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LOCAL PROPERTIES OF RIESZ MINIMAL ENERGY CONFIGURATIONS

AND EQUILIBRIUM MEASURES

D. P. HARDIN, A. REZNIKOV, E. B. SAFF, AND A. VOLBERG

ABSTRACT. We investigate separation properties of N-point configurations that mini-

mize discrete Riesz s-energy on a compact set A ⊂ Rp. When A is a smooth (p− 1)-
dimensional manifold without boundary and s ∈ [p−2, p−1), we prove that the order of

separation (as N → ∞) is the best possible. The same conclusions hold for the points that

are a fixed positive distance from the boundary of A whenever A is any p-dimensional

set. These estimates extend a result of Dahlberg for certain smooth (p− 1)-dimensional

surfaces when s = p−2 (the harmonic case). Furthermore, we obtain the same separation

results for ‘greedy’ s-energy points. We deduce our results from an upper regularity prop-

erty of the s-equilibrium measure (i.e., the measure that solves the continuous minimal

Riesz s-energy problem), and we show that this property holds under a local smoothness

assumption on the set A.

1. INTRODUCTION

In this paper we study, respectively, the properties of separation and regularity for min-

imal discrete and for continuous Riesz energy. For a measure µ supported on a compact

set A in Euclidean space and s > 0, its Riesz s-potential and Riesz s-energy are defined by

(1.1) U
µ
s (x) :=

∫

A

dµ(y)

|x− y|s
, Is[µ] :=

∫

A
U

µ
s (x)dµ(x),

and its Riesz log-potential and Riesz log-energy by

U
µ
log(x) :=

∫

A
log

1

|x− y|
dµ(y), Ilog[µ] :=

∫

A
U

µ
log(x)dµ(x).

The constant Ws(A) := inf Is[µ], where the infimum is taken over all probability measures

µ supported on A, is called the s-Wiener constant of the set A, and the s-capacity of A is

given by

caps(A) :=
1

Ws(A)
, s > 0, caplog(A) := exp(−Wlog(A)).

If Ws(A) < ∞, it is known that there exists a unique probability measure µs that attains

Ws(A) and we call µs the s-equilibrium measure for A (see [15]).

The problem of minimizing Is[µ] has a discrete analog. Namely, for an integer N > 2

we set

Es(A,N) := min
ωN⊂A

Es(ωN),
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where the infimum is taken over all N-point configurations ωN = {x1, . . . ,xN} ⊂ A and

Es(ωN) := ∑
i 6= j

1

|xi − x j|s
.

By ω∗
N = ω∗

N,s = {x∗1, . . . ,x
∗
N} we denote any optimal N-point s-energy configuration; i.e.,

a configuration that attains Es(A,N). It is known that if Ws(A)< ∞, then

1

N

N

∑
j=1

δx∗j

∗
→ µs,

where δx denotes the unit point mass at x, and the convergence is in the weak∗ topology.

Thus, for sets of positive s-capacity, by solving the discrete minimization problem, we

“discretize” the measure µs that solves the continuous problem.

We shall study properties of ω∗
N , especially its separation distance given by

(1.2) δ (ω∗
N) := min

i 6= j
|x∗i − x∗j |.

In the theory of approximation and interpolation, the separation distance is often associ-

ated with some measure of stability of the approximation. In [6] Dahlberg proved that for

a C1+ε -smooth d-dimensional manifold A ⊂ Rd+1 without boundary and s = d − 1 (the

harmonic case), there exists a constant c > 0 such that

(1.3) δ (ω∗
N)> cN−1/d , ∀ N > 2.

For such a set A, the order N−1/d for separation of N-point configurations is best possible‡.

For the special case A = Sd := {x ∈Rd+1 : |x|= 1}, Kuijlaars, Saff and Sun [14] extended

Dahlberg’s result by proving (1.3) for s ∈ [d − 1,d) and in [4], Brauchart, Dragnev and

Saff extended the range of s to s ∈ (d − 2,d) with explicit values for the constant c.

Our first goal is to extend the results from [6] and [14] to all C∞-smooth d-dimensional

manifolds for s ∈ [d − 1,d) and to interior points of d-dimensional bodies for s ∈ (d −
2,d). More generally, we show that (1.3) holds whenever the s-equilibrium measure of

the manifold is upper regular (see Theorem 2.3).

Since the problem of determining the minimum Es(A,N) requires solving an extremal

problem in N variables, it is natural to consider a somewhat simpler discretization method,

namely, the computation of greedy s-energy points defined below which involves mini-

mization in only a single variable. For the logarithmic kernel on A×A where A ⊂ C,

such points were introduced by Edrei [9] and extensively explored by Leja [16] and his

students. For general kernels they were investigated by López and Saff [17].

Definition 1.1. A sequence ω∗
∞ = {a∗j}

∞
j=1 ⊂ A is called a sequence of greedy s-energy

points if a∗1 ∈ A and for every N > 1 we have

N−1

∑
j=1

1

|a∗N −a∗j |
s
= inf

y∈A

N−1

∑
j=1

1

|y−a∗j |
s
.

Notice that if ωN−1 := {a∗1, . . . ,a
∗
N−1} is already determined, then a∗N is chosen to mini-

mize Es(ωN−1∪{y}) over all y ∈ A. It is known [17] that if Ws(A)< ∞ and ω∗
∞ = {a∗j}

∞
j=1

‡More generally, this is true for any set A that is lower d-regular with respect to some finite measure µ
(see Definition 2.1).
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is a sequence of greedy s-energy points, then

1

N

N

∑
j=1

δa∗j

∗
→ µs.

Some computational aspects of using the greedy s-energy points for numerical integration

can be found in [10]. Our second goal, which is achieved in Theorem 2.4 and Corollary

3.2, is to prove that for a smooth d-dimensional manifold A and s ∈ (d − 1,d) or s > d,

there exists a constant c > 0 such that, for every i < j, we have

|a∗i −a∗j |> c j−1/d .

In particular, this implies that δ ({a∗1, . . . ,a
∗
N})> cN−1/d . Moreover, when s > d we also

prove that for some constant C > 0 the covering radius η for such point satisfies

η({a∗1, . . . ,a
∗
N},A) := max

y∈A
min

j=1,...,N
|y−a∗j |6CN−1/d .

For configurations that attain the minimal discrete energy Es(A,N), this was done in [12]

for s > d and in [6] for s = d −1.

Since the method of proof for the above results utilizes the regularity properties of the

measure µs (see Definition 2.1), our third goal is to obtain sufficient conditions for this

regularity. As we show in Theorem 2.7, compact C∞-smooth d-dimensional manifolds

A ⊂Rd+1 without boundary satisfy our conditions (we anticipate, however, that the same

result holds for C2-smooth manifolds). In the case s= d−1, such a result is proved in [19].

Another result of this type was proved in [23] under an assumption that the potential U
µ
s

of the measure µ satisfies an appropriate Hölder condition in the whole space R
d+1. We

derive our result, Theorem 2.7, using only smoothness of the manifold A by applying the

theory of pseudo-differential operators.

The paper is organized as follows. The main results in the integrable case, which in-

clude separation properties of minimal energy and greedy energy points, are stated in

Section 2 and proved in Sections 5 and 7. In Section 3 we state the separation and cov-

ering properties of greedy energy points in the non-integrable case, which are proved in

Subsections 5.2 and 5.3. In Section 4 we cite some known results from potential theory

that we need to prove our main results, and in Section 6 we give a short introduction to

the theory of pseudo-differential operators, which we need for the proof of Theorem 2.7

in Section 7.

2. MAIN RESULTS IN THE INTEGRABLE CASE

In this section we state and discuss our main results for integrable Riesz kernels. Their

proofs are given in Sections 5 and 7. We shall work primarily with a class of ℓ-regular

sets, which are defined as follows.

Definition 2.1. A compact set A is called ℓ-regular, ℓ > 0, if for some measure λ sup-

ported on A there exists a positive constant C such that for any x ∈ A and r < diam(A) we

have

C−1rℓ 6 λ (B(x,r))6Crℓ,

where B(x,r) denotes the open ball B(x,r) := {y ∈ Rp : |y− x| < r}. The set A is called

ℓ-regular at x ∈ A if for some positive number r1, the set A∩B(x,r1) is ℓ-regular.
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Further, we call a measure µ upper d-regular at x if for some constant c(x) and any

r > 0 we have

(2.1) µ(B(x,r))6 c(x)rd.

As the next example shows, a set A can be ℓ-regular with ℓ ∈ N, but its s-equilibrium

measure µs can be d-regular with d < ℓ.

Example 2.2. For the closed unit ball Bℓ := {x ∈ Rℓ : |x| 6 1}, which is ℓ-regular, and

s ∈ (ℓ−2, ℓ) the s-equilibrium measure is given by (see, e.g., [15] or [3])

dµs = M(1−|x|2)(s−ℓ)/2dx, M =
Γ(1+ s/2)

πℓ/2Γ(1+(s− ℓ)/2)
.

We notice that µs is ℓ-regular at every interior point of Bℓ. However, for x on the boundary

∂Bℓ = Sℓ−1, the measure µs satisfies

C−1r(ℓ+s)/2 6 µs(B(x,r))6Cr(ℓ+s)/2,

so that µs is not ℓ-regular at x ∈ ∂Bℓ.

We now present our main results which include the possibility of different regularities

for the set A and the measure µs. Although stated only for s > 0, they remain valid for

ℓ= 1 and s = log.

Theorem 2.3. Let A⊂Rp be a compact set of positive s-capacity, 06 p−2< s< d 6 ℓ6
p, and µs be the s-equilibrium measure on A. Assume A is ℓ-regular at every x ∈ A′ ⊂ A

and µs is upper d-regular at every x ∈ A′ with supx∈A′ c(x)6 c for some c > 0. Then there

exists a positive constant C such that for any optimal N-point s-energy configuration

ω∗
N = {x∗1, . . . ,x

∗
N}, any x∗j ∈ A′ and any x∗k ∈ A with k 6= j we have

(2.2) |x∗j − x∗k |>CN−1/d .

In particular, (2.2) holds in the following cases (see Corollaries 2.8 and 2.9 and Exam-

ple 2.2):

• A ⊂ Rℓ+1 is a compact ℓ-regular C∞-smooth manifold without boundary, s ∈
[ℓ−1, ℓ), and A′ = A with d = ℓ;

• A ⊂ Rℓ is compact, s ∈ (ℓ−2, ℓ), and A′ = {x ∈ A : dist(x,∂A) > ε} with ε > 0

and d = ℓ;
• A = Bℓ, s ∈ (ℓ−2, ℓ), and A′ = {x ∈ Rℓ : |x|6 1− ε} with ε ∈ (0,1) and d = ℓ;
• A = Bℓ, s ∈ (ℓ−2, ℓ), and A′ = ∂Bℓ with d = (s+ ℓ)/2.

Remark. In the case ℓ = 1 and s = log, our results imply the sharp estimate that when

x∗j =±1 and x∗k 6= x∗j ,

(2.3) |x∗k − x∗j |> cN−2.

Indeed, in this case the optimal log-energy configurations ω∗
N consist of Fekete points;

i.e., the roots of (1− x2)P′
N−1(x), where PN is the Nth degree Legendre polynomial (see,

e.g., [20]), for which it is known that (2.3) cannot be improved for x∗k near ±1.

The next theorem concerns greedy energy points defined in Definition 1.1.
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Theorem 2.4. Let A ⊂ Rℓ+1 be a compact C∞-smooth ℓ-dimensional manifold without

boundary, ℓ−1 6 s < ℓ. If ω∗
∞ = {a∗j}

∞
j=1 is a sequence of greedy s-energy points on A,

then there exists a positive constant c(A,s) such that, for any i < j,

|a∗i −a∗j |> c(A,s) j−1/ℓ.

Theorems 2.3 and 2.4 are immediate consequences of Theorem 2.5 stated below and

the following trivial observation: if ω∗
N = {x∗1, . . . ,x

∗
N} is an optimal N-point s-energy

configuration, then for any k = 1, . . . ,N we have

∑
j 6=k

1

|x∗k − x∗j |
s
= inf

y∈A
∑
j 6=k

1

|y− x∗j |
s
.

Theorem 2.5. Let A ⊂ Rp be a compact set of positive s-capacity and µs be the s-

equilibrium measure on A. Let ωN = {x1, . . . ,xN} be any N-point configuration in A,

and y∗ ∈ A satisfy†

(2.4)
N

∑
j=1

1

|y∗− x j|s
= inf

y∈A

N

∑
j=1

1

|y− x j|s
.

If 0 6 p−2 < s < d 6 ℓ6 p, A is ℓ-regular at y∗ and µs is upper d-regular at y∗, then for

every j = 1, . . . ,N

(2.5) |y∗− x j|> (c1c(y∗)+1)−1/s ·N−1/d ,

where the constant c(y∗) is from (2.1) and the positive constant c1 depends only on A and

s.

Our next goal is to present a sufficient condition for Theorem 2.5 to hold. We begin

with the following definition.

Definition 2.6. Let A ⊂ Rp be a compact set d-regular at a point x0 ∈ A. We say that A

is (d,C∞)-smooth at x0 if there exists a positive number r0 and a C∞-smooth invertible

function ϕ : B(x0,r0)∩A → Rd such that ϕ(B(x0,r0)∩A) is open in Rd and ϕ−1 is also

C∞-smooth.

Our next theorem is a local result showing that if a manifold is C∞-smooth at a point,

then the s-equilibrium measure is upper d-regular at this point.

Theorem 2.7. Let A ⊂ Rp be a compact set of positive s-capacity, where p ∈ {d,d +1}
and s ∈ [p−2,d), and µs be the s-equilibrium measure on A. If A is (d,C∞)-smooth at a

point x0 ∈ A, then µs is upper d-regular at x0; i.e., inequality (2.1) holds for any r > 0.

Example 2.2 illustrates the sharpness of this theorem. We note that if y∗ is as in (2.4)

and the assumptions of Theorem 2.7 hold with x0 replaced by y∗, then the conclusion of

Theorem 2.5 follows.

The next corollary follows from Theorem 2.7 and the fact that, if p = d, then A is

(p,C∞)-smooth at x0 ∈ A if and only if x0 is an interior point of A.

Corollary 2.8. Let A ⊂ Rd be compact, s ∈ [d −2,d) and x0 be an interior point of A. If

µs is the s-equilibrium measure on A, then µs is upper d-regular at x0.

Obviously, a C∞-smooth manifold without boundary satisfies the conditions of Theo-

rem 2.7; therefore, we have the following consequence.

†The right-hand side of (2.4) is called the s-polarization (see, e.g., [1]) of ωN .
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Corollary 2.9. Let A ⊂ Rd+1 be a compact C∞-smooth d-dimensional manifold without

boundary, d −1 6 s < d and µs be the s-equilibrium measure on A. Then µs is uniformly

upper d-regular on A.

3. MAIN RESULTS IN THE NON-INTEGRABLE CASE

In this section we state an analog of Theorem 2.5 for the case s > d under very weak

assumptions on the set A. As a consequence, we deduce separation and covering proper-

ties of greedy energy points in this case. These properties are proved in Section 5. Below

Hd denotes the d-dimensional Hausdorff measure normalized by Hd([0,1]
d) = 1. By Md

we denote the upper d-dimensional Minkowskii content; i.e., for a compact set A ⊂ R
p,

set

(3.1) Md(A) := limsup
ε→0+

Lp ({x ∈ Rp : dist(x,A)< ε})

βp−dε p−d
,

where Lp is the Lebesgue measure on Rp and βp−d is the volume of a (p−d)-dimensional

unit ball (for p = d, we set β0:=1).

Proposition 3.1. If A ⊂Rp is a compact set with Hd(A)> 0 (d 6 p) and s > d, then there

exists a constant c > 0 such that for any N-point configuration ωN = {x1, . . . ,xN}⊂ A and

y∗ ∈ A satisfying
N

∑
j=1

1

|y∗− x j|s
= inf

y∈A

N

∑
j=1

1

|y− x j|s
,

we have, for every j = 1, . . . ,N,

(3.2) |y∗− x j|> c ·N−1/d .

Corollary 3.2. With the assumptions of Theorem 3.1, there exists a constant c > 0 such

that for any sequence ω∗
∞ = {a∗j}

∞
j=1 of greedy energy points and any i < j, we have

(3.3) |a∗i −a∗j |> c j−1/d .

If, in addition, A ⊂ Ã for a d-regular set Ã and Md(A)< ∞, then for some c > 0 and every

N > 2, the covering radius of ω∗
N := {a∗1, . . . ,a

∗
N} ⊂ ω∗

∞ satisfies

(3.4) η(ω∗
N ,A) = max

y∈A
min

j=1,...,N
|y−a∗j |6 cN−1/d .

4. SOME FACTS FROM POTENTIAL THEORY

For the convenience of the reader we state several known results from potential theory

that will be used in the proofs of the above formulated theorems. The following theorem

can be found, for example, in [15, p. 136] or [3, Theorems 4.2.15 and 4.5.11].

Theorem 4.1. If A ⊂ Rp is a compact set of positive s-capacity, then the s-equilibri-

um measure µs is unique. Moreover, the inequality U
µs
s (x)6Ws(A) holds µs-a.e. and the

inequality U
µs
s (x)>Ws(A) holds s-quasi-everywhere; i.e., if F ⊂{x∈A : U

µ
s (x)<Ws(A)}

is compact, then Ws(F) =∞. Furthermore, if s∈ [p−2, p), then U
µs
s (x)6Ws(A) for every

x ∈ R
p.

The following theorem is a special case of [18, Theorem 2.5].
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Theorem 4.2. Let s < d and µ be a measure supported on A ⊂ Rp, where A is d-regular.

If for some constant M the inequality U
µ
s (x) > M holds s-quasi-everywhere on A, then it

holds everywhere on A.

We conclude this section with two results from the theory of non-integrable Riesz po-

tentials. The first result can be found in [11, Theorem 2.4] and [2, Proposition 2.5], while

the second is a consequence of the proof of [12, Theorem 3].

Theorem 4.3. Assume A ⊂ R
p, Hd(A) > 0 and s > d. Then there exists two positive

constants c1(s) and c2(s) such that for any N-point configuration ωN = {x1, . . . ,xN} ⊂ A

we have

inf
y∈A

N

∑
j=1

1

|y− x j|s
6 c1(s)N

s/d

and

Es(ωN) = ∑
i 6= j

1

|xi − x j|s
> c2(s)Md(A)

−s/dN1+s/d .

Theorem 4.4. Suppose the compact set A ⊂ Rp with Hd(A) > 0 is contained in some

d-regular compact set Ã and s > d. If ωN = {x1, . . . ,xN} ⊂ A is an N-point configura-

tion with separation distance δ (ωN) > τN−1/d for some τ > 0, then for some constant

R(s,τ, ps),

(4.1) η(ωN ,A) := max
y∈A

min
j=1,...,N

|y− x j|6 R(s,τ, ps)N
−1/d ,

where ps is any positive constant such that

(4.2) inf
y∈A

N

∑
j=1

1

|y− x j|s
> psN

s/d .

5. PROOFS OF THEOREM 2.5 AND THEOREM 3.1

For x = (x(1), . . . ,x(p)) ∈ A, set xr := (x(1), . . . ,x(p),r) ∈ R
p+1 and consider A as a

subset of Rp+1 with x = x0; i.e., x(p+1) = 0.

The next lemma is related to results of Carleson [5] for s ∈ [d−1,d) and Wallin [23].

Lemma 5.1. Assume the measure µ on A is upper d-regular at x ∈ A. If d −2 < s < d,

then there exists a constant c1 that depends only on s and d such that

U
µ
s (xr)>U

µ
s (x)− c1 · c(x) · r

d−s.

Proof. We first notice that for x,y ∈ A we have |y− xr|
2 = |y− x|2 + r2. Therefore,

(5.1) U
µ
s (x)−U

µ
s (xr) =

∫

A

(|y− x|2 + r2)s/2 −|y− x|s

(|y− x|2 + r2)s/2 · |y− x|s
dµ(y)

=

∫

|y−x|62r

(|y− x|2 + r2)s/2 −|y− x|s

(|y− x|2 + r2)s/2 · |y− x|s
dµ(y)

+

∫

|y−x|>2r

(|y− x|2 + r2)s/2 −|y− x|s

(|y− x|2 + r2)s/2 · |y− x|s
dµ(y) =: I1 + I2.
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We have

(5.2) I1 6

∫

|y−x|62r

dµ(y)

|y− x|s
=

∫ ∞

0
µ{y : |y− x| 6 2r, |y− x|−s > t}dt

=

∫ (2r)−s

0
µ{y : |y− x|6 2r}dt +

∫ ∞

(2r)−s
µ{y : |y− x|< t−1/s}dt

6 c(x)(2r)d−s+ c(x)
s

d − s
(2r)d−s = 2d−s ·

d

d − s
· c(x) · rd−s = c2 · c(x) · r

d−s,

where the constant c1 depends only on s and d.

To estimate I2 we need the following inequality. For every positive t there exists a

constant c, such that for every ε < 1/4 we have

(1+ ε)t 6 1+ cε.

This estimate is trivial since the function ε 7→ ((1+ε)t −1)/ε is continuous on the closed

interval [0,1/4]. Therefore,

(5.3) I2 =

∫

|y−x|>2r

(|y− x|2 + r2)s/2 −|y− x|s

(|y− x|2 + r2)s/2 · |y− x|s
dµ(y)

6 cr2
∫

|y−x|>2r

dµ(y)

|y− x|s+2
6 cr2

(2r)−s−2
∫

0

µ{y : |y− x|< t−1/(s+2)}dt

6 c3 · c(x) · r
2

(2r)−s−2
∫

0

t−d/(s+2)dt = c4 · c(x) · r
d−s.

Equality (5.1) combined with estimates (5.2) and (5.3) imply the lemma. �

5.1. Proof of Theorem 2.5. Set

γN :=
N

∑
j=1

1

|y∗− x j|s
= inf

y∈A

N

∑
j=1

1

|y− x j|s
.

Since by Theorem 4.1 we have U
µs
s (x)6Ws(A) for every x ∈ Rp, we deduce that

(5.4) γN 6Ws(A)N.

Setting ν(ωN) := 1
N ∑N

j=1 δx j
, we obtain for y ∈ A that

U
ν(ωN)
s (y)>

1

N

γN

Ws(A)
Ws(A)>

1

N

γN

Ws(A)
U

µs
s (y),

which by the domination principle for potentials (see [13]) and Lemma 5.1 implies for

r := N−1/d that

(5.5) U
ν(ωN)
s (y∗r )>

1

N

γN

Ws(A)
U

µs
s (y∗r )>

1

N

γN

Ws(A)

(

U
µs
s (y∗)− c1 · c(y

∗)N−1+s/d
)

.

By Theorem 4.2 and the ℓ-regularity of A at y∗, U
µs
s (y∗) > Ws(A); thus, it follows from

(5.4) and (5.5) that

U
ν(ωN)
s (y∗r )>

γN

N
− c1 · c(y

∗)N−1+s/d ,
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or
N

∑
j=1

1

|y∗r − x j|s
> γN − c1 · c(y

∗)Ns/d .

Without loss of generality, we prove (2.5) for j = 1. Since |y∗r − x1| > r = N−1/d and

|y∗r − x| > |y− x| for every x ∈ A, we have

(5.6) γN − c1 · c(y
∗)Ns/d 6

N

∑
j=1

1

|y∗r − x j|s
=

N

∑
j=2

1

|y∗r − x j|s
+

1

|y∗r − x1|s

6

N

∑
j=2

1

|y∗− x j|s
+Ns/d =

N

∑
j=1

1

|y∗− x j|s
−

1

|y∗− x1|s
+Ns/d = γN −

1

|y∗− x1|s
+Ns/d .

Therefore,

|y∗− x1|> (c1c(y∗)+1)−1/s ·N−1/d .

�

5.2. Proof of Proposition 3.1. The proof is immediate. We merely observe that, by

Theorem 4.3 we have for every j = 1, . . . ,N,

c1(s)N
s/d >

N

∑
j=1

1

|y∗− x j|s
> |y∗− x j|

−s;

therefore,

|y∗− x j|> c1(s)
−1/sN−1/d .

�

5.3. Proof of Corollary 3.2. We notice that the estimate (3.3) follows from Proposition

3.1 and the fact that for every j we have

j−1

∑
i=1

1

|a∗j −a∗i |
s
= inf

y∈A

j−1

∑
i=1

1

|y−a∗i |
s
.

In view of inequality (4.2) in Theorem 4.4, to deduce (3.4) it is enough to show that the

inequality

(5.7) inf
y∈A

N

∑
j=1

1

|y−a∗j |
s
> psN

s/d

holds for some positive constant ps independent of N. For this purpose, observe that

Theorem 4.3 implies that for some positive c that does not depend on N we have, for

ωN = {a∗1, . . . ,a
∗
N},

(5.8) Es(ωN)> cN1+s/d .

Hence, for every j = 1, . . . ,N,

j−1

∑
i=1

1

|a∗j −a∗i |
s
= inf

y∈A

j−1

∑
i=1

1

|y−a∗i |
s
6

j−1

∑
i=1

1

|a∗N −a∗i |
s
6

N−1

∑
i=1

1

|a∗N −a∗i |
s
,

and so

Es(ωN) = 2
N

∑
j=2

j−1

∑
i=1

1

|a∗j −a∗i |
s
6 2N

N−1

∑
i=1

1

|a∗N −a∗i |
s
= 2N inf

y∈A

N−1

∑
i=1

1

|y−a∗i |
s
.
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In view of (5.8), we get

inf
y∈A

N−1

∑
i=1

1

|y−a∗i |
s
> c2Ns/d .

Applying this estimate for N instead of N −1, inequality (5.7) follows with ps = c2. �

6. SOME FACTS FROM THE THEORY OF PSEUDO-DIFFERENTIAL OPERATORS

In order to prove Theorem 2.7 we need some facts from the theory of pseudo-differential

operators that we will need. We give a brief introduction to the results we need in this

section.

Let S (Rd) be the class of Schwartz functions on Rd and S ′(Rd) be the set of tempered

distributions. For an open set Ω, we denote by E ′(Ω) the class of tempered distributions

with compact support in Ω. The Fourier transform is denoted by F and defined on S (Rd)
by the formula

F ( f )(ξ ) :=
∫

Rd

f (x)e−2πixξ dx, f ∈ S (Rd).

We next introduce a class of functions (or symbols) that define standard pseudo-differential

operators.

Definition 6.1. For a number m ∈R, we say that a function p(x,ξ ) : Ω×R
d →R belongs

to the class Sm(Ω) if p ∈C∞(Ω×Rd) and for every compact set K ⊂ Ω and multi-indices

α,β there exists a constant C(K,α,β ) such that

(6.1) |Dα
ξ Dβ

x p(x,ξ )|6C(K,α,β )|ξ |m−|α|, x ∈ Ω, |ξ |> 1,

where we use the notation

Dα
ξ p(x,ξ ) :=

∂ |α|

∂ξ α
p(x,ξ ), Dβ

x p(x,ξ ) :=
∂ |β |

∂xβ
p(x,ξ ).

The Paley–Schwartz–Wiener theorem implies that if f ∈ E ′(Rd), then its Fourier trans-

form F ( f ) is a function with

|F ( f )(ξ )|6C(1+ |ξ |)N, ξ ∈ R
d

for some positive constants C and N. If p belongs to Sm(Ω) and f ∈ E ′(Ω), then, for a

fixed x, we can view p(x,ξ )F ( f )(ξ ) as a tempered distribution. We define an operator P

on E ′(Ω) by

(6.2) P( f )(x) := F
−1(p(x, ·)F ( f )(·))(x), x ∈ Ω.

We further set

Ψm(Ω) := {P : p ∈ Sm(Ω)}, Ψ−∞(Ω) :=
⋂

m∈R

Ψm(Ω).

We continue with the definition of Sobolev spaces. For every s ∈ R and p ∈ (1,∞) set

W
s,p
0 (Ω) := { f ∈ E

′(Ω) : F
−1

[

(1+ |ξ |2)s/2 ·F ( f )(ξ )
]

∈ Lp(Rd)}

and

W
s,p
loc = { f ∈ S

′(Rd) : ϕ f ∈W
s,p
0 (Rd) for any ϕ ∈C∞

0 (R
d)}.

As with the usual Sobolev spaces (i.e., with integer s), the following embedding property

holds (see, e.g., [7] or [8]).
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Theorem 6.2. Assume Ω is an open set in Rd with smooth boundary. If sp > d and

f ∈W
s,p
0 (Ω), then f ∈ L∞(Ω).

The following theorem about the action of pseudo-differential operators on Sobolev

spaces can be found in [22, Theorem 2.1] or [21, Theorem 2.1D].

Theorem 6.3. If P ∈ Ψm(Ω) and f ∈ W
s,p
0 (Ω), then P( f ) ∈ W

s−m,p
loc (Ω). Moreover, if

P ∈ Ψ−∞(Ω) and f ∈ E ′(Ω), then P( f ) ∈C∞(Ω).

We further discuss regularity properties of solutions of the equation Pu = f . We say

that the function p : Ω×Rd → R is elliptic of order m if p ∈ Sm(Ω) and for every x ∈ Ω
there are two positive constants c(x) and r(x), such that

|p(x,ξ )|> c(x)|ξ |m, for every ξ with |ξ |> r(x).

The following theorem can be found in [22, Corollary 4.3].

Theorem 6.4. Let p be an elliptic function of order m and P ∈ Ψm(Ω) be the correspond-

ing operator defined as in (6.2). Then there exist Q ∈ Ψ−m(Ω) and R ∈ Ψ−∞(Ω) such

that

QP = I +R,

where I is the identity operator.

7. PROOF OF THEOREM 2.7

The case s = d−1 is done in [19], thus we focus on the case s < d−1. Since A ⊂Rd+1

is d-regular at x0 and s ∈ (d − 1,d), we obtain from Theorem 4.2 that U
µ
s (x) = Ws(A)

for any x ∈ A∩B(x0,r1) for some r1 > 0. Since A is C∞-smooth at x0, there exists a C∞-

smooth map ψ : B̃ → B(x0,r0) such that B̃ ⊂ Rd is open. Without loss of generality, we

assume r0 < r1/2. Set

(7.1) dµ1 := 1B(x0,r0)dµs, µ2 := µs −µ1,

and

ν := µ1 ◦ψ.

We notice that for x̃ ∈ ψ−1(B(x0,r0/2)) we have

U
µ1

s (ψ(x̃)) =Ws(A)−U
µ2

s (ψ(x̃))

and the right-hand side is a smooth function. Therefore, U µ1
(ψ(x̃))∈C∞(ψ−1(B(x0,r0/2))).

We further write

(7.2) U
µ1

s (ψ(x̃)) =
∫

B(x0,r0)

dµ1(y)

|y−ψ(x̃)|s
=

∫

B̃

dν(ỹ)

|ψ(ỹ)−ψ(x̃)|s
.

Our next goal is to write the Taylor formula for |ψ(ỹ)−ψ(x̃)|−s when ỹ is in the neighbor-

hood of x̃. Since ψ ∈C∞, there exists a C∞ matrix a(x̃) and a C∞ vector-valued function

w1(x̃, ỹ) such that

ψ(ỹ)−ψ(x̃) = a(x̃) · (ỹ− x̃)+w1(x̃, ỹ)

and for some constant C and any component

|w1(x̃, ỹ)|6C|x̃− ỹ|2, ‖∇x̃ w1(x̃, ỹ)‖∞ 6C|x̃− ỹ|,
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where ∇x̃w1(x̃, ỹ) is the matrix of gradients of w1 in the first variable, and ‖ · ‖∞ is the ℓ∞

matrix norm. Therefore,

|ψ(ỹ)−ψ(x̃)|2 = |a(x̃) · (ỹ− x̃)|2 +w2(x̃, ỹ),

where w2 is a real-valued C∞ function with

|w2(x̃, ỹ)|6C|x̃− ỹ|3, |∇x̃ w2(x̃, ỹ)|6C|x̃− ỹ|2.

If r0 is small enough and ỹ, x̃ ∈ B(x0,r0/2), then
∣

∣

∣

∣

w2(x̃, ỹ)

|a(x̃) · (ỹ− x̃)|2

∣

∣

∣

∣

6 1/2.

Consequently,

(7.3) |ψ(ỹ)−ψ(x̃)|−s = |a(x̃) · (ỹ− x̃)|−s ·

(

1+
w2(x̃, ỹ)

|a(x̃) · (ỹ− x̃)|2

)−s/2

.

We notice that

w3(x̃, ỹ) :=
w2(x̃, ỹ)

|a(x̃) · (ỹ− x̃)|2
∈C1

with |∇x̃ w3(x̃, ỹ)| bounded. Therefore, (7.3) implies

|ψ(ỹ)−ψ(x̃)|−s = |a(x̃) · (ỹ− x̃)|−s+w4(x̃, ỹ),

where

|w4(x̃, ỹ)|6C1|ỹ− x̃|−s+1, |∇x̃ w4(x̃, ỹ)|6C2|ỹ− x̃|−s.

We plug this into (7.2) to get

U
µ1
s (ψ(x̃)) =

∫

B̃

dν(ỹ)

|a(x̃) · (ỹ− x̃)|s
+

∫

B̃

w4(x̃, ỹ)dν(ỹ).

Since
∫

B̃

|∇x̃w4(x̃, ỹ)|dν(ỹ)6C2

∫

B̃

dν(ỹ)

|ỹ− x̃|s
6C3

∫

B(x0,r0)

dµ(y)

|y− x|s
6C3Ws(A),

we see that the function x̃ 7→
∫

B̃

w4(x̃, ỹ)dν(ỹ) belongs to W 1,∞(ψ−1(B(x0,r0/4))). Let u be

a Schwartz function equal to 1 in ψ−1(B(x0,r0/4)) and to 0 outside of ψ−1(B(x0,r0/2)).
Then

(7.4)

u(x̃)
∫

B̃

dν(ỹ)

|a(x̃) · (ỹ− x̃)|s
= u(x̃)U

µ1
s (ψ(x̃))−u(x̃)

∫

B̃

w4(x̃, ỹ)dν(ỹ) =: w(x̃) ∈W
1,∞
0 (Rd).

We next show that the operator

(7.5) P : ν 7→ u(x̃)

∫

B̃

dν(ỹ)

|a(x̃) · (ỹ− x̃)|s

is pseudo-differential. Namely, we use the Plancherel identity to obtain

(7.6)

∫

B̃

dν(ỹ)

|a(x̃) · (ỹ− x̃)|s
=

∫

Rd

F (ν)(ξ )Fỹ(|a(x̃) · (ỹ− x̃)|−s)(ξ )dξ .
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By definition of the Fourier Transform, we have

Fỹ(|a(x̃) · (ỹ− x̃)|−s)(ξ ) =
∫

Rd

|a(x̃) · (ỹ− x̃)|−se−2πiỹξ dỹ.

Since the matrix a(x̃) is a d×(d+1) matrix of rank d, we observe that the set {a(x̃) · ỹ : ỹ∈
Rd} is a d-dimensional linear subspace of Rd+1. Take a rotation R that maps this set to

{y = (y(1), . . . ,y(d + 1)) ∈ Rd+1 : y(d + 1) = 0} and an operator T that maps the latter

space to Rd by erasing the (d+1)’st coordinate. We make a change of variables

z̃ = T ·R ·a(x̃) · (ỹ− x̃).

By definition of T and R, we have

|z̃|= |T ·R ·a(x̃) · (ỹ− x̃)|= |a(x̃)(ỹ− x̃)|,

and therefore, setting b(x̃) := (T ·R ·a(x̃))−1, we get

(7.7) Fỹ(|a(x̃) · (ỹ− x̃)|−s)(ξ ) =

∫

Rd

|a(x̃) · (ỹ− x̃)|−se−2πiỹξ dỹ

= e−2πix̃ξ
∫

Rd

|z̃|−se−2πi(b(x̃)z̃)ξ |det(b(x̃))|dz̃ = |det(b(x̃))|e−2πix̃ξ
F (|z̃|−s)((bt(x̃))ξ )

= |det(b(x̃))|e−2πix̃ξ |bt(x̃)ξ |s−d.

We plug (7.7) into (7.6):

(7.8)

∫

B̃

dν(ỹ)

|a(x̃) · (ỹ− x̃)|s
=

∫

Rd

F (ν)(ξ )|det(b(x̃))| · |bt(x̃)ξ |s−de2πix̃ξ dξ

= F
−1
(

F (ν)(ξ )|det(b(x̃))| · |bt(x̃)ξ |s−d
)

(x̃).

Setting

p(x̃,ξ ) := u(x̃)|det(b(x̃))| · |bt(x̃)ξ |s−d,

we obtain that the operator P defined in (7.5) is an elliptic pseudo-differential with symbol

p ∈ Ss−d(B̃). We apply Theorem 6.4 to equation (7.4). Since Pν = w, we get

(7.9) ν +Rν = Qw, Rν ∈C∞(B̃).

Further, since w ∈ W
1,∞
0 (B̃), we get from Theorem 6.3 that Qw ∈ W

1+s−d,p
loc (B̃) for any

p > 1. By Theorem 6.2, we obtain that Qw ∈ L∞
(

ψ−1(B(x0,r0/4))
)

, and from (7.9) we

get ν ∈ L∞
(

ψ−1(B(x0,r0/4))
)

. Since the measure µ1 defined in (7.1) is an image of ν

under a smooth map ψ−1, we deduce that for r < r0/4

µ(B(x0,r)) = ν(ψ−1(B(x0,r)))6C1Hd(ψ
−1(B(x0,r)))6C2rd.

�
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