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Abstract—We consider two problems related to proofs and
technologies of obtaining linear programming bounds for codes
(spherical and in Hamming spaces). We develop a verification
technique for a conjecture concerning the optimality of the Lev-
enshtein bounds for spherical codes and prove that the conjecture
holds true under certain mild assumptions. We investigate recent
conditions which are sufficient for the validity of Levenshtein-
type bounds for q-ary codes with given minimum and maximum
distances. We provide description of all cases for lengths n ≤ 36
and alphabet sizes 2 ≤ q ≤ 4 such that our conditions are
fulfilled.

Index terms—linear programming, minimum energy problems,
bounds for codes.

I. INTRODUCTION

We are interested in universal upper bounds for the maximal
cardinality of a spherical code C on Sn−1 of prescribed max-
imal inner product s(C) := max{〈x, y〉 : x, y ∈ C, x 6= y}

A(n, s) := max{|C| : C ⊂ Sn−1, s(C) = s} (1)

and closely related universal lower bounds on the minimum
h-energy

Eh(n,M) := inf
|C|=M

{Eh(n,C)}, (2)

where, for a given function h : [−1, 1] → [0,+∞], the h-
energy (or the potential energy) of C is defined by

Eh(n,C) :=
∑

x,y∈C,x 6=y

h(〈x, y〉)

(here 〈x, y〉 denotes the inner product of x and y). Universal
linear programming (LP) bounds for A(n, s) were described
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in detail in [12] and the interplay between the above problems
is explained in [4], [2, Chapter 5].

Similarly, we are interested in universal LP bounds that were
derived in [5] for codes in q-ary Hamming spaces with given
minimum and maximum distances. We leave the details for
Section V.

In this paper we investigate conditions for optimality and
derivation, respectively, of universal LP bounds for A(n, s)
and Eh(n,M) and their counterparts in q-ary Hamming spaces.
Sections 2-4 are devoted to a conjecture about LP for spherical
codes and in Sections 5-6 we consider a necessary condition
for validity of Levenshtein-type bounds for q-ary codes of
prescribed minimum and maximum distances.

For spherical codes, we consider a conjecture concerning the
existence of better than the bounds (7) and (8) below. We prove
that the conjecture holds true in all dimensions 5 ≤ n ≤ 24
and in many cases in dimensions 3 and 4.

For codes in q-ary Hamming spaces, we present investi-
gations of a condition (called (k, `)-strengthened Krein con-
dition) which extends what Levenshtein called strengthened
Krein condition. Complete investigation is implemented for
lengths n ≤ 36 for q ∈ {2, 3, . . . , 10} as all pairs (k(`), `) for
which the (k(`), `)-strengthened Krein condition is fullfilled
are found.

II. UNIVERSAL LINEAR PROGRAMMING BOUNDS FOR
A(n, s) AND Eh(n,M)

Let {P (n)
i (t)}∞i=0 be the Gegenbauer polynomials [14],

normalized by P
(n)
i (1) = 1. Every real polynomial f(t) has

its unique Gegenbauer expansion

f(t) =
n∑

i=0

fiP
(n)
i (t).

Let F≥ := {f(t) : f0 > 0, fi ≥ 0, i = 1, 2, . . . ,deg(f)},

An,s := {f ∈ F≥ : f(t) ≤ 0, t ∈ [−1, s]}, (3)
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En,h := {f ∈ F≥ : f(t) ≤ h(t), t ∈ [−1, 1]}, (4)

where s and h are fixed as in (1) and (2), respectively.
Linear programming bounds on A(n, s) and Eh(n,M) are

obtained by polynomials as feasible solutions in the following
two problems

A(n, s) ≤ min
f∈An,s

f(1)

f0
, (5)

Eh(n,M) ≥ max
f∈En,h

Mf0

(
M − f(1)

f0

)
. (6)

We describe now two universal LP bounds we are interested
in. For ε ∈ {0, 1} let tn,εi be the largest root of the Jacobi
polynomial P (n−1)/2,(n−1−2ε)/2)

i (t) =: Pn,ε
i (t) [14]. Let

I(n)m :=
[
tn,1−εk−1+ε, t

n,ε
k

]
,

where m = 2k − 1 + ε and t1,10 := −1. Hereafter we use the
parameter ε to distinguish between the odd and even m’s.

The intervals {I(n)m }∞m=1 constitute a partition of [−1, 1) and
in each interval I(n)m the Levenshtein bound (see, for example
[12] for details)

A(n, s) ≤ Lm(n, s), s ∈ I(n)m , (7)

holds. In 2016, the authors obtained a closely related universal
lower bound (ULB; see [4] and [2, Chapter 5] for details)

Eh(n,M) ≥ Qh(n,M), M ∈ J (n)
m , (8)

where
J (n)
m := Lm(n, I(n)m )

is the image of the interval I(n)m . Spherical codes which attain
both (7) and (8) (the attaining is simultaneous only) are called
sharp (see [1], [7]).

Denote

Tn,ε
i (x, y) :=

i∑
j=0

rn,εj Pn,ε
j (x)Pn,ε

j (y), (9)

where
rn,εj := ||Pn,ε

i (t)||−1,

the norm is taken with respect to (1− t)(1+ t)ε(1− t2)n−3
2 dt.

The Levenshtein quadratures described in the next theorem
are major deriving and relating ingredients of the bounds (7)
and (8).

Theorem 1: [12, Theorem 5.39] For any s ∈ I
(n)
m the

polynomial
(t− s)(t+ 1)ε Tn,ε

k−1(t, s)

has k + ε simple roots α0 < α1 < · · · < αk−1+ε, where
αk−1+ε = s and α0 ≥ −1 with equality holding if and only
if ε = 1 or ε = 0 and s = t1,1k−1. Moreover, for any polynomial
f(t) of degree at most m = 2k− 1+ ε the following equality
holds

f0 =
f(1)

Lm(n, s)
+

k−1+ε∑
i=0

ρif(αi), (10)

where the coefficients ρi = ρi(n, s), i = 1, . . . , k− 1+ ε, are
positive, and ρ0 = ρ0(n, s) ≥ 0 with equality holding if and
only if s = t1,0k .

In terms of the parameters, just introduced by Theorem 1,
the RHS of the ULB (8) is written as

Qh(n,M) =M2
k−1+ε∑
i=0

ρih(αi),

where the parameters α0 < α1 < · · · < αk−1+ε = s come as
roots of the equation M = Lm(n, s) and ρ0, ρ1, . . . , ρk−1+ε

are their weights as in Theorem 1. Equivalently, one can
construct the same parameters by taking the largest root s of
M = Lm(n, s) and constructing the Levenshtein polynomial

f (n,s)m (t) := (t− s)(t+ 1)ε
(
Tn,ε
k−1(t, s)

)2
.

Then the numbers α0 < α1 < · · · < αk−1+ε = s are
the distinct roots of f (n,s)m (t) in increasing order. In both
approaches the weights ρ0, ρ1, . . . , ρk−1+ε are computed via
the Lagrange basis in the Levenshtein quadrature (10) as in
[12].

III. A CONJECTURE ABOUT TEST FUNCTIONS

The bounds (7) and (8) were obtained by polynomials which
solve the problems (5) and (6), respectively, in the class of
polynomials of degree at most m. Thus, (7) and (8) cannot be
improved in the framework of (5)-(6) by using polynomials
of degree at most m. On the other hand, improvements by
higher degree polynomials are known (see, for example, [3],
[5], [13]). Such improvements can be justified by the so-called
test functions introduced in [3] for the Levenshtein bound and
re-involved for the ULB in [4].

For fixed n and m, for any real number s ∈ I(n)m and any
positive integer j ≥ m+ 1, define

R
(n)
j (s) :=

1

Lm(n, s)
+

k−1+ε∑
i=0

ρiP
(n)
j (αi),

where the parameters (ρi, αi) are as in Theorem 1. Note that,
since P

(n)
j (1) = 1, this definition reproduces the RHS of

the Levenshtein quadrature from Theorem 1, written for the
polynomial f(t) = P

(n)
j (t) (not necessarily of degree at most

m).
Similarly, for fixed n and m, for any positive integers M ∈

J
(n)
m and j ≥ m+ 1, define

S
(n)
j (M) :=

1

M
+

k−1+ε∑
i=0

ρiP
(n)
j (αi),

where the parameters (ρi, αi)
k−1+ε
i=0 come from the equation

M = Lm(n, s) as explained in the end of the previous section.
Note that the values of S

(n)
j (M) are particular values of

R
(n)
j (s).
The test functions R(n)

j (s) and S(n)
j (M) are utilized in the

next theorem to give necessary and sufficient conditions for
optimality1 of the bounds (7) and (8).

1In other words, for existence of better LP bounds.
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Theorem 2: (a) ( [3, Theorem 3.1], see also [12, Theorem
5.47]) Given n, m, and s ∈ I

(n)
m , the bound (7) can be

improved by a polynomial from An,s of degree at most m+1
if and only if there exists positive integer j ≥ m+1 such that
R

(n)
j (s) < 0.
(b) ( [4, Theorem 5.1]) Given n, m, M ∈ J (n)

m , the bound
(8) can be improved by a polynomial form En,h of degree at
most m+1 if and only if there exists positive integer j ≥ m+1

such that S(n)
j (M) < 0.

Since R(n)
m+1(s) ≥ 0 and R(n)

m+2(s) ≥ 0 for every s ∈ I(n)m ,
negative test functions could only exist for j ≥ m + 3.
Moreover, in [3] the following was conjectured.

Conjecture 3: [3, Conjecture 5.1] Let R(n)
j (s), j ≥ m +

1, be the test functions for the Levenshtein bound Lm(n, s)
for spherical codes. Then exactly one of the following two
happens:

(1) at least one of R(n)
m+3(s) and R(n)

m+4(s) is negative,
(2) R(n)

j (s) ≥ 0 for every j ≥ m+ 3.
The corresponding conjecture about the ULB as a particular

case follows.
Conjecture 4: Let S(n)

j (M), j ≥ m + 1, be the test
functions for the ULB bound Qh(n,M) for minimum energy
of spherical codes. Then exactly one of the following two
happens:

(1) at least one of S(n)
m+3(M) and S(n)

m+4(M) is negative,
(2) S(n)

j (M) ≥ 0 for every j ≥ m+ 3.
We have not found any counterexample neither to Conjec-

tures 3 and 4 despite checking great amount of numerical data.
In the next section, we present a methodology for verification
of Conjecture 4 in a fixed dimension, implying verification of
a weaker version of Conjecture 3.

IV. ON VERIFICATION OF CONJECTURES 3 AND 4

We first consider Conjecture 4. For fixed dimension n ≥
5 we reduce the verification to finitely many computational
tasks.

As mentioned above, the values of the ”energy” test func-
tions S(n)

j (M) are just specific values of R(n)
j (s) for some

s ∈ I(n)m as the correspondence between M and s is bijective
because of the strict monotonicity of the Levenshtein bound.
Therefore we need to consider only these s for which the value
of Lm(n, s) is an integer (i.e., equal to M ). Such integers are
finitely many for fixed m – there are exactly

Lm(n, tn,εk )− Lm(n, tn,1−εk−1+ε) + 1

cases for consideration. Moreover, it follows from [3, Theo-
rems 4.9 and 4.10] that for n ≥ 5 only finitely many m are
of interest, because there exist positive integers

mε = mε(n)

such that R(n)
m+4−ε(s) < 0 for every m ≥ mε and every

s ∈ I(n)m . Therefore we need to consider only test functions
S
(n)
j (M) corresponding to positive integers m < mε, which

leaves for consideration only finitely many cases of M . This

makes the verification of Conjecture 4 finite with respect to M
for fixed dimension n. The problem is not finite yet since we
still have to consider infinitely many test functions S(n)

j (M)
as only j varies now.

We proceed as follows. For fixed M , if (1) happens2, then
we conclude that Conjecture 4 holds true for this value of M .
Otherwise, n and M are already fixed and we are interested
only in S

(n)
j (M) for j ≥ m + 5. We apply now a technique

from [4, Section 4] to prove that (2) happens. That technique
requires finding of a positive integer

j0 = j0(n,M)

(in fact, m1(n) = 2[
√
n− 2] while the expression for m0(n)

is more complicated) such that the inequalities S(n)
j (M) > 0

follow for all j ≥ j0 from known (not necessarily the best)
estimations for Gegenbauer polynomials. Afterwards we have
only to check the signs of the test functions S(n)

j (M) with
m+ 5 ≤ j ≤ j0 − 1.

Remark 5: In our computational conclusions we need to
decide only if a given real number is positive or negative.
This approach is subject to good precision and can fail only
in case that the corresponding number is equal (or very close)
to zero. Fortunately, such cases seem to be quite rare. In all
cases we have considered, zero test functions R(n)

j (s) with
j ≥ m+ 5 appear only when s = tn,1k is the right end of the
even interval I(n)2k . This do not impact negatively our proof
since R(n)

j (tn,1k ) = 0 holds (non-computationally) true because
of the symmetry of the system (ρi, αi)

k−1+ε
i=0 (see, for example,

[4, Section 2.4]).
As an example, we describe in detail the above verification

process in dimension n = 7. We have

m0(7) = 17 (corresponds to M ≥ 6006),

m1(7) = 6 (corresponds to M ≥ 112),

and it remains to consider the odd m ≤ 15 and even m ≤ 4.
For even m ∈ {2, 4} we have to investigate the cases

M ∈ [D(7, 2) + 1, D(7, 3)] ∪ [D(7, 4) + 1, D(7, 5)]

= [9, 14] ∪ [36, 56].

Among these, the alternative (1) of Conjecture 4 happens in all
cases 42 ≤M ≤ 55 with S(7)

7 (M) < 0. In all other 12 cases
we prove that the alternative (2) happens by explicitly finding
j0 = j0(7,M). For example, j0(7,M) = 19, 15, 14, 13, 13,
and 13 for M = 15, 16, 17, 18, 19, and 20, respectively.

For odd m ∈ {3, 5, . . . , 15} we have to consider

M ∈ [D(7, 3) + 1, D(7, 4)] ∪ [D(7, 5) + 1, D(7, 6)] ∪ · · ·
= [15, 35] ∪ [57, 112] ∪ · · ·

Now (1) of Conjecture 4 happens for 60 ≤ M ≤ 72 with
S
(7)
8 (M) < 0 and for all M ≥ 75 (recall that we check all odd

intervals until we reach M = 6006) with the same dynamics

2It may still happen for m < mε in the whole interval I(n)
m or in some of

its parts.
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of the test function in all intervals. For example, when m = 9,
we have M ∈ [421, 672] and S

(7)
12 < 0 for M ∈ [421, 450],

S
(7)
12 < 0 and S(7)

13 < 0 for M ∈ [451, 555], and S(7)
13 < 0 for

M ∈ [556, 672]. In all remaining 39 cases (2) happens and we
are able to present j0 in every separate case.

Theorem 6: Conjecture 4 holds true in all dimensions 5 ≤
n ≤ 24.

The above technique works in dimensions n = 3 and 4
for all even m. If m is odd, then there are small (containing
just a few integers) subintervals of J (n)

m , where S(n)
m+4(M) >

0. This prevents us making the verification finite. However,
we conjecture that S(n)

m+3(M) < 0 in all these cases which
gives the alternative (1) of Conjecture 4. Our verification in
dimensions 3 and 4 reached M = 2400 (corresponding to m =
95) and M = 21320 (corresponding to m = 77), respectively.

Theorem 7: Conjecture 4 holds true in dimension n = 3
for every M ∈ {2, 3, . . . , 2400} and in dimension n = 4 for
every M ∈ {2, 3, . . . , 21320}.

To verify cases of Conjecture 3 we use the following mild
assumption. Since improvements of bounds for A(n, s) make
sense in the integer part only, we may restrict ourselves on
values of Lm(n, s) which are equal to an integer minus some
small positive number. This argument is based on the idea that
if we improve

Lm(n, s) = N − ε

in its integer part (so our new bound is N−1 or less) then we
can improve (again in the integral part) all bounds Lm(n, s′)
from the interval [N − 1, N − ε]. This modification, together
with the above reduction arguments makes the verification
of Conjecture 3 finite for fixed dimension n. Moreover, by
continuity, the computational conclusions about the signs of
the test function S

(n)
j (M) suffice (see Remark 5) for the

corresponding values of R(n)
j (s).

Theorem 8: Under the above assumptions, Conjecture 3
holds true in all cases described in Theorems 6 and 7.

All numerical data from the computations described in this
section is available upon request and will be published openly
somewhere in internet.

V. THE (k, `)-STRENGTHENED KREIN CONDITION

For fixed n and q, the (normalized) Krawtchouk polynomi-
als are defined by

Q
(n)
i (t) :=

1

ri
K

(n,q)
i (z), i = 0, 1, . . . , n,

where

ri := (q − 1)i
(
n

i

)
, i = 0, 1, . . . , n,

z = n(1− t)/2, and

K
(n,q)
i (z) :=

i∑
j=0

(−1)j(q − 1)i−j
(
z

j

)(
n− z
i− j

)
,

i = 0, 1, . . . , n, are the (usual) Krawtchouk polynomials.

Denote

Ti(x, y) :=
i∑

j=0

rjQ
(n)
j (x)Q

(n)
j (y) (11)

and utilize (as in [11]; see also [12, Eq. (5.65)]) the kernels
Ti(x, y) in the definition of (1, 0)-adjacent polynomials as
follows

Q1,0
i (t) :=

Ti(t, 1)

Ti(1, 1)
, i = 0, 1, . . . , n− 1. (12)

With a next step, consider the (1, 0)-kernel

T 1,0
i (x, y) :=

i∑
j=0

r1,0j Q1,0
j (x)Q1,0

j (y), (13)

where

r1,0j =

(
j∑

u=0

ru

)2

/

(
n− 1

j

)
(q − 1)j

are the (1, 0) counterparts of rj . Then (1, `)-adjacent polyno-
mials are defined (see [6]) by

Q1,`
i (t) :=

T 1,0
i (t, `)

T 1,0
i (1, `)

, i = 0, 1, . . . , n− 2. (14)

The polynomials Q1,`
i (t) are, in a sense, generalization of the

Levenshtein polynomials Q1,1
i (t) (see [12, Eq. (5.68)]).

For any real polynomial g(t) of degree at most n we
consider its Krawtchouk expansion

g(t) =
n∑

i=0

giQ
(n)
i (t)

and set

G> := {g(t) : gi > 0, i = 0, 1, . . . ,deg(g)}.

In the proof of the positive definiteness of his polynomials
Levenshtein used (see [12, (3.88) and (3.92)]) what he called
the strengthened Krein condition

(t+ 1)Q1,1
i (t)Q1,1

j (t) ∈ G>,

where the polynomials Q1,1
i (t) can be obtained from (14) for

` = −1 [12, Eq. (5.68)]. The strengthened Krein condition
holds true for every i, j ∈ {0, 1, . . . , n− 3} (see [12, Lemma
3.25]). We need to consider the following modification.

Definition 9: We say that the polynomials {Q1,`
i (t)}ki=0

satisfy the (k, `)-strengthened Krein condition if

(t− `)Q1,`
i (t)Q1,`

j (t) ∈ G> (15)

for every i, j ∈ {0, 1, . . . , k} except possibly for i = j = k.
The (k, `)-strengthened Krein condition is crucial in our

proofs [6] of a Levenshtein-type bound for the quantity

Aq(n, `, s) := max{|C| : `(C) = `, s(C) = s},

XVI International Symposium Problems of Redundancy in Information and Control Systems (Redundancy 2019)

61



the maximum cardinality of a code C ⊂ Fn
q with prescribed

minimum and maximum distances, d = n(1− s)/2 and D =
n(1− `)/2, respectively [6, Theorem 5.2]. Explicitly, we have

Aq(n, `, s) ≤
Sk

(
Q1,`

k−1(s)−Q
1,`
k (s)

)
rk+1Q

(n)
k+1(`)Q

1,`
k−1(s)

Sk+1(Q1,0
k+1(`)−Q

1,0
k (`))

− rkQ
(n)
k (`)Q1,`

k (s)

Sk−1(Q1,0
k (`)−Q1,0

k−1(`))

,

where

Sj =

j∑
i=0

ri, j ∈ {k − 1, k, k + 1},

subject to the (k, `)-strengthened Krein condition and two
further conditions, namely

` < t1,0k,1, (16)

where t1,0k,1 is the smallest root of Q1,0
k (t), and

Q1,0
k+1(`)

Q1,0
k (`)

< 1. (17)

Similarly, the fulfillment of the conditions (15)-(17) implies
[6, Theorem 5.2]the validity of a universal lower bound on the
quantity

Eh(n,M, `) := min{Eh(C) : |C| =M, `(C) = `},

the smallest possible h-energy of a code C ⊂ Fn
q with pre-

scribed cardinality M and maximum distance D = n(1−`)/2.
Here h is an absolutely monotone potential and

Eh(C) :=
∑

x,y∈C,x 6=y

h(〈x, y〉)

is the h-energy of C, 〈x, y〉 = 1− 2d(x, y)/n.
As it might be expected, the (k, `)-strengthened Krein

condition is not true for every `, and for fixed `, it is not
true for every k. Lemma 4.3 from [6] says that the condition
is satisfied for all pairs (i, 0), i = 0, 1, . . . , k − 1, provided
certain conditions on ` and s are satisfied. On the other hand,
for fixed n, all relevant pairs (k, `) are finitely many and can
be therefore subject to computational checks.

The case k = 1 was considered by Helleseth, Kløve, and
Levenshtein [9] where conditions of validity were stated. We
found it inappropriate to explain the bounds by fixing k > 1.
Instead, we fix ` (starting from ` = t1 = −1 + 2/n) and
then the explanation goes on with varying s or, equivalently,
varying k. It is clear that validity of the conditions (15)-(17) for
some pair (k, `) implies their validity for all pairs (k′, `) with
1 ≤ k′ ≤ k. Therefore, we are able to built a system of bounds
similar to the system of Levenshtein bounds which appears
when ` = −1. In fact, our system is a mix of Levenshtein
bounds obtained by odd degrees polynomials and our bounds
obtained by even degrees polynomials.

Examples of codes attaining the discussed bounds can be
found in [9] for k = 1 and in [6]. In fact, in [6] the distance
distributions of all feasible attaing codes are found as functions
of the weights ρi (i.e., functions of n, q, `, k, and s).

VI. ON VERIFICATION OF THE (k, `)-STRENGTHENED
KREIN CONDITION

We describe our computational effort in the verification of
the (k, `)-strengthened Krein condition to be satisfied simulta-
neously with the conditions (16) and (17). For fixed length n
we are interested in the determination of all pairs (k, `) such
that (15)-(17) hold true. It is clear that the problem is finite.
Moreover, strictly positive Krawtchouk coefficients can be
verified easily by setting enough precision of the computation.

In the next three tables we summarize our results for
alphabet sizes q = 2, 3, and 4 for the relevant lengths n ≤ 36.
For fixed q and n the values of k are shown in the columns
corresponding to fixed ` = −1 + 2/n, −1 + 4/n, etc., until
(15)-(17) are fulfilled. The missing entries are zeros.

Similar tables for larger lengths and alphabet sizes were also
computed. All numerical data from the computations described
in this section is available upon request.

q = 2
n/` −1 + 2/n −1 + 4/n −1 + 6/n −1 + 8/n −1 + 10/n

5 1
6 1
7 2 1
8 2 1
9 3 1
10 3 2 1
11 4 2 1
12 4 3 1 1
13 5 3 2 1
14 5 3 2 1 1
15 6 4 3 2 1
16 6 4 3 2 1
17 7 5 3 2 1
18 7 5 4 3 2
19 8 6 4 3 2
20 8 6 4 3 2
21 9 6 5 4 3
22 9 7 5 4 3
23 10 7 6 4 3
24 10 8 6 5 4
25 11 8 6 5 4
26 11 9 7 5 4
27 12 9 7 6 5
28 12 10 8 6 5
29 13 10 8 7 5
30 13 11 9 7 6
31 14 11 9 7 6
32 14 11 9 8 6
33 15 12 10 8 7
34 15 12 10 9 7
35 16 13 11 9 7
36 16 13 11 9 8
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q = 3
n/` −1 + 2/n −1 + 4/n −1 + 6/n −1 + 8/n

7 1
8 1
9 1

10 2
11 2 1
12 2 1
13 3 1
14 3 2 1
15 3 2 1
16 4 2 1
17 4 2 1
18 4 3 1 1
19 5 3 2 1
20 5 3 2 1
21 5 3 2 1
22 6 4 3 2
23 6 4 3 2
24 6 4 3 2
25 7 5 3 2
26 7 5 3 2
27 7 5 4 3
28 8 5 4 3
29 8 6 4 3
30 8 6 4 3
31 9 6 5 3
32 9 7 5 4
33 9 7 5 4
34 10 7 5 4
35 10 8 6 4
36 10 8 6 5

q = 4
n/` −1 + 2/n −1 + 4/n −1 + 6/n −1 + 8/n
10 1
11 1
12 1
13 1
14 2 1
15 2 1
16 2 1
17 2 1
18 3 1
19 3 2 1
20 3 2 1
21 3 2 1
22 4 2 1
23 4 2 1
24 4 3 1
25 4 3 2 1
26 5 3 2 1
27 5 3 2 1
28 5 3 2 1
29 5 4 2 1
30 6 4 2 1
31 6 4 3 2
32 6 4 3 2
33 6 4 3 2
34 7 5 3 2
35 7 5 3 2
36 7 5 4 2
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