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Abstract—We employ signed measures that are positive definite
up to certain degrees to establish Levenshtein-type upper bounds
on the cardinality of codes with given minimum and maximum
distance, and universal lower bounds on the potential energy (for
absolutely monotone interactions) for codes with given maximum
distance and fixed cardinality. In particular, we extend the
framework of Levenshtein bounds for such codes.

I. INTRODUCTION

Let Fq be an alphabet of size q. We consider codes (sets)
C ⊂ Fn

q = {(x1, . . . , xn) : xi ∈ Fq} with the Hamming
distance d(x, y) between words x, y ∈ Fn

q . In setting of Fn
q

as a polynomial metric space [11] the following change of the
variable

t = 1− 2d

n
∈ Tn := {−1 + 2i/n : i = 0, 1, . . . , n}

is very convenient. For x, y ∈ Fn
q we write 〈x, y〉 = 1 −

2d(x, y)/n ∈ Tn.
For any code C ⊂ Fn

q we use

s(C) := max{〈x, y〉 : x, y ∈ C, x 6= y} ∈ Tn,

`(C) := min{〈x, y〉 : x, y ∈ C, x 6= y} ∈ Tn,

to denote counterparts of the minimum and maximum distance
of C, respectively. Set Cn,q(s, `) := {C ⊂ Fn

q |s(C) ≤
s, `(C) ≥ `} and denote by

Aq(n, s, `) := max{|C| : C ∈ Cn,q(s, `)}

the maximum cardinality of a code in Fn
q with prescribed

minimum and maximum distance d = n(1 − s)/2 and D =
n(1− `)/2, respectively.

Definition 1.1: Given a (potential) function h(t) : [−1, 1]→
[0,+∞] and a code C ⊂ Fn

q , the potential energy (also
referred to as h-energy) of C is

Eh(C) :=
∑

x,y∈C,x6=y

h(〈x, y〉).

While we only need the values of h on the discrete set
Tn for computing the h-energy, we further assume that h is
(strictly) absolutely monotone on the interval [-1,1); that is, h
and all its derivatives are defined and (positive) nonnegative
on this interval. We remark that the function F (z) = h(t),
where z = n(1− t)/2, is completely monotone on (0, n] (i.e.,

(−1)kF (k)(z) ≥ 0 for all z ∈ (0, n]) if and only if h is
absolutely monotone on [−1, 1].

For absolutely monotone potentials h we consider

Eh(n,M, `) := min{Eh(C) : C ∈ Cn,q(1, `), |C| =M}

with prescribed n, q, `, and M .
In this paper we use linear programming techniques to

derive explicit upper bounds for Aq(n, s, `) and Eh(n,M, `).
Our bounds can be computed for all feasible values of q, n, s,
and `, which makes them universal in the sense of Levenshtein
[11]. We are not aware of such explicit universal bounds in
the existing literature (see [8] for a particular case) more than
20 years after the chapter [11] by Levenshtein and the paper
[7] by Delsarte and Levenshtein.

There is an intricate interplay between the Levenshtein
universal bounds for Aq(n, s,−1) and universal lower bounds
on Eh(n,M,−1) in different spaces (see [1] for the Euclidean
sphere and [2] for Fn

q ). We further that relationship to codes
from Cn,q(1, `) to obtain energy bounds. Lower bounds for
Eh(n,M, `) were considered first in 2014 by Cohn and Zhao
[4] and then by the authors [2].

General linear programming bounds for quantities like
Aq(n, s, `) and Eh(n,M, `) are folklore [6], [7], [11]. For
any real polynomial f(t) of degree at most n we consider
its Krawtchouk expansion f(t) =

∑n
i=0 fiK

(n,q)
i (t) and set

F≥ := {f(t) : f0 > 0, fi ≥ 0, i = 1, 2, . . . , n}.

Following Delsarte [6], we have

Aq(n, s, `) ≤ min
f∈Fn,s,`

f(1)/f0, (1)

where Fn,s,` := {f ∈ F≥ : f(t) ≤ 0, t ∈ [`, s]}. Similarly,

Eh(n,M, `) ≥ max
g∈Gn,`;h

M(Mg0 − g(1)), (2)

where Gn,`;h := {g ∈ F≥ : g(t) ≤ h(t), t ∈ [`, 1)} (see
Yudin [13]). Thus, major results in this context depend on
proper choice and investigation of polynomials that optimize
(1) or (2).

The Levenshtein bound (see [9]–[11]) and the energy bound
[2] work for ` = −1 and, of course, depend on the properties
of Krawtchouk polynomials and their adjacent polynomials
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which are orthogonal with respect to classical positive mea-
sures. The case ` > −1, however, involves more challenging
signed measures.

The paper is organized as follows. In Sections 2 and 3
we introduce the necessary adjacent polynomials and signed
measures and establish positive definiteness of the correspond-
ing measures up to appropriate degrees. Properties of the
associated orthogonal polynomials are derived and discussed
in Section 4, where we define Levenshtein-type polynomi-
als f

(n,`,s)
2k (t) to be used in (1). In Section 5 we obtain

Levenshtein-type bounds onAq(n, s, `). As in the case ` = −1
this implies energy bounds on Eh(n,M, `). An important role
in the proof is played by what we call the (k, `)-strengthened
Krein condition extending the Levenshtein’s strengthened
Krein condition.

II. ADJACENT POLYNOMIALS

For fixed n and q, the (normalized) Krawtchouk polynomi-
als are defined by

Q
(n,q)
i (t) :=

1

ri
K

(n,q)
i (z),

where z = n(1− t)/2, ri := (q − 1)i
(
n
i

)
, and

K
(n,q)
i (z) :=

i∑
j=0

(−1)j(q − 1)i−j
(
z

j

)(
n− z
i− j

)
,

i = 0, 1, . . . , n, are the (usual) Krawtchouk polynomials
corresponding to Fn

q .
The measure of orthogonality for the system {Q(n,q)

i (t)}ni=0

is discrete and given by

µn := q−n
n∑

i=0

rn−iδti , (3)

where δti is the Dirac-delta measure at ti ∈ Tn. The form

〈f, g〉 =
∫
f(t)g(t)dµn(t)

defines an inner product over the class of polynomials of
degree at most n.

We also need adjacent polynomials as introduced by Lev-
enshtein (cf. [11, Section 6.2], see also [9], [10])

Q
(1,0,n,q)
i (t) :=

K
(n−1,q)
i (z − 1)∑i
j=0

(
n
j

)
(q − 1)j

,

Q
(1,1,n,q)
i (t) :=

K
(n−2,q)
i (z − 1)∑i

j=0

(
n−1
j

)
(q − 1)j

,

where z = n(1 − t)/2. The corresponding measures of
orthogonality are, respectively,

c1,0(1− t)dµn(t), c1,1(1− t)(1 + t)dµn(t), (4)

where ca,b are normalizing constants (see [11, Section 6.2]).
For ` = 1 − 2d/n ∈ Tn we introduce further adjacent

polynomials Q(1,`,n,q)
i (t) orthogonal with respect to a signed

measure dνn,`(t) which is defined and investigated below. We

shall use Q(1,`,n,q)
i (t) to construct Levenshtein-type polyno-

mials to be applied in (1).
For abbreviation purposes, in what follows we will omit n,

q and the brackets in the indexing of the adjacent polynomials.

III. POSITIVE DEFINITE SIGNED MEASURES

Signed measures were used by Cohn and Kumar in [3] in the
context of linear programming bounds for energy of spherical
codes.

Definition 3.1: A signed Borel measure ν on R for which
all polynomials are integrable is called positive definite up to
degree m if for all real polynomials p 6≡ 0 of degree at most
m we have

∫
p(t)2dν(t) > 0.

Let t1,0i,1 < t1,0i,2 < · · · < t1,0i,i be the zeros of the polynomial
Q1,0

i (t). Given ` and s such that ` < t1,0k,1 < t1,0k,k < s, we
define the signed measures on [−1, 1] (see (3) and (4))

dνn,`(t) := c1,`(t− `)(1− t)dµn(t), (5)
dνn,`,s(t) := c1,`,s(t− `)(s− t)(1− t)dµn(t), (6)

where the normalizng constants are given by

c1,` =
n2qn

2
∑n

i=0(n− i)(2i− n− n`)rn−i
,

c1,`,s =
n3qn

2
∑n

i=0(n− i)(2i− n− n`)(n+ ns− 2i)rn−i
.

The following lemma establishes the positive definiteness
of the signed measures (5) and (6) up to degrees k − 1 and
k − 2, respectively. This will allow us to define orthogonal
polynomials with respect to these signed measures providing
essential ingredients for modifying Levenshtein’s framework.

Lemma 3.2: For given k > 1, let s and ` satisfy ` <
t1,0k,1 < t1,0k,k < s. Then the measures dνn,`(t) and dνn,`,s(t)
are positive definite up to degree k−1 and k−2, respectively.

Proof. Modifying the classical Radau quadrature [5, Sec.
2.7] for integration with respect to discrete measures we con-
clude that the zeros of the corresponding discrete orthogonal
polynomial, the system of k + 1 nodes{

t1,0k,1 < t1,0k,2 < · · · < t1,0k,k < 1
}
,

defines a positive Radau quadrature with respect to µn,

f0 :=

∫ 1

−1
f(t)dµn(t) = wk+1f(1) +

k∑
i=1

wif(t
1,0
k,i ), (7)

that is exact for all polynomials of degree at most 2k.
We apply (7) for q(t), an arbitrary polynomial of degree at

most k − 1, to see that∫ 1

−1
q2(t)dνn,`(t)=

∫ 1

−1
q2(t)(1− t)(t− `)dµn(t)

=

k∑
i=1

wiq
2(t1,0k,i )(1− t

1,0
k,i )(t

1,0
k,i − `) ≥ 0.

The equality holds only if q(t1,0k,i ) = 0 for all i = 1, . . . , k,
which would imply that q(t) ≡ 0. Therefore the measure
dνn,`(t) is positive definite up to degree k − 1.
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If q(t) 6≡ 0 is of degree at most k − 2, then we utilize (7)
again to derive that

∫ 1

−1 q
2(t)dνn,`,s(t) > 0 as above. �

Remark 3.3: It can be proved analogously that the measure
dνn,s(t) = (s−t)(1−t)dµn(t) is positive definite up to degree
k−1. We will use this fact in the proof of Theorem 4.5 below.

IV. CONSTRUCTION OF LEVENSHTEIN-TYPE
POLYNOMIALS

A. Existence and uniqueness of Q1,`
j (t) and Q1,`,s

j (t)

Applying Gram-Schmidt orthogonalization we derive the
existence and uniqueness (for the so-chosen normalizations) of
the following classes of orthogonal polynomials with respect
to the signed measures (5)-(6).

Theorem 4.1: Let ` < t1,01,k < t1,0k,k < s. The following two
classes of orthogonal polynomials are well-defined:

{Q1,`
j (t)}kj=0, w.r.t. dνn,`(t), Q

1,`
j (1) = 1;

{Q1,`,s
j (t)}k−1j=0 , w.r.t. dνn,`,s(t), Q

1,`,s
j (1) = 1.

The polynomials in both classes satisfy a three-term recurrence
relation and their zeros interlace.

For our purposes we shall restrict to values of ` such that
Q1,0

k+1(`)/Q
1,0
k (`) < 1. As shown in the proof of Theorem 4.2

below this condition is equivalent with t1,`k,k < 1.

B. Construction and investigation of Q1,`
j (t)

Utilizing the Christoffel-Darboux formula (see, for example
[12, Th. 3.2.2], [11, Eq. (5.65)]) we are able to construct the
polynomials Q1,`

j explicitly. Let

T 1,0
i (x, y) :=

i∑
j=0

r1,0j Q1,0
j (x)Q1,0

j (y) (8)

= r1,0i b1,0i

Q1,0
i+1(x)Q

1,0
i (y)−Q1,0

i+1(y)Q
1,0
i (x)

x− y
(when x = y appropriate derivatives are used).

As in [11] we utilize Christoffel-Darboux formulas to prove
the interlacing properties of the zeros of Q1,`

j with respect to
the zeros of Q1,0

i . For fixed ` > −1, we choose k = k(`) to
be the largest k such that the condition ` < t1,0k,1 is satisfied.

Theorem 4.2: Let ` and k be such that t1,0k+1,1 < ` < t1,0k,1

and Q1,0
k+1(`)/Q

1,0
k (`) < 1. Then all zeros

{
t1,`i,j

}i

j=1
of the

polynomial Q1,`
i (t) are in the interval [`, 1] and we have

Q1,`
i (t) =

T 1,0
i (t, `)

T 1,0
i (1, `)

= η1,`i ti + · · · , i = 0, 1, . . . , k, (9)

with η1,`i > 0 and t1,`k,k < 1. Finally,

t1,`i,j ∈
(
t1,0i,j , t

1,0
i+1,j+1

)
, i = 1, . . . , k − 1, j = 1, . . . , i;

t1,`k,j ∈
(
t1,0k+1,j+1, t

1,0
k,j+1

)
, j = 1, . . . , k − 1.

(10)

Proof. It follows from (8) that any polynomial of degree
at most i is orthogonal to the kernel T 1,0

i (t, `) with respect
to the measure νn,`(t). Hence (9) follows from the positive

definiteness of dνn,`(t) up to degree k−1 and the uniqueness
of the Gram-Schmidt orthogonalization process.

Next, it follows from (8) and (9) that the zeros of Q1,`
i (t)

are solutions of the equation

Q1,0
i+1(t)

Q1,0
i (t)

=
Q1,0

i+1(`)

Q1,0
i (`)

. (11)

For all i < k the zeros of Q1,0
i+1(t) and Q1,0

i (t) are interlaced

and contained in the interval
[
t1,0k,1, t

1,0
k,k

]
. Since signQ1,0

i (`) =

(−1)i, we have Q1,0
i+1(`)/Q

1,0
i (`) < 0. The rational function

Q1,0
i+1(t)/Q

1,0
i (t) has simple poles at t1,0i,j , j = 1, . . . , i, and

simple zeros at t1,0i+1,j , j = 1, . . . , i+ 1. Therefore, there is at

least one solution t1,`i,j of (11) on each interval
(
t1,0i,j , t

1,0
i+1,j+1

)
,

j = 1, . . . , i, which accounts exactly for the zeros of Q1,`
i (t).

When i = k we have Q1,0
k+1(`)/Q

1,0
k (`) > 0. Since ` ∈(

t1,0k+1,1, t
1,0
k,1

)
, we account similarly for the first k−1 solutions

of (11), namely t1,`k,j ∈
(
t1,0k+1,j+1, t

1,0
k,j+1

)
, j = 1, . . . , k − 1,

to establish the interlacing properties (10). For the last zero
of Q1,`

k (t) we use the fact that Q1,0
k+1(t)/Q

1,0
k (t) > 0 for t ∈

(t1,0k+1,k+1,∞). As limt→∞Q1,0
k+1(t)/Q

1,0
k (t) = ∞, we have

one more solution t1,`k,k of (11).
Finally, Q1,0

k+1(`)/Q
1,0
k (`) < 1 implies that t1,`k,k < 1 because

Q1,0
k+1(1)/Q

1,0
k (1) = 1. Comparison of coefficients in (9)

yields η1,`k > 0. �
The positive definiteness of the measure dνn,`(t) implies

that

r1,`i :=

(∫ 1

−1

(
Q1,`

i (t)
)2

dνn,`(t)

)−1
> 0

for i = 0, 1, . . . , k−1. The three-term recurrence relation from
Theorem 4.1 can be written as

(t− a1,`i )Q1,`
i (t) = b1,`i Q1,`

i+1(t) + c1,`i Q1,`
i−1(t),

i = 1, 2, . . . , k − 1, where

b1,`i =
η1,`i+1

η1,`i

> 0, c1,`i =
r1,`i−1b

1,`
i−1

r1,`i

> 0, a1,`i = 1−b1,`i −c
1,`
i .

The initial conditions are Q1,`
0 (t) = 1 and

Q1,`
1 (t) =

nq(nq`+ nq − 2n+ 2)t+A

2B
,

where A = n2(q− 1)(q`+ q− 2)+n(q`+5q− 6)− 2(q− 2)
and B = n2(q− 2)(q`+ q− 2)+ 2n(q`+4q− 3)− 4(q− 2).

By Theorem 4.1 we have that the zeros of {Q1,`
i (t)}

interlace; i.e. t1,`j,i < t1,`j−1,i < t1,`j,i+1, i = 1, 2, . . . , j − 1.
Lemma 4.3: If −1 ≤ ` < t1,0k,1, then (t− `)Q1,`

i (t) ∈ F≥ for
i = 0, 1, . . . , k − 1.

Proof. It follows from the definition (8) of the kernels
T 1,0
i (x, y) and (9) that for i = 0, 1, . . . , k − 1 we have

(t− `)Q1,`
i (t) =

1− `
1− qi

(
Q1,0

i+1(t)− qiQ
1,0
i (t)

)
,
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where qi = Q1,0
i+1(`)/Q

1,0
i (`) < 0 as in the proof of Theorem

4.2. Now Q1,0
i (t) ∈ F≥ (see [11, Eq. (3.91)]) completes the

proof. �

C. Construction and investigation of Q1,`,s
j (t) and

Levenshtein-type polynomials

We construct the polynomials Q1,`,s
i (t) using the system

{Q1,`
i (t)}ki=0 from the previous section. Consider the Chris-

toffel-Darboux kernel associated with the polynomials Q1,`
j (t):

Ri(x, y; `) :=
∑i

j=0 r
1,`
j Q1,`

j (x)Q1,`
j (y)

= r1,`i b1,`i

Q1,`
i+1(x)Q

1,`
i (y)−Q1,`

i+1(y)Q
1,`
i (x)

x−y ,

for 0 ≤ i ≤ k − 1. Given t1,0k,k ≤ s ≤ t
1,`
k,k we define

Q1,`,s
k−1 (t) :=

Rk−1(t, s; `)

Rk−1(1, s; `)
. (12)

The proof of the next assertion is similar to that of Theorem
4.2 and we omit it.

Theorem 4.4: Let n, `, s, and k be such that ` ∈
(t1,0k+1,1, t

1,0
k,1), Q

1,0
k+1(`)/Q

1,0
k (`) < 1, s ∈ [t1,0k,k, t

1,`
k,k], and

Q1,`
k (s)/Q1,`

k−1(s) > Q1,`
k (`)/Q1,`

k−1(`). Then the polynomial
Q1,`,s

k−1 (t) has k − 1 simple zeros β1 < β2 < · · · < βk−1
such that β1 ∈ (`, t1,`k−1,1) and βi+1 ∈ (t1,`k−1,i, t

1,`
k−1,i+1),

i = 1, 2, . . . , k − 2.
We can already define the Levenshtein-type polynomial

f
(n,`,s)
2k (t) := (t− `)(t− s)

(
Q1,`,s

k−1 (t)
)2

(13)

and proceed with an investigation of its properties. The next
theorem is an analog of Theorem 5.39 from [11]. It involves
the zeros of f

(n,`,s)
2k (t) to form a right end-point Radau

quadrature formula with positive weights.
Theorem 4.5: Let β1 < β2 < · · · < βk−1 be the zeros of

the polynomial Q1,`,s
k−1 (t). Then the Radau quadrature formula

f0 =

∫ 1

−1
f(t)dµn(t) (14)

= ρ0f(`) + ρkf(s) + ρk+1f(1) +

k−1∑
i=1

ρif(βi)

is exact for all polynomials of degree at most 2k and has
positive weights ρi, i = 0, . . . , k. If (t− `)Q1,`

k (t) ∈ F≥, then
ρk+1 > 0.

Proof. Let us denote by Li(t), i = 0, 1, . . . , k + 1, the
Lagrange basic polynomials generated by the nodes ` < β1 <
· · · < βk−1 < s < 1. Defining ρi :=

∫ 1

−1 Li(t)dµn(t),
i = 0, 1, . . . , k + 1, we observe that (14) is exact for the
Lagrange basis and hence for all polynomials of degree at
most k+1. Any polynomial f(t) of degree at most 2k can be
written as

f(t) = q(t)(t− `)(t− s)(1− t)Q1,`,s
k−1 (t) + g(t),

where deg(q) ≤ k − 2 and deg(g) ≤ k + 1. Then the
orthogonality of Q1,`,s

k−1 (t) to all polynomials of degree at most

k − 2 with respect to the measure dνn,`,s(t) and the fact that
the right-hand side of (14) is the same for f(t) and g(t) show
the exactness of the quadrature formula (14) for f(t).

We next show the positivity of the weights ρi. Using f(t) =

(s− t)(1− t)
(
Q1,`,s

k−1 (t)
)2

in (14) we obtain

ρ0f(`) =

∫ 1

−1

(
Q1,`,s

k−1 (t)
)2

dνn,s(t) > 0,

whence ρ0 > 0, because f(`) > 0. Similarly, with f(t) =

(1−t)(t−`)
(
Q1,`,s

k−1 (t)
)2

in (14) and the positive definiteness
of dνn,`(t) we see that ρk > 0.

To see that ρi > 0 for i = 1, 2, . . . , k − 1, we use the
polynomial f(t) = (1 − t)(t − `)(s − t)u2k−1,i(t) in (14),
where uk−1,i(t) = Q1,`,s

k−1 (t)/(t− βi). Then

ρif(βi) =

∫ 1

−1
u2k−1,i(t) dνm,`,s(t) > 0

and f(βi) > 0 implies that ρi > 0.
Finally, we prove that the weight ρk+1 is positive. In this

case we use f(t) = f
(n,`,s)
2k (t) in (14) and find that

f0 = ρk+1f(1) = ρk+1(1− s)(1− `).

Thus it is enough to see that the coefficient f0 of f (n,`,s)2k (t)
is positive. We use (12) to obtain that f0 is equal to∫ 1

−1(t− `)(s− t)(1− t)Q
1,`,s
k−1 (t)

Q1,`,s
k−1 (t)−Q1,`,s

k−1 (1)

t−1 dµn(t)

+
∫ 1

−1(t− `)(t− s)Q
1,`,s
k−1 (t)dµn(t) (15)

= 1−s
1−pk

∫ 1

−1(t− `)
(
Q1,`

k (t)− pkQ1,`
k−1(t)

)
dµn(t),

where pk = Q1,`
k (s)/Q1,`

k−1(s) < 0. Then the last integrand
belongs to F≥ and in particular its zero-th coefficient is
positive. This completes the proof of the theorem. �

V. BOUNDING CARDINALITIES AND ENERGIES

In the proof of the positive definiteness of his polynomials
Levenshtein used (see [11, (3.88) and (3.92)]) what he called
the strengthened Krein condition

(t+ 1)Q1,1
i (t)Q1,1

j (t) ∈ F≥.

We need a following modification.
Definition 5.1: We say that the polynomials {Q1,`

i (t)}ki=0

satisfy (k, `)-strengthened Krein condition if

(t− `)Q1,`
i (t)Q1,`

j (t) ∈ F≥ (16)

for every i, j ∈ {0, 1, . . . , k} except possibly for i = j = k.
The strengthened Krein condition holds true in Fn

q for
every i and j (see [11, Lemma 3.25]). However, the (k, `)-
strengthened Krein condition is not true for every `, and for
fixed `, is not true for every k.

The main result in this paper is the following. It includes
the analog of Theorem 5.42 of [11].

1750



Theorem 5.2: Let n, q, k, ` ∈ [−1, t1,0k,1), and s ∈ (t1,0k,k, t
1,`
k,k)

be such that the (k, `)-strengthened Krein condition holds true.
Let Q1,`

k (s)/Q1,`
k−1(s) > Q1,`

k (`)/Q1,`
k−1(`). Then

Aq(n, s, `) ≤
f
(n,`,s)
2k (1)

f0
=

1

ρk+1
= L2k(n, `, s), (17)

where

L2k(n, `, s) =
Sk

(
Q1,`

k−1(s)−Q
1,`
k (s)

)
rk+1Q

(n,q)
k+1 (`)Q1,`

k−1(s)

Sk+1(Q1,0
k+1(`)−Q

1,0
k (`))

− rkQ
(n,q)
k (`)Q1,`

k (s)

Sk−1(Q1,0
k (`)−Q1,0

k−1(`))

,

and Sj =
∑j

i=0 ri, j ∈ {k − 1, k, k + 1}.
Furthermore, for fixed `, for h being an absolutely monotone

function, and for M determined by f
(n,`,s)
2k (1) = Mf0, the

Hermite interpolant1 g(t) = H((t − s)f (n,`,s)2k (t);h) belongs
to Gn,`;h, and, therefore,

Eh(n,M, `) ≥M(Mg0 − g(1)) =M2
k∑

i=0

ρih(βi). (18)

The bounds (17) and (18) are obtained only simultaneously
by codes which have all their inner products in the roots of
f
(n,`,s)
2k (t) and which are, in addition, 2k-designs in Fn

q .
Proof. It follows from the definitions (12) and (13) that

f
(n,`,s)
2k (t) can be written as

c(t− `)
(
Q1,`

k (t) + c1Q
1,`
k−1(t)

) k−1∑
i=0

r1,`i Q1,`
i (t)Q1,`

i (s),

where c = (1 − s)/(1 + c1)Rk−1(1, `, s) > 0 and c1 =
−Q1,`

k (s)/Q1,`
k−1(s) > 0 under the assumptions for ` and s.

Since Q1,`
i (s) > 0 for 0 ≤ i ≤ k − 1, the polynomial

f
(n,`,s)
2k (t) becomes positive linear combination of terms like
(t − `)Q1,`

i (t)Q1,`
j (t), where i ∈ {k, k − 1} and j ≤ k − 1.

Therefore f (n,`,s)2k (t) ∈ F≥. This and the obvious f (n,`,s)2k (t) ≤
0 for every t ∈ [`, s] implies that f (n,`,s)2k (t) ∈ Fn,s,`.

Computing f0 as in (15) and then using the representation of
(t−`)Q1,`

j (t) by the Christoffel-Darboux formula for j = k−1
and k we get a linear combination of Q1,0

i (t), i = k−1, k, k+
1. Since∫ 1

−1
Q1,0

j (t)dµn(t) =

∫ 1

−1

Tj(t, 1)

Tj(1, 1)
dµn(t) =

1

Sj
,

where Sj =
∑j

i=0 ri, we obtain after simplifications the
explicit form of the bound (17).

We proceed with the energy bound. Denote by t1 ≤ t2 ≤
· · · ≤ t2k the zeros of f (n,`,s)2k (t) counting their multiplicity;
i.e., t1 = `, t2i = t2i+1 = βi, i = 1, . . . , k − 1, and t2k = s.
Then g(t) is a linear combination with nonnegative coefficients
of the constant 1 and the partial products

m∏
j=1

(t− tj), m = 1, 2, . . . , 2k.

1The notation g = H(f ;h) signifies that g is the Hermite interpolant to
the function h at the zeros (taken with their multiplicity) of f .

Since t2i, i = 1, . . . , k, are the roots of Q1,`
k (t)+αQ1,`

k−1(t)
(see (12)) it follows from [3, Theorem 3.1] that the partial
products

∏m
j=1(t− t2j), m = 1, . . . , k − 1, have positive co-

efficients when expanded in terms of the polynomials Q1,`
i (t).

Then g(t) is a linear combination with positive coefficients of
terms (t−`)Q1,`

i (t)Q1,`
j (t) and the last partial product which is

in fact f (n,`,s)2k (t). Now g(t) ∈ F≥ follows from the validity of
the (k, `)-strengthened Krein condition and f (n,`,s)2k (t) ∈ F≥.

Multiple application of the Rolle’s theorem implies that
g(t) ≤ h(t) for every t ∈ [`, 1) and therefore g(t) ∈ Gn,`;h.
The explicit form of the bound (18) via the weights ρi and
the nodes βi follows from the quadrature formula (14) and the
interpolation conditions. This completes the proof. �

The bound (17) was obtained and investigated for (in our
notations) k = 1 and the corresponding ` and s by Helleseth,
Kløve and Levenshtein [8]. In that paper, comparisons with
the Levenshtein bound (see [10]) obtained by polynomials of
degrees 2 and 3, and detailed descriptions of all known codes
attaining L2(n, `, s) can be found.
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