natural distance. Due to the short-range properties of Riesz k-energies E¥ (with
convex decreasing (r) = 1/r®), the asymptotics of the minimal energy for set A’ = [0,1) with this
distance coincide with the asymptotics for A = [0, 1] C R with the Euclidean distance. O

5.2 Relation of k-energies with s > d to full hypersingular Riesz energies

As explained above, we obtain the result about hypersingular case s > d by passing to the limit k — oo
in E*. To do that, we will need the following lemma, which has been established in a slightly different
form in [3, Lem. 5.2]. Recall that A(wy) = minig«j<n |&; — ;]| stands for the separation of the
configuration wy.

Lemma 5.3. Let A C R? be a compact set. Let further wy C A be a sequence of configurations satisfying
Alwyn) = coN~Y4, N > 2, and w a bounded weight function on A x A. Then there holds

fmswp g Y D wlma)le -y~ < elks,d),
TEWN ygNg (Twn)
with c¢(k,s,d) = 0, k — oo.
Proof. Fix a point € wy. Denote 2hy := ¢oN /4 for brevity. For an m > 1, let
Ly, ={y €wny :mhy < |ly — x| < (m+ 1)hn}.

There holds Hy[B(x;,7)] = cyr? for any r > 0, whence Hq[B(z;, 7 + 1) \ B(wi,r)] < cjt(r + )71, ¢ >0

for some positive constants ¢/, ¢/j. Since the distance between any two points in wy is at least 2hy, the

interiors of balls B(xz;, hx) for 1 < j < N must be pairwise disjoint. This allows to estimate #L,,, by
volume considerations: since

U By.hy) € [B(z, (m+2)h) \ B (z Hh)],

YyELm
there holds ¢h% - # L, < 3cjhn((m +2)hy)?" 1, which gives
#L,, < cdmd_l.

Summing up the pairwise energies over spherical layers around z, one obtains further

NI DI DN PR PE- Lup i) o LK
yEwN m=1yeLn, m=1 (mhy)® Qe it
This implies for k> > M " eymd=1 > SV 4L,
- 1
N1+</d Yo D> eyl <t Y ——
TEWN yEN (W) m=M

which converges to 0 for £ — oo, and thus gives the desired statement. Observe that the convergence is
uniform over all configurations with A(wy) = ¢gN —1/d O

Lemma 5.4. Suppose A C R? is a compact set, w,V are bounded and satisfy the assumptions of Theo-
rem 1.3; assume also a sequence ky, n > 1, satisfies k, — oo, n — oco. Then

55"(14,]\7;111,V)/é's(A,N;w,V)—)1, N — o0,n — 0.
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Proof. Let wi = {x7,..., 2%} be such that
Err (Wi w, V) < EF (wnsw, V) +1, N > 2.
Similarly, let wly = {z}, ..., 2y} be the sequence minimizing E,:
Es(wyiw, V) < E(A, N;w, V) + 1, N> 2.
By the construction of w} and wj,, for every N there holds,
EFr(wisw, V) < Ef (W w, V) + 1 < E(Wysw, V) + 1 < Eg(wiy;w, V) + 2.

On the other hand, since wj is separated by Theorem 1.3, using Lemma 5.3 the difference of the left-
and right-hand side of the above display can be estimated as

Ey(wiiw, V) — EF (wiw, V)
<Y wyle -yl = ek, s, )N

TEWN y¢N,, (z;wWN)

where ¢(k,s,d) — 0, k — oo, and we used the boundedness of w. This completes the proof of the
lemma. O

Proof of Theorem 1.4. If w(z,z)+ V(z) is not bounded on a subset of A of positive Hg-measure, the
optimal asymptotics of E! are infinite by Theorem 1.1, and since E, > E!, there is nothing to prove.

First assume w,V are bounded on the entire A and w marginally radial. For a compact A C R¢,
constant weight w, and V' = 0, the first claim of the theorem (1.13) follows from Lemma 5.4. The
asymptotics and limiting density of asymptotic minimizers of F, are then obtained by passing to the
limit in Theorem 1.1 and the dominated convergence theorem. To extend the result to a compact
(Ha, d)-rectifiable A C RP, we then apply Lemma 4.6 to the functionals E* and E,. Note that the short-
range property and stability for Es for s > d are well-known [4, Section 8.6.2]. Finally, the case of general
weight and external field follows by extending the asymptotics of E¥ and E following the argument given
in the proof of Theorem 1.1 and pointwise convergence in the resulting integral functionals expressing
the asymptotics.

The case of unbounded w,V, where w is still assumed marginally radial, is obtained by using the
truncated weights wp, := w - 1,,¢p, and external fields Vj, := V - 1y ¢y, and that, on the one hand,

55<A,N;UJ}L,‘/}L) g SS(A,N;U], V)7 gsk(AaN;whaVvh) < 8§(A,N,w,V),

and on the other, that for h 1 400, the integrals expressing the respective asymptotics converge to their
analogs with w, V| by the monotone convergence theorem.

Finally, to obtain the claim of the theorem for non-marginally radial weights, observe that the asymp-
totics of E¥, E, do not depend on the off-diagonal values of w; thus, choosing w to be a marginally radial
weight with the same values as w on diag (A) results in

b i EE(A,N;w, V) lm i EF(AN;w, V) i Es(A,N;w, V) . E(A N;w, V)
P Nooe — NTFS/d e Nme T NIEs/d N NIFe/d | Nk Nited
and we have the desired statement. O

5.3 Proof of I'-convergence

For a compact A we denoted by P(A) the space of probability measures supported on A. It is a compact
metrizable space. As explained in the introduction, we discuss the properties of short-range interactions
on discrete configurations wy, by viewing them as acting on the normalized counting measures v(wy).

The sequence introduced in 2" is called a recovery sequence at the point z. Usefulness of I'-convergence
for energy minimization consists in that, together with compactness of X, it guarantees that minimizers
of F converge to those of F. Moreover, Fy need not attain its minimizer, but this is the case for F' on
compact sets, due to lower semicontinuity. Namely, the following properties hold.
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Proposition 5.5 ([5], [8]). If a sequence of functionals {Fn} on a compact metric space X I'-converges
to F, then

1. F is lower semicontinuous and min F' = limpy_, o inf Fy

2. if {zn} is a sequence of (global) minimizers of Fy, converging to an x € X, then x is a (global)
minimizer for F.

If Fy is a constant sequence, I'-lim F' is the lower semicontinuous envelope of F'; i.e., the supremum of
lower semicontinuous functions bounded by F above.

Proof of Theorem 1.6. To verify the property 1° of the definition of I'-convergence, suppose a se-
quence {pun}+ C P(A) weak* converges to p € P(A). Observe that if

. 1

lim inf =5 Fiv (v w, V) = +00 > Fluw, V),
the inequality in 1! holds trivially. It therefore suffices to assume that the limit in the last equation is
finite. In particular, {uy} must contain a subsequence comprising only elements from Py (A), so without
loss of generality we suppose that py, N > 1, is a sequence of discrete measures converging to u € P(A),
such that the following limit exists and is finite:

, 1
J\;E}noc W‘FN(MN; w, V),

so that it will suffice to show its value is at least F(u; w, V). By Corollary 1.1, finiteness of the asymptotics
implies that p must be absolutely continuous with respect to Hq.

The rest of the proof can be obtained by a modification of that of Theorem 1.1. Indeed, let wy be the
sequence of N-point configurations corresponding to the measures un, and denote p := du/dH . First,
let p,w, V be bounded on A; then also wp*3/¢, V are bounded, hence in L'(A, H4), and equations (4.32)
apply. Since the argument resulting in (4.28) did not use optimality of the sequence of configurations,
it applies to the wy; thus, we have for Hy-a.e. x € A, setting B, := Ba(z,r) with r < r, . sufficiently
small:

lim inf e(wy; By)

iminf SR > u(B,) (Cha(w(@,a) —2) - (1= 2)p@)” + (V(2) - 2))

> (19 [ (o) + V(@) duta) ~ el Ba) (Chapler )/ 1),
B :
Applying Vitali covering theorem to A, we conclude as in the proof of Theorem 1.1:

.. EMwn;w, V) e(wy; Bz,)
et =y 22 Ty
J
> (1=l [ (Chyutoa)ola) ! + V) dute) - o
A

This completes the proof of 11 for bounded densities p and w, V. The case of unbounded p and/or w, V'
follows by applying the previous lower bound to the probability measures

 Jongpeny P(@) dHa(@)
pn(E) = T )

and the monotone convergence p- 1,<;, 1T p, h — oo; similarly, weights wy, := w - 1,,<p, and external fields
Vi :=V - 1yp, with the respective monotone convergences. This proves 1T .

To present a recovery sequence, we again invoke the argument from Theorem 1.1. In the case of a
bounded p, constructing a sequence of piecewise minimizers wy as in that proof gives

E(on: s/d
Pl < 1 (O [ (o) + 0@ 4 V) ) 4.

where B is a union of disjoint closed balls with p(B) > (1 —¢). In the case of unbounded p, we construct
recovery sequences for up, as above, and then take a diagonal sequence. O

lim sup
N—oo
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