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Summary. In this paper, we establish the sharpness of a theorem concerning
zero-free parabolic regions for certain sequences of polynomials satisfying a three-term
recurrence relation. Similarly, we establish the sharpness of a zero-free sectorial
region for certain sequences of Padé approximants to ¢*.

1. Introduction

We begin by stating, in a slightly modified form, the result of {6, Thm. 2.1].

Theorem 1.1. Let {f,(2)}i—0 be a sequence of polynomials in the variable z of
respective degrees £ which satisfy the three-term recurrence relation

?k(z)=(§; +1)7bk~1(z)_%pk—2(z)’ k=1,2,...,n, (1.1)

where the b;s and c¢ys are positive real numbers for all 1 £k <#, and where

P_1(2) 1=0, po(2) =po +0. Set

wi=min {b,(1—b,_y ¢ ): k=1,2,...,m}, by:=0. (1.2)
Then, if « >0, the polynomials {#, («xz)}4_; have no zerosin the parabolic region
Fi={z=x+iyeC: 2 <4(X+1), x>—1}. (1.3)

One of our objects here is to show that the result of the above parabola theorem
is sharp, in the sense that each boundary point of the parabola & is the limit
point of zeros of an appropriate sequence of polynomials satisfying {1.1) and (1.2).
Indeed, to show this, we shall use specific sequences of Padé numerators of ¢ In
the same manner, we shall also show that the secfor theorem, stated below as
Theorem 1.3, for Padé numerators for ¢*is sharp. These new results are explicitly
stated in § 2, with their proofs being given in §3. For the remainder of this
section, we introduce necessary notation and cite relevant existing results.

Let s, denote the collection of all polynomials in the variable # having degree
at most m, and let m, , be the set of all complex rational functions 7, ,(z) of the
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form

P,y (2)
v (2)
Then, the (n, v)-th Padé approximant to ¢’ is defined as that element R, ,(z)€ 7, ,
for which

7’n,v(z): where ?n,ve Ty s qn,ve Ty Qn,v(o):/l'

=Ry () =0("H,  as [0
In explicit form, it is known {5, p. 433] that
w0 () =15, (2)[ 0, (2),

where
id n-{-v—j REAY
Z () =1 (1.4)
and .
(=)Lt (= 2)f
Cn, (2) Z A9l w—p)t (1.5)

We shall refer to the polynomials Z, ,(z) and B, ,((v--1) 2), respectively, as the
Padé numerator and normalized Padé numerator of type (n, ») for &

Generally, one is interested in both the zeros and the poles of the Padé ap-
proximants R, ,(z). However, since the polynomials of (1.4) and (1.5) are related
by the obvious identity

Qn v( ) vn(_z)! (16)

it suffices then to investigate only the zeros of I, ,(z), which are the zeros of
Rn,v(z)'

For any fixed v =0, it readily follows from (1.4) that the elements of the
sequence of Padé numerators {5, ,(2)}5>, satisfy the following three-term recur-
rence relation, discovered by Frobenius [1]:

k—1)zB_, ,(2)

(b49) B (A =(a+ht9) By () — B TR g )
where B ,(z)=1, and P, ,(z):=0, ie., {£ ,(2)};2, satisfies (1.1) for any » =1
with b,=(k-+v), k=1, and with ¢,= (B+v—1) (k+»)/(k—1), £ =2. Moreover,
it is easy to see that for these values of b, and ¢, the constant « of (1.2) equals
v+1 for any » =1. Hence, on applying Theorem 1.4, it follows that, for each
fixed v =0 and any %=1, the normalized Padé numerator B, ,((v+1) 2) has no
zeros in the parabolic region Z of (1.3). As this holds for each v >0, we then have
the following consequence of Theorem 1.1.

Corollary 1.2. For every # =0 and every ¥ =0, the normalized Padé numerator
B, ,((»+1) z) for ¢ has no zeros in the parabolic region & of (1.3).

We next state a slightly modified form of [7, Thm. 2.1].

Theorem 1.3. For every #» =2 and every » =0, the Padé numerator B, ,(z)
for ¢* has no zeros in the infinite sector

5@,,::{2: |arg z| < cos™ (n;i:_:z)} (1.8)
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Consequently, for any fixed ¢ with 0 <<¢ < oo, each element in the sequence of
Padé numerators {£, ,, (2)}72, satisfying
lim #,=+o0, lim i —g, and (ﬁ—i—) =0 forall j=1, (1.9)
j—>00 joo By '”7'—‘1

has no zeros in the infinite sector
1—0
&= { |arg 2| <cos‘1(1+a)} (1.10)

One of the objects here is to show that the above sector theorvem is also sharp,
i.e., for any £>0, we can find a sequence of Padé numerators {L,, ,, (2)};2, for ¢*,
satisfying (1.9), which do have (infinitely many) zeros in & ,, defined in (1.10).

Note that since cos™ (:—_T_—Z) is strictly increasing on [0, -+ oo}, then S C%,,

for every £>0.
2. Statement of New Results

We now list and discuss our main results, deferring their proofs to the next
section.
Theorem 2.1. For any ¢ with 0 <¢ < o0, consider a sequence of Padé numer-
ators {B, ,,(2)}j2, for ¢’ for which
lim #;=-4o00, and lim 2 —g. (2.1)
j—>o0 j—>00 g

Then, B, ,, (2) has zeros of the form

(n;,+v;+1) exp [iz cos™t (~+—v+~1—)] +O((nj+v;+1)"), as j—>co. (2.2)

With the result of Theorem 2.1, we shall then establish the following sharpened
form of Corollary 1.2.

Theorem 2.2, For every #» =0 and every v =0, the normalized Padé numerator
B, ,((v+1) 2) for ¢ has no zero in the parabolic region

Pi={z=x+iyeC: Y2 <4(x+1), x>—1},
and, moreover, each boundary point of & is the limit point of zeros of
{6, (v+1) 2}uzo, 020

Thus, the parabolic region & is the largest (connected) region in the complex plane
containing the ray [0, 4-o0) which is devoid of all zeros of {£, ,((#+1) 2)}nz0, 20 -

To indicate graphically the result of Theorem 2.2, we have plotted in Fi 1gure 1
all of those 8450 zeros Z of the normalized Padé numerators {, ,((v+1) 22 02,
which satisfy —2<ReZ =41 and 0 <Im 7 <3, along with the boundary of the
parabolic region %. The limiting nature of the boundary of &, as asserted- in
Theorem 2.2, is particularly evident in the neighborhood of Rez=—1. One
cannot help but notice the interesting troughs for these zeros 7 appearing in
Figure 1, but these may disappear for large values of # and ». It also seems from
Figure 1 that much more than the boundary of & is in the set of limit points of
the zeros of {&, ,((¥-+1) 2)}nz0, vz0-

24%
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Fig. 1. Zeros of normalized Padé numerators {E, ,((v+1) 2) ﬁio,’,z:ﬁo in ~-2=Rez =1,

0 =Im 2z =3, and zero-free parabolic region

Making use again of the result of Theorem 2.1, we shall establish the sharpness
of the sector theorem, Theorem 1.3, as was originally conjectured in [7].

Theorem 2.3, For any ¢ with 0 <o < oo, any sequence of Padé numerators
{8y, » (2)}720 for ¢* satisfying (1.9) has no zeros in the infinite sector & of (1.10),
and, moreover, for any &> 0, this sequence {F, ,, (2)};2, has infinitely many zeros
in the sector &, ,. Thus, the sector %, is the largest region in the complex plane
of the form {z: |arg z| <y}, which is devoid of all zeros of any sequence of Padé
numerators {F, , (2)};2, satisfying (1.9).

We remark that a graphical illustration of the result of Theorem 2.3, similar
to the graphical illustration in Figure 1 of Theorem 2.2, can be found in Figures 1
and 2 of [7].
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3. Proofs of New Results
Proof of Theorem 2.1. For any # =0 and » =0, set

w, () ="~ ") B (), (3.1)

where the Padé numerator I, , (z) is defined in (1.4). In the case that #n4-» is odd,

+v ntv
2 (nT) denotes the principal branch of 2~ (T) Then, as is known (cf. Olver
(4, p. 260]), w, ,(z) satisfies Whittaker's equation

a2 1 k 2—1/4
B s et P 3.2)
with
n—v n4v41
ki= 2 - 2 (33)
On defining
V.. =w, ,(mz), (3-4)

it then follows from (3.2) that W, ,(z) similarly satisfies

’

4k
LW mi22— ——z 14
s { | T ) — ] W) 35)

Now, the roots of the quadratic 22— jn—kz—l—4 are given by

2k k2
w E2 ) (3-6)
and, with (3.3), we see that
k2
o e < 1.
Thus, the roots (3.6) can be expressed as
26:}:139n,v‘ (37)
where
k n—y
COSGn’v-:W =m, O<6n,v<7t (38)
Hence, (3.5) can be written in the form
2w (2) m2 (2 — 26i0,v) (2 — 2e—i0n,v) 1
dzz( = 432 - 4?} : W(Z) (3.9
Next, set .
2 \2/8 g% 403,y —m)
. PO, v & - A
R e e o e (3.10)

Then, as can be verified from (3.9), Y, , (2) satisfies

T by () =800 ()] Y ), g
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where
1+( s S )
2/3 A42/3 qind/3
By ,(2) 1= iR AR Oy (3.12)
’ — & @Oyt
1422 .
m2/8 21/8 51n1/3 6””, |
and
20y, y—m) 2
( 2 )2/3 e®
S —
gn(@) =+ el S e (3.13)
’ 4 24, , —
2/3 3 (405, —mn)
213@'f’n,v—|—z(i LA
m sin/? 6, ,
Note from (3.1), (3.4), and (3.10), that
i
= {464,y — )
. Zmll3 92/8 o 6 '
Y, .(5)=wu,, 2metOn - sl g, (3-14)

is single-valued and analytic, except along the ray parameterized for 0 <& <<+ o0
by
On, v bn

z(t)=m™ 2P sin'® g, . ¢ (%= -%) [t e~ t0mvtq]. (3.15)

Now, for any fixed ¢ with 0 <o <+ oo, suppose that {(»;, v;)};2; is an infinite
sequence of pairs of nonnegative integers, such that

limp;=-+co and lim it My (3.16)
j—>00 . j—o0 Ty

For notational convenience, we drop subscripts and simply write (%, ») for (x;, ;).
Then, from (3.8), it follows that

- 170 Lmsing - 209
7152 cos b, ,= o Ilgg sin 6, ,= tro 0. (3.17)
Next, from (3.12) and (3.13), it is clear that as j—oo, the common pole of 4, , ()

and g, ,(z) approaches infinity. Hence, we have
lim hn,v(z)=1: lim gn,v(z)zo»
o0 J—>00

uniformly on every compact subset of the complex plane. Consequently, the
differential equation (3.11) ‘‘approaches” the Adry differential equation (cf.
[4, p. 551),

Y .
ddzjz) =zY(2), asj—>o0. (3.18)

Now, consider the solutions Y, ,(2) of (3.11), as given in (3.14). With (3.1),
we have -

. {0, v o o (2 .
Y, ,(0)=w, , (2meitns) =e=me ™ (3 ppgitny 34 p ,(2mettny),
",V n,v n,
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and it follows from applying the first part of Theorem 1.3 to B, ,(2me'%>) that,
for n =2, Yn’,, (0) 0. Thus, we finally set

yn,v(z)::‘yh’% » %22 (319)
",y

Then, v, ,(2) satisties the differential equation (3.11), and satisfies y, ,(0)==1 for
all » =2, i.e., for all  sufficiently large. Consider then the sequence {y;, ,(0)};2;.
If this sequence is bounded, there is a convergent subsequence { y;,h 4 (0)}¢2, such

that ‘

}lglo Yup, v (0)=¢, ¢ a finite complex constant. (3.20)
If, on the other hand, the sequence {y,, ,(0)}{2; is unbounded, there is similarly a
subsequence {y,, ,, (0)};2; such that

Hm |y, 4, (0)] =+ co. | (3.21)

For simplicity again, we continue to denote these subsequences (7, ;) or («,, »,)
by (n, v).

If (3.20) is valid, then it follows from the fact (cf. [4, Ch. 5, § 3]) that solutions
of linear equations depend confinuously on the differential equation and on the
initial data, that the subsequence ¥, , converges, uniformly on every compact
subset of the complex plane, to the solution Y () of the Airy equation (3.18)
which satisfies Y (0)=1, Y’(0)=c. From the asymptotic expansions of the

27
particular Airy functions Ai(z), Ai (ei (T) z) (cf. [3, p. 364]), it is easy to verify
that each complex solution of the Airy differential equation (3.18) is an entire
function with infinitely many zeros in the complex plane. Thus, the subsequence
Yu,» (%) converges to a not identically zero (since Y (0)=1) entire function ¥ (2)
which certainly has a finite zero z,. Thus, by Hurwitz’s Theorem, ¥, ,(z) has a
zero at some finite point 2, ,, where z, ,—>2, as £—oco. Tracing this all back
through (3.14) and (3.1), then I, ,(z) has a zero of the form
ml/3 22/3 exp [é— (46, ,—m)
2m etttz , TN, ) (3.22)

or equivalently, from (3.3) and (3.8),

(n+v+1) exp [¢ cos™! (ﬁ)]
[2 (n+v+1)]1/3exp[ (4 cos—l(n_*_:_:i1 ) n)] ©(3.23)
sl (CEAS)

where 2, ,—>2, as £ ~>oo. Hence, with (3.17), B, ,(z) has a zero of thetform :

+2,

(n4v-+1) exp [z COS—1<n+v+1 )] —|—(0((%—|—v—l—1)1/3) as /;—>oo. (3.24)
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Of course, since I, , (z) has real coefficients from (1.4), its zeros occur in conjugate
complex pairs, so that I, ,(z) has zeros of the form

(n+v+1) exp[ii cos™ <n+v+1 )} +O((m+v+1)"),  as £—>c0. (3.25)
If, on the other hand, (3.21) holds, then define

9 (@ =222 o all # sufficiently large. (3.26)
' Y10 (0)

Then, #, ,(0)—>0 as #—>oo, and #, ,(0)=1. Thus, by the above argument, the
subsequence {, , (2)};=.1 also converges, uniformly on every compact subset of the
complex plane, to the not identically zero solution of the Airy equation (3.18)
which satisfies Y (0)=0, Y’(0)=1, and this solution Y (z) again is an entire
function with a finite zero (at zp=0). As in the previous case, then I, ,(2) has
zeros of the form (3.25).

Having just established that for every sequence {(%;, v;)};2, satisfying (3.16),
there exists a subsequence such that the corresponding polynomials L, , (z) have
zeros of the form (3.25), it follows that (3.25) is valid for the original sequence
{(n;, v;)};21, which is the desired result of (2.2) of Theorem 2.1. m

We note that Theorem 2.1 covers the case when 0 <o < o0, where

lim n;=o0, and lim -1 =g.

J—>00 j>o0 By

Actually, the proof of Theorem 2.1 allows for extensions to certain limiting cases
of 6=0 and o= o0, cases which will be of subsequent use to us. We now give these
extensions as

Corollary 3.1. Consider a sequence of Padé numerators {F, ,,(2)}{2, for ¢* for
which (cf. (2.1))

lim #,=00, lim »,=oc0, and lim -4 = 0. (3.27)
j—00 i j—>00 i j—»00 "7

Then, B, ,,(2) has zeros of the form

(n;+v; —|—1)exp[;|:¢ cos‘1< ] +0(n*v;"%), as j—>o0. (3.28)

)
'n +‘V + 1

lim #;=co0, lim »;—o0, and lim 24 —0, (3.29)
j—>00 j—00 j—>o0 Vg
then B, ,,(2) has zeros of the form

. —Vit+n; .
p;+ni+1) exp[iz cost (v—’_—:’—n’ﬁ)] +O @ u;'%, as j—>c0. (3.30)

Proof. Because the proof of (3.30) is completely similar, it suffices to establish
(3.28) under the assumption of (3.27). For notational convenience again, we drop
subscripts and write (%, v) for (»;, »;). Then, from the definition of 0, , in (3.8), it
follows from (3.27) that 0, , satisfies

tup=cos (i) =2(5) +o((3)), im0
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Next, consider the functions %, ,(2) and g, ,(2) of (3.12) and (3.13). With (3.31)
and the hypotheses of (3.27), a short calculation shows that

m®l® 478 sin®® 6, = 4° {1 +@ (%)} —>00,  as f->o0,
2/8 513 ;. 1/8 12,18 v . (3.32)
m 2P sin® 6, ,=n "y " {140 Z)[o  as >0,

whence we deduce that

lim %, ,(2)=1, and lim g, ,(2)=0,

j—r00 j—>00
uniformly on any compact subset of the complex plane, just as in the proof of
Theorem 2.1. The remainder of the proof of Theorem 2.1 can then be applied
which gives that F, ,(z) has a zero of the form (3.22), with 2, , bounded. Coupling
the form (3.22) with (3.31) and the assumptions of (3.27), then I, ,(z) has zeros
of the form ’

(n+v+1) exp[:ﬂ 005‘1(”_*_1}4_1 )] FOHEy™Y,  as j>oo,

which is the desired result of (3.28). m

One useful consequence of Corollary 3.1 is the observation that the arguments
of the zeros of (3.28), because of (3.31), tend to zero as j—oo. Thus, given any
infinite sector & (cf. (1.10)) with ¢ >0, and given any sequence {R,, ,, (2)}2, of
Padé approximants to ¢* satisfying (3.27), this sequence has infinitely many zeros
in &,. Alternatively, given any infinite sector %, with ¢>0, and given any se-
quence {Z,, ,, (2)};2, of Padé approximants to ¢~* satisfying (3.27), this sequence
has infinitely many poles in %,.

Proof of Theovem 2.2. To begin, it follows from (1.4) that F ,((v+41) 2) =142
for every » =0, which implies that z=—1 is a zero of every {f ,((v+1) 2)};2,
Thus, 2=—1, a boundary point of & of (1.3), is trivially a limit point of zeros of
{L, ,(v+1) 2)}uzo, vz0-

Next, consider any (£, §) on the boundary of & with £ > —1. We can write
2=1"% where 0<o<C+oc, and, as $2=4(£41), then 9=+ % Fixing o,
consider any sequence {(%;, ¥;)};2, which satisfies (cf. (2.1))

lim #;=+oc0 and hm =g. (3.33)

j—>00 7'
As a.consequence of Theorem 2.1, B, , (2) has zeros of the form
(n;4-v; +1)exp[;}:z cost (mﬂ +O((n;4-v; +1)Y3),  as j—oo,

which implies that B, , ((v;4 1) 2) has zeros of the form

By, 0= (%) exp [jﬂ cos-1 ("nnv-FT)J_"@( (n; —(|;v+-*-1)1)1/3 ), 25 oo,
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But, it follows from (3.33) that
~ 140 . S f{1—0C
Zm,»,=( = )exp[:};i cosl(1+g)

:(—1%‘-’— + t¥) +o (1) =£Li94+0(1), asj—>oo.

Thus, each boundary point of the parabolic region & is the limit point of zeros
of {B, ,(v+1) 2)}uz0,s20- M

Pyoof of Theovem 2.3. To establish Theorem 2.3, it suffices, from the sector
theorem, Theorem 1.3, to show that, for any &> 0, and any sequence {£, ,, (2)}721
satisfying (1.9), there are infinitely many zeros of {£, ,(2)};2, in the sector
15, defined in (1.10). But, this is a direct consequence of (2.2) of Theorem 2.1. =

We take this opportunity to say that the basic purpose of this paper is to
give a brief and fairly direct proof of the sharpness of the parabola and sector
theorems, Theorems 1.1 and 1.3. We do point out that sharper asymptotic results,
concerning the zeros of Padé numerators, are known in special cases. For example,
in the diagonal case y= (for which =1 in (2.1)), Olver [2, 3] has obtained very
sharp estimates on the limiting distribution of the zeros of I, , (z). Similatly, in
the case =0 (for which 6=01n (2.1)), Szegt [8] has obtained very sharp estimates
on the limiting distributions of the zeros of E, ((z)=s,(2), the n-th partialsums
of ¢°. We hope in the future to extend the results of this paper to such sharper
asymptotic results on the zeros of the Padé numerators £, ,(z), in the spirit of
Olver and Szegd, to the general case, 0 <o < o0.

+o(1)
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