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COVERING AND SEPARATION OF CHEBYSHEV POINTS FOR

NON-INTEGRABLE RIESZ POTENTIALS

A. REZNIKOV, E. B. SAFF, AND A. VOLBERG

ABSTRACT. For Riesz s-potentials K(x,y) = |x− y|−s, s > 0, we investigate separation

and covering properties of N-point configurations ω∗
N = {x1, . . . ,xN} on a d-dimensional

compact set A ⊂R
ℓ for which the minimum of ∑N

j=1 K(x,x j) is maximal. Such configura-

tions are called N-point optimal Riesz s-polarization (or Chebyshev) configurations. For a

large class of d-dimensional sets A we show that for s > d the configurations ω∗
N have the

optimal order of covering. Furthermore, for these sets we investigate the asymptotics as

N → ∞ of the best covering constant. For these purposes we compare best-covering con-

figurations with optimal Riesz s-polarization configurations and determine the s-th root

asymptotic behavior (as s → ∞) of the maximal s-polarization constants. In addition, we

introduce the notion of “weak separation” for point configurations and prove this property

for optimal Riesz s-polarization configurations on A for s > dim(A), and for d−16 s < d

on the sphere Sd .

1. INTRODUCTION

Suppose A is a compact subset of a Euclidean space R
ℓ and ωN = {x1, . . . ,xN} ⊂ A is

a multiset (or an N-point configuration); i.e., a set of points with possible repetitions and

cardinality #ωN = N, counting multiplicities. For a positive number s we put

Ps(A;ωN) := inf
y∈A

N

∑
j=1

1

|y− x j|s
.

Then the N-th s-polarization (or Chebyshev) constant of A is defined by

Ps(A;N) := sup
ωN⊂A

Ps(A;ωN).

We note that since A is compact, there exists for each N ∈ N a configuration ω∗
N =

{x∗1, . . . ,x
∗
N} and a point y∗ such that

(1) Ps(A;N) = Ps(A;ω∗
N) =

N

∑
j=1

1

|y∗− x∗j |s
.

We call ω∗
N an optimal (or extremal) Riesz s-polarization configuration or simply an opti-

mal configuration.

From an applications prospective, the maximal polarization problem, say on a compact

surface (or body), can be viewed as the problem of determining the smallest number of

sources (injectors) of a substance together with their optimal locations that can provide a

required saturation of the substance at every point of the surface (body).
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The general notion of polarization (or Chebyshev constants) for potentials was likely

first introduced by Ohtsuka [17]. Further investigations of the asymptotic behavior as N →
∞ of polarization constants as well as the asymptotic behavior of optimal configurations

appear, for example, in [1], [8], [10], [9], [3], [19], [2], [4], [18].

The following result is a special case of a theorem due to Borodachov, Hardin, Reznikov

and Saff [4] (see also [2]). It describes the asymptotic behavior of optimal configurations

for the case of non-integrable Riesz kernels on A. Here and throughout we denote by Hd

the Hausdorff measure on R
ℓ, d 6 ℓ, normalized by Hd([0,1]

d) = 1.

Theorem 1.1. Suppose A is a compact C1-smooth d-dimensional manifold, embedded in

Rℓ with d 6 ℓ, and Hd(∂A) = 0, where ∂A denotes the boundary of A. If s > d, then there

exists a positive finite constant σs,d that does not depend on A such that

(2) lim
N→∞

Ps(A;N)

Ns/d
=

σs,d

Hd(A)s/d
.

Moreover, if {ω∗
N}∞

N=1 is any sequence of optimal configurations satisfying (1), then the

normalized counting measures µ∗
N for the multisets ω∗

N satisfy

µ∗
N :=

1

N
∑

x∈ω∗
N

δx
∗→ µ,

where
∗→ denotes convergence in the weak∗ topology, and µ is the uniform measure on A;

i.e., for any Borel set B ⊂ Rℓ

µ(B) =
Hd(B∩A)

Hd(A)
.

In other words, in the limit, optimal polarization configurations ω∗
N for non-integrable

Riesz potentials are uniformly distributed in the weak∗ sense. In this paper we study more

distributional properties of optimal configurations ω∗
N . In particular, we investigate their

separation, their covering (or mesh) radius, and their connection to the “best covering

problem” for the set A.

Definition 1.2. Let A be a compact subset of a Euclidean space. For any N-point config-

uration ωN ⊂ A, the separation constant of ωN is defined by

δ (ωN) := min
i 6= j

|xi − x j|

and the covering radius of ωN is defined by

(3) ρA(ωN) := max
y∈A

min
x∈ωN

|y− x|.

The best N-point covering radius for A ρA(N) is given by

(4) ρA(N) := min
ωN⊂A

ρA(ωN),

where the minimum is taken over all N-point configurations ωN ⊂ A.

In approximation theory (for example, in interpolation by splines), the separation con-

stant δ (ωN) often measures “stability” of approximation, while the covering radius ρA(ωN)
is involved in bounds for the error of the approximation (see, e.g., [5]). Quasi-uniform se-

quences; i.e., sequences {ωN}∞
N=2 for which the ratios ρA(ωN)/δ (ωN) are bounded from
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above, appear, for example, in a number of applications involving approximation by ra-

dial basis functions, see, e.g., [16]. Thus they play an important role in the complexity

analysis for such applications.

Regarding the asymptotic behavior of polarization constants as s grows large, it is

known, see [2], that for a fixed N we have

lim
s→∞

(
Ps(A;N)

Ns/d

)1/s

=
1

N1/dρA(N)
.

However, the proof in [2] does not guarantee that this limit is uniform in N; thus it does

not imply any asymptotic behavior of the constants σs,d in (2) as s → ∞. One of our main

results, Theorem 2.8, shows that for a large class of d-dimensional sets A,

(5) lim
s→∞

(
σs,d

Hd(A)s/d

)1/s

= lim
s→∞

lim
N→∞

(
Ps(A;N)

Ns/d

)1/s

=
1

limN→∞ N1/dρA(N)
.

In the case when A ⊂ R2 is a compact set with H2(A)> 0, it is known [13] that

lim
N→∞

N1/2ρA(N) =

√
2

4
√

27
H2(A)

1/2;

thus from (5),

lim
s→∞

σ
1/s

s,2 =
4
√

27√
2
.

For higher dimensions we prove that all limits in (5) exist.

We shall work primarily with the class of d-regular sets.

Definition 1.3. A compact set A ⊂ Rℓ is called d-regular if there exist a measure µ sup-

ported on A and two positive constants c1 and c2 such that for any x ∈ A and any positive

r < diam(A), we have

(6) c1rd
6 µ(A∩B(x,r))6 c2rd,

where B(x,r) is the open ball in Rℓ with center x and radius r.

The following estimate from above for Ps(A;N), which follows from [8, Theorem 2.4]

and its proof, will be useful for our investigation.

Theorem 1.4. If A ⊂Rℓ, ℓ> d, Hd(A)> 0 and s > d, then there exists a constant Cs > 0,

that depends on d, A and s such that, for any positive integer N,

(7) Ps(A;N)6CsN
s/d .

Moreover, Cs can be chosen so that there exists a constant C0 with the property that for

large values of s we have 1 6 (Cs)
1/s 6C0.

The following immediate consequence of this theorem will be proved in Section 8.

Proposition 1.5. With the hypotheses of Theorem 1.4, let ωN = {x j}N
j=1 be a fixed N-point

configuration on A. There exists a positive constant cs, independent of N and ωN , with the

following property: if y∗ = y∗s ∈ A is a point such that

N

∑
j=1

1

|y∗− x j|s
= inf

y∈A

N

∑
j=1

1

|y− x j|s
,
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then |y∗ − x j| > csN
−1/d for each j = 1, . . . ,N. Moreover, cs can be chosen so that

lims→∞ c
1/s
s = 1.

Furthermore, the same is true for s ∈ [d − 1,d) when A = Sd , the d-dimensional unit

sphere in Rd+1.

We next introduce the main class of sets A that we will consider.

Definition 1.6. A compact set A ⊂ Rd is called a body if A 6= /0 and A = Clos(Int(A)).
We say that a body A ⊂ Rd is strongly convex if it is convex and its boundary ∂A is a

(d −1)-dimensional C2-smooth manifold with non-degenerate Gaussian curvature ∗.

This class includes the closed unit ball

B
d := {x ∈ R

d : |x|6 1}
and ellipsoids

{(x1, . . . ,xd) : x2
1/a2

1 + · · ·+ x2
d/a2

d 6 1};

however, it does not include cubes and polyhedra.

The paper is organized as follows. In Section 2 we state and discuss our main results.

In Section 3 we prove a ‘weak separation’ result for strongly convex bodies. In Section 4

we prove the ‘weak separation’ for the unit cube [0,1]d, and in Section 5 we prove it for

the unit sphere Sd and spherical caps in Sd . Further, in Section 6, we derive a criterion

for a sequence of configurations to have an optimal order of covering radius ρA(ωN). We

also show that configurations ω∗
N that are optimal for Ps(A;N) satisfy this criterion if A

is strongly convex, a cube, a sphere, or a spherical cap. And, in Section 7, we connect the

asymptotic behavior of the constant σs,d as s→∞ with the asymptotic behavior of the best

covering radius ρN(A), where A is any of the sets just mentioned. We prove Proposition

1.5 in Section 8 and in the Appendix (Section 9) we present equivalent definitions of best

covering for the space Rd .

2. MAIN RESULTS

For strongly convex bodies A ⊂ Rd the separation and covering properties of extremal

configurations ω∗
N for Ps(A;N), in general, depend on the parameter s. Here we shall

prove ‘weak separation’ and covering properties for s > d. In contrast, it is known [8]

that for the closed d-dimensional unit ball Bd ⊂ Rd and for 0 < s 6 d − 2, the unique

optimal N-point s-polarization configuration ω∗
N is ω∗

N = {0, . . . ,0}; thus,

δ (ω∗
N) = 0, ρA(ω

∗
N) = 1, ∀N.

The main reason behind this is that the function

x 7→ |x− y|−s

is superharmonic when s 6 d −2.

Our first goal is to establish for the non-integrable case s > d a weak-separation prop-

erty in the following sense.

Definition 2.1. A family Ω of multisets ω from A, where A⊂Rℓ has Hausdorff dimension

d, is called weakly well-separated with parameter η > 0 if there exists an M ∈ N such

that for every ω ∈ Ω and every point z ∈ Rℓ, we have

(8) #
(
ω ∩B(z,η · (#ω)−1/d)

)
6 M.

∗Such conditions appear in many problems in harmonic analysis, see, e.g., [12].
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It is easy to see that for a d-regular set A there exists a positive constant C such that for

any configuration ω ⊂ A we have

(9) δ (ω) 6C · (#ω)−1/d.

If for some η > 0 inequality (8) holds with M = 1 for every ω ∈ Ω, then

δ (ω)> η · (#ω)−1/d ;

therefore, we get the optimal order of separation with respect to the cardinality of ω .

Definition 2.2. A set A is called d-admissible if A ⊂ R
d is strongly convex, or A = S

d ⊂
Rd+1, or A ⊂ Sd is a spherical cap.

We prove the following theorems.

Theorem 2.3. If d ∈ N, s > d, and the set A is d-admissible, then there exists an η > 0

such that the family Ω=Ωs := {ω : Ps(A;ω) =Ps(A;#ω)} is weakly well-separated with

parameter η and M = 2d −1. Moreover, η = ηs can be chosen so that lims→∞ η
1/s
s = 1.

The same is true for s ∈ [d −1,d) when A = Sd .

The result for strongly convex bodies is proved in Section 3, while the results for the

sphere and spherical caps are proved in Section 5.

Remark. If d = 1 and A = [0,1], then for every s > 1, the family Ω = Ωs is weakly

well-separated with some η > 0 and M = 1.

As a consequence of the proof of Theorem 2.3, we obtain the following.

Corollary 2.4. Assume A⊂Rd is a compact set and s> d. For every r > 0, there exists an

η > 0 that depends on r with the following property: if for some z∈ A we have B(z,r)⊂ A,

then #(ω∗
N ∩B(z,ηN−1/d))6 2d −1, where ω∗

N is optimal for Ps(A;N).

Remark. As we shall show in Lemma 3.1, if A is strongly convex then no points from

ω∗
N can lie on the boundary ∂A; moreover, the distance from any point in ω∗

N to ∂A is at

least of the order N−2/d .

The next theorem deals with the unit cube. For this case, our methods impose a stronger

condition on the Riesz parameter s.

Theorem 2.5. If [0,1]d ⊂ Rd , d > 2, denotes the unit cube and s > 3d − 4, then there

exists a η > 0 such that the family Ω = Ωs = {ω : Ps(A;ω) =Ps(A;#ω)} is weakly well-

separated with parameter η and M = 2d − 1. Moreover, η = ηs can be chosen so that

lims→∞ η
1/s
s = 1.

Regarding the covering radius of N-point configurations having a weak separation

property we prove the following.

Theorem 2.6. Let ℓ, d and s be positive integers with ℓ > d and s > d. Suppose the

compact set A ⊂ Rℓ with Hd(A) > 0 is contained in some d-regular compact set Ã.

If the N-point configuration ωN ⊂ A is such that for some η > 0 and M ∈ N we have

#(B(z,ηN−1/d)∩ωN)6 M for all z ∈ A, then

(10) ρA(ωN) = max
y∈A

min
x∈ωN

|y− x|6 RsN
−1/d ,
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where

(11) Rs :=

(
7s ·Cd ·M · s

5s · ps · (s−d) ·ηd

) 1
s−d

,

Cd is a positive constant that depends only on d and A, and ps is any positive constant

such that

(12) inf
y∈A

∑
x∈ωN

1

|y− x|s > psN
s/d .

From this theorem and Theorem 2.3 we deduce the following.

Corollary 2.7. If the set A is d-admissible and s > d, then there exists a positive constant

Rs such that for any N-point configuration ω∗
N that is optimal for Ps(A;N), we have

ρA(ω
∗
N) 6 RsN

−1/d . Moreover, there exists a positive constant R0 such that for large

values of s we have Rs 6 R0.

The same is true if A = [0,1]d and s > 3d −4.

Corollary 2.7 implies that if A is an d-admissible set or a unit cube, then ρA(N) 6

RsN
−1/d for some positive constant Rs. On the other hand, it is easy to see that in this case,

for some positive constant b, we have ρA(N)> bN−1/d . Fine estimates on the constant Rs

for large values of s result in the following theorem dealing with the asymptotic behavior

of Ps(A;N)1/s as s → ∞.

Theorem 2.8. Suppose the set A is d-admissible or A = [0,1]d. Then with σs,d as defined

in Theorem 1.1, the following limits exist as positive real numbers and satisfy

(13) lim
s→∞

(
σs,d

Hd(A)s/d

)1/s

= lim
s→∞

(
lim

N→∞

Ps(A;N)

Ns/d

)1/s

=
1

limN→∞ N1/dρA(N)
.

In particular, taking A = [0,1]d we obtain

(14) lim
s→∞

σ
1/s

s,d =
1

limN→∞ N1/dρ[0,1]d(N)
=

(
Vd

Γd

)1/d

,

where the constant Γd is the optimal covering density † of the space Rd (see [7, Chapter

2] and Section 9) and Vd := Hd(B
d) = πd/2/Γ(d/2+1).

We remark that Γ1 = 1 and Γ2 = 2π/
√

27.

A consequence Theorem 2.8 is that, in the limit as s→∞, the covering radius of optimal

Riesz s-polarization configurations become asymptotically best possible.

Corollary 2.9. Suppose the set A is d-admissible or A = [0,1]d. For every s > 3d −4, let

ωs
N be an N-point configuration such that Ps(A;N) = Ps(A;ωs

N). Then

lim
s→∞

lim
N→∞

N1/dρA(ω
s
N) = lim

N→∞
N1/dρA(N).

†The problem of finding Γd is known in [7] as “finding the thinnest covering of Rd .”
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3. WEAK SEPARATION FOR STRONGLY CONVEX BODIES

In what follows, we always assume s > d and A ⊂ Rd is a strongly convex body. By

B(x,r) we denote the closure of B(x,r) and Id−1 denotes the (d − 1)× (d − 1) identity

matrix. Furthermore, the j’th coordinate of a point x ∈ Rd will be denoted by x( j); we

also denote by x′ the (d−1)-dimensional vector that consists of the first d−1 coordinates

of x; thus, x = (x′,x(d)). By e1, . . . ,ed we denote the canonical basis in Rd . If we have a

d ×d matrix M, we put

(Mx,x) := (Mx) · x, x ∈ R
d.

To establish Theorem 2.3 we begin with two lemmas about the behavior of extremal

configurations for Ps(A;N) near the boundary ∂A.

Lemma 3.1. There exists a constant bs > 0 with the following property: for all N > 1, if

ω∗
N is an extremal configuration for Ps(A;N) and x ∈ ω∗

N , then dist(x,∂A) > bsN
−2/d .

Moreover, bs can be chosen so that lims→∞ b
1/s
s = 1.

Remark. Let x∂ ∈ ∂A and make a rotation so that in the neighborhood B(x∂ ,r) the man-

ifold ∂A is given by {(x′,x(d)) : x(d) = f (x′)} with ∇ f (x′∂ ) = 0 and the matrix d2 f (x) is

non-positive for x ∈ ∂A∩B(x∂ ,r) (this can be done since A is convex). Moreover, r can

be chosen sufficiently small so that

B(x∂ ,r)∩A = B(x∂ ,r)∩{x : x(d)6 f (x′)}.
We notice that the Gaussian curvature of ∂A at x∂ is equal to the product of eigenvalues of

the matrix d2 f (x′∂ ). Since in Theorem 2.3 we assume the Gaussian curvature is non-zero,

the manifold ∂A is compact and C2-smooth and d2 f 6 0, we deduce that there exists a

constant CA > 0 such that d2 f (x′) 6 −CAId−1 for every x ∈ B(x∂ ,r), where CA does not

depend on x∂ .

Proof of Lemma 3.1. Take a point x∂ ∈ ∂A for which |x−x∂ |= dist(x,∂A). We can make

a rotation and assume x = x∂ − cN−2/d · ed . We show that this is impossible if c is suffi-

ciently small.

Let f be the function from the above remark. For a small positive number ε consider a

point

x̃ := x− εed ∈ A

and a configuration ω̃N := (ω∗
N \{x})∪{x̃}. Consider a point ỹ such that

P(A; ω̃N) = ∑
x̃ j∈ω̃N

1

|ỹ− x̃ j|s
.

Since ω∗
N is an extremal configuration, we have

Ps(A;ω∗
N)> Ps(A; ω̃N),

which after utilizing the definition of ω̃N implies

|ỹ− x|6 |ỹ− x̃|.
Using that x̃ = x− εed , we get

ỹ(d)− x(d)>−ε/2,

or

ỹ(d)> x(d)− ε/2 = x∂ (d)− cN−2/d − ε/2.
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Since ε is an arbitrarily small number, we can assume ε/2 6 cN−2/d . Then we obtain

ỹ(d)> x∂ (d)−2cN−2/d .

On the other hand, since A is a convex set, and the plane {z∈Rd : z(d)= x∂ (d)} is tangent

to ∂A, we have ỹ(d)6 x∂ (d).
We now estimate the diameter of the set

S(N,c) := {y ∈ A : x∂ (d)−2cN−2/d 6 y(d)6 x∂ (d)}.
Since A is strongly convex, we obviously have A∩{z ∈Rd : z(d) = x∂ (d)}= {x∂}. Thus,

diam(S(N,c))→ 0 as c → 0. If c is chosen small enough, then S(N,c)⊂ B(x∂ ,η)∩A for

some η > 0. Therefore, if y belongs to S(N,c), then for some ξ ∈ B(x∂ ,η) we have

(15) x∂ (d)−2cN−2/d 6 y(d)6 f (y′) = f (x′∂ )+
1

2
(d2 f (ξ ′)(y′− x′∂ ),(y

′− x′∂ ))

6 x∂ (d)−
CA

2
· |y′− x′∂ |2,

which implies

(16) |y′− x′∂ |2 6
4c

CA

·N−2/d ;

thus, for a suitable constant CB,

|y− x∂ |2 6
4c

CA

·N−2/d +4c2N−4/d 6CB · c ·N−2/d.

Therefore, since ε 6 2cN−2/d ,

|ỹ− x̃|6 |ỹ− x∂ |+2cN−2/d 6 τ ·
√

c ·N−1/d

for some constant τ that does not depend on s. For c sufficiently small, this inequality

contradicts Proposition 1.5 and so the lemma follows. �

In the next lemma we show that if x ∈ A is close to ∂A in one direction, then its distance

in orthogonal directions can be estimated from below.

Lemma 3.2. Let ω∗
N be an extremal configuration for Ps(A;N) and x ∈ ω∗

N . Assume τ is

a sufficiently small positive number that does not depend on N. If dist(x,∂A) = |x− x∂ |
with x− x∂ parallel to ed , then the estimate |x− x∂ | < τN−1/d implies x± τN−1/de j ∈ A

for every j = 1, . . . ,d−1.

Proof. Again let f be as in the above remark. Arguing as in the preceding lemma, we see

that we need to show that |x−x∂ |< τN−1/d implies x(d)6 f (x′±τN−1/de′j). Notice that

since x ∈ ω∗
N , we know that |x− x∂ | > cN−2/d for some constant c. We apply the Taylor

formula again:

(17) f (x′± τN−1/de′j) = x∂ (d)+
τ2N−2/d

2
(d2 f (ξ ′)e′j,e

′
j).

Since the boundary ∂A is compact and smooth, we can always assume d2 f (ξ ′)>−CId−1

for some positive constant C. Thus,

f (x′± τN−1/de′j)> x∂ (d)−Cτ2N−2/d > x(d)+(c−Cτ2)N−2/d > x(d)

if τ is sufficiently small. �

We are ready to prove Theorem 2.3.
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Proof of Theorem 2.3 for a strongly convex set A. We argue by contradiction. Suppose

there exists small number η > 0 and an extremal configuration ω∗
N = {x1, . . . ,xN} such

that {x1, . . . ,x2d} ⊂ B(z,ηN−1/d). Consider

x̂ :=
x1 + · · ·+ x2d

2d
∈ A.

Since x̂ ∈ B(z,ηN−1/d), we have |x j − x̂|6 2ηN−1/d for every j = 1, . . . ,2d.

Fix a small number τ > η . We will choose it later to be a multiple of η . Set ε :=
τN−1/d . We consider two cases.

Case 1: dist(x̂,∂A)> ε . Define 2d points as follows:

x̃1 := x̂− εe1, x̃2 := x̂+ εe1,

x̃3 := x̂− εe2, x̃4 := x̂+ εe2,

. . .

x̃2d−1 := x̂− εed, x̃2d := x̂+ εed .

Since dist(x̂,∂A)> ε , these points belong to A. Define ω̃N := {x̃1, . . . , x̃2d , x̃2d+1, . . . , x̃N},

where x̃ j := x j for j > 2d +1. Let ỹ be such that

(18) Ps(A; ω̃N) =
N

∑
j=1

1

|ỹ− x̃ j|s
.

We have
N

∑
j=1

1

|ỹ− x̃ j|s
6 Ps(A;N) = Ps(A;ω∗

N)6
N

∑
j=1

1

|ỹ− x j|s
,

and thus

(19)
2d

∑
j=1

1

|ỹ− x̃ j|s
6

2d

∑
j=1

1

|ỹ− x j|s
,

Set f (x) := |ỹ−x|−s. Then, from the Taylor formula about x̂, we have for x∈ {x1, . . . ,x2d}

f (x) = f (x̂)+ s
(ỹ− x̂) · (x− x̂)

|ỹ− x̂|s+2
+

1

2
·
(
−s · |x− x̂|2

|ỹ−ξ |s+2
+ s(s+2) · ((ỹ−ξ ) · (x− x̂))2

|ỹ−ξ |s+4

)
,

for some ξ = ξ (x) ∈ B(x̂, |x− x̂|). From Proposition 1.5 we know that |ỹ− x̃1|> csN
−1/d .

Without loss of generality we assume τ < cs/2, and so

(20) |ỹ− x̂|= |ỹ− x̃1 + εe1|> (cs − τ)N−1/d > (cs/2) ·N−1/d,

and

|ỹ−ξ |> |ỹ− x̂|− |x̂−ξ |> |ỹ− x̂|− |x− x̂|> |ỹ− x̂|−2ηN−1/d > (1−4η/cs)|ỹ− x̂|.
Therefore, for every j = 1, . . . ,2d we have

f (x j)6 f (x̂)+ s
(ỹ− x̂) · (x j − x̂)

|ỹ− x̂|s+2
+

2s(s+3)η2N−2/d(1−4η/cs)
−s−2

|ỹ− x̂|s+2
.

Summing these inequalities over j and recalling that x1 + · · ·+ x2d = 2dx̂ yields

(21)
2d

∑
j=1

1

|ỹ− x j|s
6 2d · f (x̂)+

4sd(s+3) ·η2N−2/d · (1−4η/cs)
−s−2

|ỹ− x̂|s+2
.

Plugging this estimate into (19), we obtain
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(22) f (x̂)>
1

2d

2d

∑
j=1

f (x̃ j)−
η2N−2/d ·2s(s+3)(1−4η/cs)

−s−2

|ỹ− x̂|s+2
.

We proceed with the Taylor formula for f (x̃ j). We first write it for j = 1. Recall that

x̃1 = x̂− εe1. Since |e1|= 1, we get for some ξ ∈ B(x̂, |x̃1 − x̂|) = B(x̂,ε),

(23) f (x̃1) = f (x̂− εe1)

= f (x̂)− sε
(ỹ− x̂) · e1

|ỹ− x̂|s+2
+

ε2

2
·
(
−s · e1 · e1

|ỹ− x̂|s+2
+ s(s+2)

((ỹ− x̂) · e1)
2

|ỹ− x̂|s+4

)

+
ε3

6
·
(
−3s(s+2) · ((ỹ−ξ ) · e1) · (e1 · e1)

|ỹ−ξ |s+4
+ s(s+2)(s+4) · ((ỹ−ξ ) · e1)

3

|ỹ−ξ |s+6

)

= f (x̂)− sε
(ỹ− x̂) · e1

|ỹ− x̂|s+2
+

ε2

2
·
(
−s · 1

|ỹ− x̂|s+2
+ s(s+2)

((ỹ− x̂) · e1)
2

|ỹ− x̂|s+4

)

+
ε3

6
·
(
−3s(s+2) · ((ỹ−ξ ) · e1)

|ỹ−ξ |s+4
+ s(s+2)(s+4) · ((ỹ−ξ ) · e1)

3

|ỹ−ξ |s+6

)
.

Next we estimate the remainder term involving ξ . As before,

|ỹ−ξ |> |ỹ− x̂|− |ξ − x̂|> |ỹ− x̂|− τN−1/d > (1−2τ/cs)|ỹ− x̂|.

This implies

(24)

∣∣∣∣−3s(s+2) · (ỹ−ξ ) · e1

|ỹ−ξ |s+4
+ s(s+2)(s+4) · ((ỹ−ξ ) · e1)

3

|ỹ−ξ |s+6

∣∣∣∣

6 s(s+2)(s+7) · (1−2τ/cs)
−s−3 · 1

|ỹ− x̂|s+3
.

Using the formula (23) with x̃1 replaced by x̃ j we obtain an equation for f (x̃ j) which,

when substituted along with (24) into (22), yields

(25)
ε2

2

(
−s

1

|ỹ− x̂|s+2
+

s(s+2)

d
· 1

|ỹ− x̂|s+2

)

− ε3

6
s(s+2)(s+7) · (1−2τ/cs)

−s−3 · 1

|ỹ− x̂|s+3

−η2N−2/d ·4s(s+3)(1−4η/cs)
−s−2 · 1

|ỹ− x̂|s+2
6 0.

We remark that the first term in (25) is, up to a constant factor, the Laplacian, in x, of the

function f (x). Although f (x) is neither convex nor concave (for some choices of ỹ, about

which we have no information), the Laplacian ∆ f (x) is always positive, which plays an

essential role in our argument. Indeed, the need for at least 2d points {x j}2d
j=1 enables the

definition of {x̃ j}2d
j=1 so that the leading terms in the Taylor formula vanish leaving the

positive second term. This will enable us to arrive at a contradiction to (25) as we now

explain.
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Recalling from (20) that |ỹ− x̂| > (cs/2) ·N−1/d , we multiply (25) by 2|ỹ− x̂|s+2 and

divide by sN−2/d to obtain

(26)
s+2−d

d
τ2 −2/3τ3N−1/d · (s+2)(s+7)(1−2τ/cs)

−s−3c−1
s

−8η2(s+3)(1−4η/cs)
−s−2 6 0.

Since s > d, this is impossible if τ is a suitable large multiple (depending on s) of η and

η is small, and so the first assertion of Theorem 2.3 holds in this case. Observe that (26)

fails if η = ηs = cs/s and s is sufficiently large. Hence from Proposition 1.5 the family

Ωs is weakly well-separated with M = 2d −1 and parameter ηs with lims→∞ η
1/s
s = 1.

Case 2: dist(x̂,∂A) < ε . Without loss of generality, we assume x̄+ εed 6∈ A. We again

take the point x∂ ∈ ∂A that achieves this distance and argue as in Lemma 3.2. We see that

for any j 6 2d−2 the points x̃ j, defined as above, lie in the set A. We redefine

x̃2d−1 := x̃2d := x̂− εed ,

and let ỹ be as in (18). The Taylor expansions of the terms on the left in (19) yield the

following analog of (25):

(27) − s
ε

d
· ỹ(d)− x̂(d)

|ỹ− x̂|s+2
+

ε2

2

(
−s

1

|ỹ− x̂|s+2
+

s(s+2)

d
· 1

|ỹ− x̂|s+2

)

− ε3

6
s(s+2)(s+7) · (1−2τ/cs)

−s−3 · 1

|ỹ− x̂|s+3

−η2N−2/d ·4s(s+3)(1−4η/cs)
−s−2 · 1

|ỹ− x̂|s+2
6 0,

and, consequently, we have the following analog of (26),

(28) −2τ
N1/d

d
(ỹ(d)− x̂(d))+

s+2−d

d
τ2−

−2/3τ3N−1/d · (s+2)(s+7)(1−2τ/cs)
−s−3c−1

s −
8η2(s+3)(1−4η/cs)

−s−2 6 0.

Since ỹ(d)6 x∂ (d) and x̂(d)> x∂ (d)− τN−1/d , we obtain

−2τ
N1/d

d
(ỹ(d)− x̂(d))+

s+2−d

d
τ2 >

s−d

d
τ2;

therefore, (28) is impossible for suitably small choices of η and τ , which as in the Case 1

yields the assertion of Theorem 2.3. �

4. WEAK SEPARATION FOR THE CUBE

In this section we show how to modify the proof of Theorem 2.3 to a case when the

boundary ∂A is not smooth. Namely, we prove the weak well-separation result for the

unit cube, Theorem 2.5.

We begin with the following lemma.
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Lemma 4.1. If s > d, ω∗
N is optimal for Ps([0,1]

d;N), and x ∈ ω∗
N , then there exists a

constant bs that does not depend on N such that

max
j=1,...,d

x( j) > bsN
−1/d .

Moreover, one can choose bs so that lims→∞ b
1/s
s = 1.

Proof. We proceed as in Lemma 3.1. Denote v := (1, . . . ,1) and x̃ := x + εv. If for

some small number c we have max j=1,...,d x( j) 6 cN−1/d , then x̃ ∈ [0,1]d. Further, set

ω̃N := (ω∗
N \{x})∪{x̃}. If ỹ minimizes Ps([0,1]

d, ω̃N), then we have

|ỹ− x|6 |ỹ− x̃|,
which implies

(ỹ− x) · v 6 dε.

Utilizing the definition of v and taking ε 6 cN−1/d , we obtain

ỹ( j)6
d

∑
j=1

ỹ( j)6
d

∑
j=1

x( j)+dε 6 d(cN−1/d + ε)6 2dcN−1/d .

Therefore,

|ỹ− x̃|6
√

d( max
j=1,...,d

ỹ( j)+ max
j=1,...,d

x̃( j))6 4d
√

d · cN−1/d .

If c is small enough, this contradicts Proposition 1.5. �

We are ready to prove Theorem 2.5.

Weak separation for the cube. We again argue by contradiction. Suppose for η > 0 and

an optimal Riesz s-polarization configuration ω∗
N = {x1, . . . ,xN} we have {x1, . . . ,x2d} ⊂

B(z,ηN−1/d). Define

x̂ :=
x1 + · · ·+ x2d

2d
∈ [0,1]d.

Since x̂ ∈ B(z,ηN−1/d), we have |x j − x̂|6 2ηN−1/d for every j = 1, . . . ,2d.

Consider a small number τ > η . We will choose it later to be a multiple of η . Set

ε := τN−1/d . We consider two cases.

Case 1: dist(x̂,∂ [0,1]d)> ε . In this case we proceed exactly as in the first case of Section

3 and get the same contradiction.

Case 2: dist(x̂,∂ [0,1]d)< ε . We notice that since |x̂−x j|< 2ηN−1/d , Lemma 4.1 implies

that x̂ cannot be close to any vertex of the cube. Therefore, there exists at least one number

j such that x̂± εe j ∈ [0,1]d. Without loss of generality, j = 1. We now assume that for

some j0 = 1, . . . ,N we have x̂± εe j ∈ [0,1]d for j 6 j0, and x̂− εe j 6∈ [0,1]d for j > j0.

Cases when x̂+ εe j 6∈ [0,1]d are treated similarly. We define

x̃1 := x̂− εe1, x̃2 := x̂+ εe1,

. . .

x̃2 j0−1 := x̂− εe j0 , x̃2 j0 := x̂+ εe j0 ,
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x̃k := x̂+ εe⌊(k+1)/2⌋ for k = 2 j0 + 1, . . . ,2d, and ω̃N := {x̃1, . . . , x̃N}, where x̃ j := x j for

j > 2d. Let ỹ such that

Ps(A; ω̃N) =
N

∑
j=1

1

|ỹ− x̃ j|s
.

Similarly to (27), we get

(29) s
ε

d
· ∑

j> j0

ỹ( j)− x̂( j)

|ỹ− x̂|s+2
+

ε2

2

(
−s

1

|ỹ− x̂|s+2
+

s(s+2)

d
· 1

|ỹ− x̂|s+2

)

− ε3

6
s(s+2)(s+7) · (1−2τ/cs)

−s−3 · 1

|ỹ− x̂|s+3

−η2N−2/d ·4s(s+3)(1−4η/cs)
−s−2 · 1

|ỹ− x̂|s+2
6 0,

Notice that if ỹ( j)> x̂( j), then

s
ε

d
· ỹ( j)− x̂( j)

|ỹ− x̂|s+2
> 0.

If ỹ( j)< x̂( j), then we estimate ỹ( j)− x̂( j)>−x̂( j)>−ε . Since j0 > 1, we have at most

d −1 numbers j with j > j0. Therefore, (29) implies

(30) ε2 · s+2−d −2(d−1)

2d
· 1

|ỹ− x̂|s+2

− ε3

6
s(s+2)(s+7) · (1−2τ/cs)

−s−3 · 1

|ỹ− x̂|s+3

−η2N−2/d ·4s(s+3)(1−4η/cs)
−s−2 · 1

|ỹ− x̂|s+2
6 0,

which for suitably chosen η and τ gives a contradiction if s > 3d −4. As with Theorem

2.3, it follows that η = ηs can be taken so that lims→∞ η
1/s
s = 1.

�

5. WEAK SEPARATION ON THE SPHERE AND SPHERICAL CAPS

In this section we prove Theorem 1.6 when A = Sd or when A ⊂ Sd is a spherical cap.

We proceed as in Section 3. However, computations will be different since the sphere Sd

is not “flat”. We start with the following result.

Theorem 5.1 (Weak separation on the sphere). Consider the unit sphere S
d ⊂ R

d+1, and

s > d of s ∈ [d−1,d). Then there exists a number η > 0 such that for any N, any optimal

configuration ω∗
N and any point z ∈ R

d+1, we have

#(ωN ∩B(z,ηN−1/d))6 2d−1.

Moreover, for large values of s we can choose η = ηs with

lim
s→∞

η
1/s
s = 1.

Proof. Assume the theorem is false: there exists a ball B(z,ηN−1/d) and an optimal con-

figuration ω∗
N = {x1, . . . ,xN} such that {x1, . . . ,x2d} ⊂ B(z,ηN−1/d).
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Without loss of generality, we can assume z′ = 0 and z(d+1)> 0. Denote

x̂′ :=
x′1 + · · ·+ x′2d

2d
,

and

x̂(d+1) :=
√

1−|x̂′|2.

Since |x j − z|< ηN−1/d for j = 1, . . . ,2d, then |x′j|= |x′j − z′|< ηN−1/d ; thus

|x̂′|< ηN−1/d ,

and

1−η2N−2/d
6 x̂(d+1)6 1, 1−η2N−2/d

6 x j(d+1)6 1.

Therefore,

−η2N−2/d
6 x j(d+1)− x̂(d+1)6 η2N−2/d ,

which implies for η sufficiently small

|x j − x̂|2 = |x′j − x̂′|2 +(x j(d+1)− x̂(d +1))2 6 4η2N−2/d +η4N−4/d 6 5η2N−2/d .

We conclude that

{x1, . . . ,x2d} ⊂ B(x̂,
√

5ηN−1/d).

Since the problem is rotation-invariant, we can assume x̂ = ed+1 = (0,0, . . . ,0,1) — the

North pole of the sphere.

Fix a small number τ , with η < τ < cs/20. We will choose τ at the end of the proof.

Set

ε := τN−1/d .

Note that {e′1, . . . ,e
′
d} is the canonical orthonormal basis in Rd; denote

v1 := e1, v2 :=−e1,

v3 := e2, v4 :=−e2,

. . .

v2d−1 := ed , v2d :=−ed .

For j = 1, . . . ,2d set

x̃′j := x̂′+ εv j = εv j, x̃ j(d+1) :=
√

1−|x̃′j|2,

and x̃ j := x j if j > 2d. For ω̃N := {x̃1, . . . , x̃N} let ỹ be such that

Ps(S
d , ω̃N) =

N

∑
j=1

1

|ỹ− x̃ j|s
.

As before, denote

f (x) :=
1

|ỹ− x|s .

Estimates

(31)
N

∑
j=1

1

|ỹ− x j|s
> inf

y∈Sd

N

∑
j=1

1

|y− x j|s
= Ps(S

d ;N)> Ps(S
d; ω̃N) =

N

∑
j=1

1

|ỹ− x̃ j|s
,



COVERING AND SEPARATION PROPERTIES OF CHEBYSHEV POINTS 15

imply, after utilizing that x j = x̃ j for j > 2d +1, that

(32)
2d

∑
j=1

1

|ỹ− x j|s
>

2d

∑
j=1

1

|ỹ− x̃ j|s
.

Then from Taylor formula about x̂ we have for x ∈ {x1, . . . ,x2d} for some ξ = ξ (x) ∈
B(x̂, |x− x̂|),

f (x) = f (x̂)+ s
(y− x̂) · (x− x̂)

|y− x̂|s+2
+

(
−s · |x− x̂|2

|y−ξ |s+2
+ s(s+2) · ((y−ξ ) · (x− x̂))2

|y−ξ |s+4

)
.

Recall that if x = x j, 1 6 j 6 2d, then |x− x̂| 6
√

5ηN−1/d . Moreover, we know from

Lemma 1.5 that |ỹ− x̃ j|> csN
−1/d . This implies

|ỹ− x̂|= |ỹ− x̃1 + εe1|> (cs − τ)N−1/d > (cs/2) ·N−1/d,

and

|ỹ−ξ |> |ỹ− x̂|−|x̂−ξ |> |ỹ− x̂|−|x− x̂|> |ỹ− x̂|−
√

5ηN−1/d > (1−2
√

5η/cs)|ỹ− x̂|.
Therefore, for every j = 1, . . . ,2d we have

f (x j)6 f (x̂)+ s
(ỹ− x̂) · (x j − x̂)

|ỹ− x̂|s+2
+5s(s+3)η2N−2/d(1−2

√
5η/cs)

−s−2 · 1

|ỹ− x̂|s+2
.

Summing these inequalities over j and recalling that x′1 + · · ·+ x′2d = (2d) · e′ = 0, we

obtain

(33)
2d

∑
j=1

1

|ỹ− x j|s
6 2d · f (x̂)+ s

(ỹ(d +1)−1) · (x1(d+1)+ · · ·+ x2d(d+1)−2d)

|ỹ− x̂|s+2

+10sd(s+3) ·η2N−2/d · (1−2
√

5η/cs)
−s−2 · 1

|ỹ− x̂|s+2
.

From |ỹ(d+1)−1|6 2 and |x j(d +1)−1|= 1− x j(d+1)6 η2N−2/d , we get

2d

∑
j=1

1

|ỹ− x j|s
6 2d · f (x̂)+η2N−2/d ·

(
4sd +10sd(s+3)(1−2

√
5η)−s−2

)
· 1

|ỹ− x̂|s+2
.

Plugging this estimate in (31), we obtain

(34) f (x̂)>
1

2d

2d

∑
j=1

f (x̃ j)−η2N−2/d ·
(

2s+5s(s+3)(1−2
√

5η)−s−2
)
· 1

|ỹ− x̂|s+2
.

We proceed with the Taylor formula for f (x̃ j) about x̂. We first write it for j = 1. Recall

that x̃1 = (εe′1,
√

1− ε2). Setting v := x̃1 − x̂ = (εe′1,
√

1− ε2 −1), we obtain for some

ξ ∈ B(x̂, |x̃1 − x̂|)⊂ B(x̂,
√

2ε),

(35) f (x̃1) = f (x̂+ v)

= f (x̂)+ s
(ỹ− x̂) · v
|ỹ− x̂|s+2

+
1

2
·
(
−s · v · v

|ỹ− x̂|s+2
+ s(s+2)

((ỹ− x̂) · v)2

|ỹ− x̂|s+4

)

+
1

6
·
(
−3s(s+2) · ((ỹ−ξ ) · v) · (v · v)

|ỹ−ξ |s+4
+ s(s+2)(s+4) · ((ỹ−ξ ) · v)3

|ỹ−ξ |s+6

)
.
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We first estimate the remainder term involving ξ . As before,

|ỹ−ξ |> |ỹ− x̂|− |ξ − x̂|> |ỹ− x̂|−
√

2τN−1/d > (1−2
√

2τ/cs)|ỹ− x̂|.
Thus,

(36)

∣∣∣∣−3s(s+2) · ((ỹ−ξ ) · v) · (v · v)
|ỹ−ξ |s+4

+ s(s+2)(s+4) · ((ỹ−ξ ) · v)3

|ỹ−ξ |s+6

∣∣∣∣

6 s(s+2)(s+7) · |v|3 · (1−2
√

2τ/cs)
−s−3 · 1

|ỹ− x̂|s+3

6 2
√

2s(s+2)(s+7)ε3 · (1−2
√

2τ/cs)
−s−3 · 1

|ỹ− x̂|s+3
.

For every j = 1, . . . ,2d write the Taylor formula similar to (35); in view of the estimate

(36), we get from(34),

(37) s · (ỹ(d +1)−1)(
√

1− ε2 −1)

|ỹ− x̂|s+2

+
1

2

(
−s

2−2
√

1− ε2

|ỹ− x̂|s+2
+

s(s+2)

2d
· 2ε2|ỹ′|2 +2d(ỹ(d +1)−1)2(

√
1− ε2 −1)2

|ỹ− x̂|s+4

)

−2
√

2s(s+2)(s+7)ε3 · (1−2
√

2τ/cs)
−s−3 · 1

|ỹ− x̂|s+3

−η2N−2/d ·
(

2s+5s(s+3)(1−2
√

5η/cs)
−s−2

)
· 1

|ỹ− x̂|s+2
6 0.

Using

2d(ỹ(d +1)−1)2(
√

1− ε2 −1)2 > 0,

dividing by s and multiplying by |ỹ− e|s+4, we obtain

(38) (ỹ(d +1)−1)(
√

1− ε2 −1)|ỹ− x̂|2

+
1

2

(
−(2−2

√
1− ε2)|ỹ− x̂|2 + s+2

2d
·2ε2|ỹ′|2

)

−2
√

2(s+2)(s+7)ε3 · (1−2
√

2τ/cs)
−s−3 · |ỹ− x̂|

−η2N−2/d ·
(

2+5(s+3)(1−2
√

5η/cs)
−s−2

)
· |ỹ− x̂|2 6 0

Let us simplify first two terms. Notice that |ỹ− x̂|2 = 2− 2ỹ · x̂ = 2− 2ỹ(d + 1). We

have:

(39) (ỹ(d +1)−1)(
√

1− ε2 −1)|ỹ− x̂|2

+
1

2

(
−(2−2

√
1− ε2)|ỹ− x̂|2 + s+2

2d
·2ε2|ỹ′|2

)

= ỹ(d+1)(
√

1− ε2 −1)(2−2ỹ(d+1))+
s+2

2d
(1− ỹ(d +1)2)ε2

= |ỹ− x̂|2 ·
(
(
√

1− ε2 −1)ỹ(d +1)+ ε2 s+2

4d
(1+ ỹ(d+1))

)
.
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If ỹ(d+1)< 0, we use that
√

1− ε2 −1 6−ε2

2
to get

(40) (
√

1− ε2 −1)ỹ(d+1)+ ε2 s+2

4d
(1+ ỹ(d+1))

>
ε2

2

(
−ỹ(d+1)+

s+2

2d
(1+ ỹ(d +1))

)
>

ε2

2
·min

(
s+2

2d
,1

)
.

If ỹ(d+1)> 0, we use
√

1− ε2 −1 >−ε2

2
− ε4

8
to get

(41) (
√

1− ε2 −1)ỹ(d+1)+ ε2 s+2

4d
(1+ ỹ(d+1))

>
ε2

2

(
−ỹ(d +1)+

s+2

2d
(1+ ỹ(d+1))

)
− ε4

8
>

ε2

2
min

(
s+2

2d
,
s+2−d

d

)
− ε4

8
.

Combining estimates (40) and (41), we get

(42) (ỹ(d +1)−1)(
√

1− ε2 −1)|ỹ− x̂|2

+
1

2

(
−(2−2

√
1− ε2)|ỹ− x̂|2 + s+2

2d
·2ε2|ỹ′|2

)

> |ỹ− x̂|2 ·
(

ε2 min

(
1

2
,
s+2

4d
,
s+2−d

2d

)
− ε4

8

)
.

Plugging this estimate into (38) and dividing by |ỹ− x̂|2, we obtain:

(43) ε2 min

(
1

2
,
s+2

4d
,
s+2−d

2d

)
− ε4

8

−2
√

2(s+2)(s+7)ε3 · (1−2
√

2τ/cs)
−s−3 · |ỹ− x̂|−1

−η2N−2/d ·
(

2+5(s+3)(1−2
√

5η/cs)
−s−2

)
6 0

We now recall that ε = τN−1/d . Denote

C(s,d) := min

(
1

2
,
s+2

4d
,
s+2−d

2d

)
.

Then

(44) C(s,d)τ2− τ4N−2/d

8

−4d
√

2(s+2)(s+7)(1−2
√

2τ/cs)
−s−3τ3 · (N−1/d |ỹ− x̂|−1)

−η2 ·
(

4d +10d(s+3)(1−2
√

5η/cs)
−s−2

)
6 0.

We should finally recall that N−1/d |ỹ− x̂|−1 6 2/cs. Thus, we can choose sufficiently

small η and τ such that the left-hand side of (44) is strictly positive, which is a contradic-

tion. Finally, as in Section 3, for large values of s we can choose η = ηs with η
1/s
s → 1

as s → ∞. �

We proceed with the same statement for spherical caps A ⊂ Sd . As in the case of bodies

in Rd , we will need to deal with the case when point x̂ is near the boundary.
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Corollary 5.2 (Weak separation on the caps). Consider the unit sphere Sd ⊂ Rd+1, and

s > d. Let A ⊂ Sd be a spherical cap, A = {x ∈ Sd : x(1) > t0}. Then there exists a

number η > 0 such that for any N, any optimal configuration ω∗
N for Ps(A;N), and any

point z ∈ R
d+1 we have

#(ωN ∩B(z,ηN−1/d))6 2d−1.

Moreover, for large values of s we can choose η = ηs so that

lim
s→∞

η
1/s
s = 1.

Proof. For the sake of simplicity, we prove this corollary for d = 2. The case of general d

can be treated similarly. We also assume t0 > 0. The case t0 < 0 is done through the same

estimates.

We again argue by contradiction. Assume for some small η > 0 there exists a ball

B(z,ηN−1/2) and an extremal configuration ω∗
N = {x1, . . . ,xN} such that {x1, . . . ,x4} ⊂

B(z,N−1/2). Set

x̂′ :=
x′1 + · · ·+ x′4

4
,

and

x̂(3) :=
√

1−|x̂′|2.
Recall that x ∈ A if and only if x(1)> t0. Thus, we see that x̂′ ∈ A, and, as before,

{x1, . . . ,x4} ⊂ B(x̂,
√

5ηN−1/2).

Since the problem is rotation invariant, we can assume x̂ = (t̂,0,
√

1− t̂2) for some

t̂ > t0.

We denote

v1 := (−
√

1− t̂2,0, t̂), v2 := (0,1,0).

Set ε := τN−1/2 and consider

x̃1 :=
(

ε
√

1− t̂2+ t̂

√
1− ε2(1− t̂2),0,−ε t̂ +

√
1− t̂2 ·

√
1− ε2(1− t̂2)

)
,

x̃2 :=
(
− ε
√

1− t̂2+ t̂

√
1− ε2(1− t̂2),0,ε t̂ +

√
1− t̂2 ·

√
1− ε2(1− t̂2)

)
,

x̃3 :=
(√

1− ε2t̂,ε,
√

1− t̂2 ·
√

1− ε2
)
,

x̃4 :=
(√

1− ε2t̂,−ε,
√

1− t̂2 ·
√

1− ε2
)
.

If x̃1, . . . , x̃4 ∈ A, then we get the same contradiction as for the sphere Sd . Thus, the only

case we need to consider is when one of these points is not in A.

A direct computation shows that

x̃1 − x̂ =

(
ε
√

1− t̂2− t̂(1− t̂2)

2
ε2,0,−εt − (1− t̂2)3/2

2
ε2

)
+O(ε3),

x̃2 − x̂ =

(
−ε
√

1− t̂2− t̂(1− t̂2)

2
ε2,0,εt − (1− t̂2)3/2

2
ε2

)
+O(ε3),

x̃3 − x̂ =

(
− t̂

2
ε2,ε,−

√
1− t̂2

2
ε2

)
+O(ε3),
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x̃4 − x̂ =

(
− t̂

2
ε2,−ε,−

√
1− t̂2

2
ε2

)
+O(ε3).

Thus, x̃1(1) and x̃3(1) are greater or equal than t0, and if x̃2(1)< t0 or x̃4(1)< t0, then

(45) t̂ − ε
√

1− t̂2− t̂(1− t̂2)

2
ε2 6 t0.

If this is the case, we define the points x̃1, . . . , x̃4 differently; namely,

x̃1 :=
(

ε
√

1− t̂2+ t̂

√
1− ε2(1− t̂2),0,−ε t̂ +

√
1− t̂2 ·

√
1− ε2(1− t̂2)

)
,

x̃2 :=
(

ε
√

1− t̂2+ t̂

√
1− ε2(1− t̂2),0,−ε t̂ +

√
1− t̂2 ·

√
1− ε2(1− t̂2)

)
,

x̃3 :=
(

t̂,ε,
√

1− t̂2− ε2
)
,

x̃4 :=
(

t̂,−ε,
√

1− t̂2 − ε2
)
.

We set x̃ j := x j for j > 4, ω̃N := {x̃1, . . . , x̃N} and write the same Taylor formulas as

before. We get

(46) f (x̂)>
1

2d

2d

∑
j=1

fỹ(x̃ j)−η2N−2/d ·
(

2s5s(s+3)(1−2
√

5η/cs)
−s−2

)
· 1

|ỹ− x̂|s+2
.

Expanding f (x̃ j) about x̂ as before, we get

(47) ε2 ·
( |ỹ− x̂|2

2
(2− t̂ − (s+2)/2)+ s

)

+2ε
(
(ỹ(1)− t̂)

√
1− t̂2− (ỹ(3)−

√
1− t̂2)t̂

)

+ ε2 ·
(
(ỹ(1)− t̂)t̂ +(ỹ(3)−

√
1− t̂2)

√
1− t̂2 − ỹ(3)−

√
1− t̂2

√
1− t̂2

)

−4η2N−2/d ·
(

2s+5s(s+3)(1−2
√

5η/cs)
−s−2

)
− remainder terms involving ξ 6 0,

where the remainder terms are handled exactly as in (36).

We proceed with showing that the third term can not be a large negative number. In

fact,

(48) (ỹ(1)− t̂)t̂ +(ỹ(3)−
√

1− t̂2)
√

1− t̂2− ỹ(3)−
√

1− t̂2

√
1− t̂2

= ỹ(1)t̂ − t̂2

√
1− t̂2

ỹ(3).

If ỹ(3)< 0, we see that this expression is non-neagtive. Otherwise, plugging

ỹ(1)> t0 > t̂ − ε
√

1− t̂2− t̂(1− t̂2)

2
ε2,

and ỹ(3)6
√

1− t2
0 into (48), we obtain

(ỹ(1)− t̂)t̂ +(ỹ(3)−
√

1− t̂2)
√

1− t̂2− ỹ(3)−
√

1− t̂2

√
1− t̂2

>−cε
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for some non-negative constant c, which depends only on t0. We finally show how to

estimate the second term of (47). Without loss of generality, we can assume this term is

negative, in particular, t̂ 6= 0. The equality

(ỹ(1)− t̂)
√

1− t̂2 − (ỹ(3)−
√

1− t̂2)t̂ = ỹ(1)
√

1− t̂2 − ỹ(3)t̂.

yields

|ỹ− x̂|2 = 2−2ỹ(1)t̂−2ỹ(3)
√

1− t̂2 6 2−2ỹ(1)/t̂ 6 2−2t0/t̂ 6 ε
√

1− t̂2+
t̂(1− t̂2)

2
ε2 6 cε,

where again c is a positive constant which depends only on t0. On the other hand,

ỹ(1)
√

1− t̂2− ỹ(3)t̂ >−ε − cε2.

Thus, inequality (47) implies

ε2(cε(2− t̂ − (s+2)/2)+ s)−2ε2− cε3 − remainder terms 6 0,

which is impossible since s > 2. �

6. PROOFS OF COVERING RESULTS

Proof of Theorem 2.6. Fix an integer N. Since Ã is a d-regular compact set, there exists a

finite family of sets {Qα}α with the following properties:

(i) Ã = ∪αQα and the interiors of the sets Qα are disjoint; furthermore, µ(Qα) = 0

for every α , where µ is the measure from Definition 1.3;

(ii) There exists a positive constant a1 that does not depend on N, and points zα ∈Qα

such that B(zα ,a1ηN−1/d)∩ Ã ⊂ Qα ⊂ B(zα ,ηN−1/d).

For the construction of such sets see, e.g., [6]. Notice that since Qα ⊂ B(zα ,ηN−1/d), we

have #(Qα ∩ωN)6 M.

Let A denote the set of indices α such that Qα ∩ωN 6= /0. Since every Qα can contain

no more than M points from ωN , we deduce that number of such indices is at least as large

as N/M.

Hereafter we follow an argument in [11].

Without loss of generality, we assume ρA(ωN) > 5ηN−1/d . Let y ∈ A be such that

minxk∈ωN
|y− xk| = ρA(ωN). For every x j ∈ ωN let α j = α denote the index such that

x j ∈ Qα for some α . If x ∈ Qα , then

|y− x|6 |y− x j|+ |x j − x| 6 |y− x j|+2ηN−1/d
6 |y− x j|+

2

5
ρA(ωN)6

7

5
|y− x j|.

Consequently,

(49) |y− x j|−s 6

(
7

5

)s

· min
x∈Qα

|y− x|−s.

Furthermore,

|y− x|> |y− x j|− |x j − x| > |y− x j|−2ηN−1/d > |y− x j|−
2

5
ρA(ωN)>

3

5
ρA(ωN),

which implies

A∩B(y,(3/5)ρA(ωN))⊂ A\
⋃

α∈A

Qα .



COVERING AND SEPARATION PROPERTIES OF CHEBYSHEV POINTS 21

For each x j ∈ Qα we see from (49) that

1

|y− x j|s
6

(
7

5

)s
1

µ(Qα)

∫

Qα

dµ(x)

|y− x|s .

Since B(zα ,a1ηN−1/d)∩ Ã ⊂Qα , we have by the d-regularity condition that µ(Qα)> c1 ·
ηd/N, where the positive constant c1 does not depend on s. This implies from assumption

(12) that

(50) psN
s/d 6 ∑

x j∈ωN

1

|y− x j|s
6 M ·

(
7

5

)s

∑
α∈A

1

µ(Qα)

∫

Qα

dµ(x)

|y− x|s

6 c−1
1 M ·

(
7

5

)s

·η−d ·N
∫

A\B(y,(3/5)ρA(ωN))

dµ(x)

|y− x|s

6 c−1
1 · c2 ·

s

s−d
·M ·

(
7

5

)s

·η−d ·N · ((3/5)ρA(ωN))
d−s ,

where c2 does not depend on s. This yields, for Cd := c−1
1 · c2,

ρA(ωN)
s−d 6Cd ·

s

s−d
·
(

7

5

)s

· 1

ps

·η−d ·M ·N− s−d
d ,

which implies

ρA(ωN)6

(
Cd ·

s

s−d

) 1
s−d

·
(

7

3

) s
s−d

· p
− 1

s−d
s ·η− d

s−d ·M 1
s−d ·N−1/d ,

as claimed. �

Proof of Corollary 2.7. First, we prove that for any ωN that is extremal for Ps(A;N),
there exists a positive constant ps with

inf
y∈A

∑
x j∈ωN

1

|y− x j|s
> psN

s/d .

We prove it for strongly convex A ⊂ Rd or A = [0,1]d. The case A = Sd is similar. First,

notice that for any z ∈ A we have A ⊂ z+ [−diam(A),diam(A)]d =: Q. For a fixed N

and a fixed constant a, consider a maximal set E such that for any x,y ∈ E we have

|x− y|> aN−1/d . The maximality of E implies that

A ⊂
⋃

x∈E

B(x,aN−1/d);

thus ρA(E )6 aN−1/d .

On the other hand, we see that the sets B(x,(a/3)N−1/d)∩Q are disjoint. Thus,

Hd(Q)> c1 ·ad ·N−1 ·#(E ),

which implies

#(E )6 c2a−dN,



22 A. REZNIKOV, E. B. SAFF, AND A. VOLBERG

where c1 and c2 are positive constants that depend on d. We now choose a such that

c2a−d = 1. This implies that there exists an N-point set ω̃N such that

A ⊂
⋃

x̃ j∈ω̃N

B(x̃ j,aN−1/d),

where the number a depends only on A and d. In particular, ρA(ω̃N)6 aN−1/d .

Observe that

(51) inf
y∈A

∑
x j∈ωN

1

|y− x j|s
= Ps(A;N)> Ps(A; ω̃N) = inf

y∈A
max

x̃ j∈ω̃N

1

|y− x̃ j|s

=
1

maxy∈A minx̃ j∈ω̃N
|y− x̃ j|s

= ρA(ω̃N)
−s > a−sNs/d .

Thus, we can apply Theorem 2.6 with ps = a−s to obtain

ρA(ωN)6 RsN
−1/d

for

Rs =

(
Cd ·M · s ·7s ·as

(s−d) ·5s ·ηd
s

) 1
s−d

,

where ηs is the constant from Theorem 2.3 or Theorem 2.5.

To complete the proof, recall that we have lims→∞ η
1/s
s = 1, therefore for large values

of s we have Rs 6 R0 for some positive R0. �

7. PROOF OF BEST COVERING RESULTS

We begin by remarking that in Section 6 we have seen that if A is d-regular, then for

some positive constants a and b we have aN−1/d 6 ρA(N) 6 bN−1/d , where ρA(N) is

defined in (4).

Proof of Theorem 2.8. Using the same argument as in (51), we see that

Ps(A;N)>
1

ρA(N)s
.

Therefore, (
lim

N→∞

Ps(A;N)

Ns/d

)1/s

>
1

liminfN→∞(N1/dρA(N))
,

which implies

(52) liminf
s→∞

(
lim

N→∞

Ps(A;N)

Ns/d

)1/s

>
1

liminfN→∞(N1/dρA(N))
.

On the other hand, for a fixed positive integer N and large s consider an N-point config-

uration ω∗
N = {x1, . . . ,xN} such that Ps(A;N) = Ps(A;ω∗

N). Corollary 2.7 implies that if

s is large enough, then ρA(ω
∗
N)6 R0N−1/d , where R0 depends neither on N, nor on s. We

also recall that the Theorems 2.3 and 2.5 imply that for any large value of s there exists

a number ηs > 0 such that for any z ∈ Rd we have #(ω∗
N ∩B(z,ηsN

−1/d)) 6 2d −1 and

lims→∞ η
1/s
s = 1.

We now take a point y ∈ A such that

(53) min
j=1,...,N

|y− x j|= ρA(ω
∗
N),
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and set

Bn := B(y, nρA(ω
∗
N))\B(y, (n−1)ρA(ω

∗
N)),

where n is an integer with n > 2. Since the open ball B(y,ρA(ω
∗
N)) does not intersect ω∗

N ,

we have

ω∗
N ⊂

∞⋃

n=2

Bn.

Notice that for any n > 2 we have Bn ⊂ B(y, nR0N−1/d); thus, there exists a constant C̃1

that does not depend on s such that the annulus Bn can be covered by C̃1Rd
0ndη−d

s =:

C2ndη−d
s balls of radius ηN−1/d . Thus, for any n > 2 we have

#(Bn ∩ω∗
N)6C2(2d−1)ndη−d

s =: C3ndη−d
s .

For y defined in (53) we have

Ps(A;N)6 ∑
x∈ω∗

N

1

|y− x|s 6
∞

∑
n=2


 ∑

x∈ω∗
N∩Bn

1

|y− x|s


 .

By the definition of Bn, for any x ∈ Bn we have |y− x| > (n−1)ρA(ω
∗
N), which implies

(54) Ps(A;N)6
∞

∑
n=2

C3ndη−d
s (n−1)−sρA(ω

∗
N)

−s =C3η−d
s ρA(ω

∗
N)

−s
∞

∑
n=2

nd(n−1)−s.

Dividing by Ns/d and using that ρA(ω
∗
N)> ρA(N), we obtain

(55)
Ps(A;N)

Ns/d
6C3η−d

s

∞

∑
n=1

nd−s ·
(

1

N1/dρA(N)

)s

,

which implies

(56)

(
lim

N→∞

Ps(A;N)

Ns/d

)1/s

6C
1/s

3 η
−d/s
s

(
∞

∑
n=2

nd−s

)1/s

· 1

limsupN→∞(N
1/dρA(N))

.

Taking limsups→∞, we obtain

(57) limsup
s→∞

(
lim

N→∞

Ps(A;N)

Ns/d

)1/s

6
1

limsupN→∞(N
1/dρA(N))

.

Estimates (52) and (57) imply that limN→∞ N1/dρA(N) and lims→∞

(
limN→∞ Ps(A;N)N−s/d

)1/s

exist and satisfy

lim
s→∞

(
lim

N→∞

Ps(A;N)

Ns/d

)1/s

=
1

limN→∞(N1/dρA(N))
.

�

As an immediate consequence of Theorem 2.8 we state the following corollary about

behavior of covering radii of optimal s-Riesz polarization configurations as s → ∞.

Corollary 7.1. Suppose A is a d-admissible set or A = [0,1]d. For every N > 1 and every

s> d fix an N-point configuration ωs
N such that Ps(A;N)=Ps(A;ωs

N). Then the following

limits exist and satisfy

(58) lim
s→∞

lim
N→∞

N1/dρA(ω
s
N) = lim

N→∞
N1/dρA(N).
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Proof. Arguing as in (51), we get that

Ps(A;N)>
1

ρA(ω
s
N)

s
,

which implies from (13) that

lim
N→∞

N1/dρA(N) = lim
s→∞

(
lim

N→∞

Ps(A;N)

Ns/d

)−1/s

6 liminf
s→∞

[
liminf
N→∞

N1/dρA(ω
s
N)
]
.

On the other hand, arguing as in (54), (55) and (56) we get

lim
N→∞

N1/dρA(N) = lim
s→∞

(
lim

N→∞

Ps(A;N)

Ns/d

)−1/s

> limsup
s→∞

[
limsup

N→∞
(N1/dρA(ω

s
N))
]
,

and (58) follows. �

8. PROOF OF PROPOSITION 1.5

Proof of Proposition 1.5 for s > d. Take a positive integer N, an N-point configuration

ωN and the point y∗. Theorem 1.4 implies, for any j = 1, . . . ,N,

Cs ·Ns/d > Ps(A;N)

> Ps(A;ωN) = ∑
x∈ωN

1

|y∗− x|s >
1

|y∗− x j|s
= Ns/d · (N1/d · |y∗− x j|)−s;

(59)

therefore, |y∗− x j|>C
−1/s
s ·N−1/d =: csN

−1/d . �

To prove Proposition 1.5 for the case A = Sd and s ∈ [d−1,d) we set

U(y) =Us(y) :=
1

Hd(Sd)

∫

Sd

dHd(x)

|x− y|s .

Then it is well known (see, e.g., [15]) that if s ∈ (0,d) then U(y) is constant of Sd , and

we denote this constant by γs,d
‡.

We need the following lemma, which can be found in [14].

Lemma 8.1. For each s ∈ [d−1,d) there exists a constant C =C(s,d) such that for every

y with |y|= 1+N−1/d we have

(60) U(y)> γs,d −CN−1+s/d .

Furthermore, if for a constant c and an N-point configuration ωN ⊂ Sd we have U(y)6
c ·UωN(y), where

UωN(y) =UωN
s (y) :=

1

N
∑

x∈ωN

1

|x− y|s ,

then the same inequality holds for every y ∈ R
d+1.

Proof of Proposition 1.5 for A = S
d and s ∈ [d−1,d). Fix an N-point configuration ωN =

{x1, . . . ,xN} and set γ := Ps(S
d ;ωN). For every y ∈ Sd we have

UωN(y)>
γ

N
=

γ

γs,d ·N
·U(y);

‡γs,d is the Wiener constant (maximal s-energy constant) on Sd .
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thus, for every y with |y|= 1+N−1/d we have

UωN(y)>
γ

γs,d ·N
· (γs,d −CN−1+s/d) =

γ −C1 · γ ·N−1+s/d

N
.

Notice that

γ = inf
y∈Sd

N

∑
j=1

1

|x j − y|s 6
1

Hd(Sd)

N

∑
j=1

∫

Sd

dHd(y)

|x j − y|s = γs,d ·N,

which implies that for every y with |y|= 1+N−1/d , we have

(61)
N

∑
j=1

1

|x j − y|s = NUωN (y)> γ −C2Ns/d .

With y∗ as in the statement of Proposition 1.5, set y := (1+N−1/d) · y∗. Then for every

j = 1, . . . ,N we have |x j −y|> |x j −y∗|. Therefore, for every i = 1, . . . ,N, if follows from

(61) that

γ −C2Ns/d − 1

|y− xi|s
6 ∑

j 6=i

1

|y− x j|s
6 ∑

j 6=i

1

|y∗− x j|s
= γ − 1

|y∗− xi|s
.

We now use that |xi − y|> N−1/d to get

1

|y∗− xi|s
6 (C2 +1)Ns/d ,

which completes the proof. �

9. APPENDIX: EQUIVALENT DEFINITION OF BEST COVERING OF THE EUCLIDEAN

SPACE R
d

Assume B ⊂ Rd is a family of unit balls. The density of B is defined by

(62) ∆(B) := lim
R→∞

∑B∈B Hd(B∩ [−R,R]d)

(2R)d

whenever the limit exists. The optimal covering density for Rd is defined by

Γd := inf∆(B),

where the infimum is taken over all families B that cover Rd .

It is known, see [7, Chapter 2] and [2], that Γ1 is attained for balls centered on the

lattice 2Z and Γ2 is attained for balls centered on the properly rescaled equi-triangular

lattice. For higher dimensions no explicit results are known; however, if we minimize

only over lattices, then it is known that for d 6 5 an optimal lattice is the properly rescaled

Ad := {(x1, . . . ,xd+1) ∈ Zd+1 : x1 + · · ·+ xd+1 = 0}, which is a lattice in a d-dimensional

hyperplane.

We start by proving the following lemma.

Lemma 9.1. If Vd = Hd(B
d), B covers Rd and the limit (62) exists, then

∆(B)

Vd

= lim
R→∞

#
{

B ∈ B : center of B is in [−R,R]d
}

(2R)d
.

Conversely, if the limit in the right-hand side exists, then ∆(B) exists as well and ∆(B)/Vd

is equal to this limit.
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Proof. Define BR :=
{

B ∈ B : center of B is in [−R,R]d
}

. We estimate

(63) ∑
B∈B

Hd(B∩ [−R,R]d)> ∑
B∈BR−2

Hd(B∩ [−R,R]d) =Vd ·#BR−2.

On the other hand, if B∩ [−R,R]d 6= /0, then the center of B is in [−R−2,R+2]d . There-

fore,

(64) ∑
B∈B

Hd(B∩ [−R,R]d)6 ∑
B∈BR+2

Hd(B∩ [−R,R]d)6Vd ·#BR+2.

Estimates (63) and (64) obviously imply assertion of the lemma. �

We continue with more equivalent definitions of Γd . For a compact set A ⊂ R
d and a

positive number r put

NA(r) := min
{

N ∈ N : ∃ωN = {x1, . . . ,xN} ⊂ A such that A ⊂ ∪N
j=1B(x j,r)

}
.

A simple rescaling argument yields for every R > 0

N[−R,R]d(1) = N[0,1](1/2R).

We show the following.

Theorem 9.2. For every d ∈ N we have

(65)
Γd

Vd

= lim
R→∞

N[−R,R]d(1)

(2R)d
= lim

r→0
rdN[0,1]d(r) = lim

N→∞
N ·ρ[0,1]d(N)d = lim

s→∞
(σs,d)

−d/s.

Proof. The existence of

lim
N→∞

N ·ρ[0,1]d(N)d

as well as the last equality follows from Theorem 2.8. The equalities

lim
R→∞

N[−R,R]d(1)

(2R)d
= lim

r→0
rdN[0,1]d(r) = lim

N→∞
N ·ρ[0,1]d(N)d

are straightforward and left to the reader. We derive the first equality in (65). For a small

ε > 0 take a set B such that
Γd

Vd

> lim
R→∞

#BR

(2R)d
− ε

and

R
d =

⋃

B∈B

B,

where BR is defined as in preceding proof. As in the proof of Lemma 9.1, we have

[−(R−2),R−2]d ⊂
⋃

B∈BR

B;

therefore
N[−(R−2),R−2]d](1)

(2(R−2))d
6

#BR

(2R)d
· (2R)d

(2(R−2))d
.

Consequently,

lim
R→∞

N[−R,R]d(1)

(2R)d
6

Γd

Vd

+ ε.
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In view of the arbitrariness of ε , we get

(66) lim
R→∞

N[−R,R]d(1)

(2R)d
6

Γd

Vd

.

To prove the opposite inequality, we fix a large number R0 and choose a configuration

ω with #ω = N[−R0,R0]d
(1) and

[−R0,R0]
d ⊂

⋃

x∈ω

B(x,1).

Define

B := {B(x,1) : x ∈ ((2R0Z
d)+ω)};

then obviously

R
d =

⋃

B∈B

B.

Fix a number R > R0 and choose an integer n such that (2n− 1)R0 6 R 6 (2n+ 1)R0.

Then

#B(2n−1)R0
6 #BR 6 #B(2n+1)R0

.

Since

#B(2n−1)R0
= (2n−1)dN[−R0,R0]d

(1)

and

#B(2n+1)R0
= (2n+1)dN[−R0,R0]d

(1),

we get
(

2n−1

2n+1

)d

·
N[−R0,R0]d

(1)

(2R0)d
6

#BR

(2R)d
6

(
2n+1

2n−1

)d

·
N[−R0,R0]d

(1)

(2R0)d
.

Therefore,

lim
R→∞

#BR

(2R)d
=

N[−R0,R0]d
(1)

(2R0)d
,

which implies, in view of Lemma 9.1, that

Γd

Vd

6
N[−R0,R0]d

(1)

(2R0)d
.

From of the arbitrariness of R0 and the estimate (66), the lemma follows. �
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