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Abstract We consider minimum energy problems in the presence of an external field for
a condenser with ”touching plates” A1 and A2 in Rn, n > 3, relative to the α-Riesz kernel
|x− y|α−n, 0 < α 6 2. An intimate relationship between such problems and minimal α-
Green energy problems for positive measures on A1 is shown. We obtain sufficient and/or
necessary conditions for the solvability of these problems in both the unconstrained and the
constrained settings, investigate the properties of minimizers, and prove their uniqueness.
Furthermore, characterization theorems in terms of variational inequalities for the weighted
potentials are established. The approach applied is mainly based on the establishment of
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a perfectness-type property for the α-Green kernel with 0 < α 6 2 which enables us, in
particular, to analyze the existence of the α-Green equilibrium measure of a set. The results
obtained are illustrated by several examples.
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1 Introduction

The purpose of the paper is to study minimum energy problems in the presence of an external
field for a condenser A with touching oppositely-charged plates A1 and A2 in Rn, n > 3,
relative to the α-Riesz kernel |x−y|α−n, 0 < α 6 2. The difficulties appearing in the course
of our investigation are caused by the fact that a short-circuit between A1 and A2 might
occur, for the Euclidean distance between these conductors is zero.

Therefore, it is meaningful to ask what kind of conditions on the objects in question
could prevent such a phenomenon so that a minimizer for the corresponding α-Riesz energy
problem might exist. One of the ideas, to be discussed for this purpose, is to impose upper
constraints on the charges of the touching conductors.

We establish sufficient and/or necessary conditions for the existence of minimizing mea-
sures for both the unconstrained and the constrained problems, and prove their uniqueness.
The conditions obtained are expressed in geometric-potential terms for A1 and A2, or in
measure theory terms for the constraints under consideration, or in terms of variational in-
equalities for the weighted potentials. We also provide a detailed analysis of the supports of
the minimizers.

The approach developed in the paper is based on a newly observed important relation-
ship between, on the one hand, minimum α-Riesz energy problems over signed measures
associated with a condenser A and, on the other hand, minimum energy problems for non-
negative measures on A1 relative to the α-Green function gα

D of the domain D := Rn \A2.
Regarding the latter problems, crucial to the arguments applied in their investigation is

a pre-Hilbert structure on the linear space Egα
D
(D) of all (signed) Radon measures on D with

finite gα
D-Green energy, which can be introduced due to the strict positive definiteness of

the kernel gα
D, and, most importantly, a completeness theorem for certain metric subspaces

of Egα
D
(D) with nonnegative elements. This completeness theorem enables us, in particular,

to analyze the existence of the α-Green equilibrium measure of a set.
To formulate precisely the problems in question, we first need to introduce several no-

tions, to discuss relations between them, and to establish some preliminary results; this is
the purpose of the next section. The scheme of the rest of the paper is described at the end
of Section 3, after the formulations of the problems (see Problems 3.1 and 3.2).

2 Basic notions; relations between them. Preliminary results

2.1 Measures, energies, potentials

Let X be a locally compact (Hausdorff) space, to be specified below, and M = M(X) the
linear space of all real-valued Radon measures µ on X, equipped with the vague (=weak∗)
topology, i.e. the topology of pointwise convergence on the class C0(X) of all real-valued
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continuous functions on X with compact support. The vague topology on M is Hausdorff;
hence, a vague limit of any sequence (net) in M is unique (whenever exists). These and other
notions and results of the theory of measures and integration on a locally compact space, to
be used throughout the paper, can be found in [3,10] (see also [11] for a short survey).

Let µ+ and µ− denote the positive and the negative parts in the Hahn–Jordan decom-
position of a measure µ ∈M(X), respectively, |µ| := µ++ µ− its total variation, and Sµ

X
its support. A measure µ is said to be bounded (finite) if |µ|(X) < ∞. Given µ and a µ-
measurable function u, for the sake of brevity we shall write 〈u,µ〉 :=

∫
udµ .1

The following well-known fact (see, e.g., [11, Section 1.1]) will often be used.

Lemma 2.1 Let ψ : X→ (−∞,∞] be lower semicontinuous function that is > 0 unless X is
compact. Then µ 7→ 〈ψ,µ〉 is vaguely lower semicontinuous on nonnegative µ ∈M(X).

We define a kernel κ(x,y) on X as a symmetric, lower semicontinuous function κ :
X×X→ [0,∞]. Given µ,ν ∈M, let Eκ(µ,ν) and U µ

κ (·) denote the mutual energy and the
potential relative to the kernel κ , respectively, i.e.

Eκ(µ,ν) :=
∫

κ(x,y)d(µ⊗ν)(x,y),

U µ

κ (x) :=
∫

κ(x,y)dµ(y), x ∈ X.

Observe that U µ

κ (x), µ ∈M, is well defined provided U µ+

κ (x) and U µ−
κ (x) are not both

infinite, and then U µ

κ (x) = U µ+

κ (x)−U µ−
κ (x). In particular, if µ > 0, then U µ

κ is defined
everywhere and represents a nonnegative lower semicontinuous function on X.

A kernel κ is called regular if, for any µ > 0 with compact Sµ

X, the potential U µ

κ is
continuous throughout X whenever the restriction of U µ

κ to Sµ

X is continuous.2 Furthermore,
κ is said to satisfy Frostman’s maximum principle if, for any µ > 0 with compact support,

sup
x∈X

U µ

κ (x) = sup
x∈Sµ

X

U µ

κ (x).

Also note that Eκ(µ,ν), µ,ν ∈M, is well defined provided Eκ(µ
+,ν+)+Eκ(µ

−,ν−)
or Eκ(µ

+,ν−)+Eκ(µ
−,ν+) is finite. For µ = ν , Eκ(µ,ν) defines the energy Eκ(µ) :=

Eκ(µ,µ). Let Eκ = Eκ(X) consist of all µ ∈M with −∞ < Eκ(µ)< ∞, the latter by defini-
tion means that Eκ(µ

+), Eκ(µ
−) and Eκ(µ

+,µ−) are all finite. See [11, Section 2.1].
If f : X→ [−∞,∞] is an external field, then the f -weighted potential W µ

κ, f and the f -
weighted energy Gκ, f (µ) of µ ∈ Eκ(X) are given by

W µ

κ, f (x) :=U µ

κ (x)+ f (x), x ∈ X,

Gκ, f (µ) := Eκ(µ)+2〈 f ,µ〉= 〈W µ

κ, f + f ,µ〉,

respectively. We also define

Eκ, f (X) :=
{

µ ∈ Eκ(X) : Gκ, f (µ)< ∞
}
.

1 When introducing notation, we assume the corresponding object on the right to be well-defined.
2 When speaking of a continuous function, we understand that the values are finite real numbers.
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2.2 Strictly positive definite and perfect kernels. Capacities

A kernel κ is called positive definite if Eκ(µ), µ ∈M, is > 0 provided defined. Then Eκ

forms a pre-Hilbert space with the scalar product Eκ(µ,µ1) and the seminorm ‖µ‖κ :=√
Eκ(µ) (see [11]). The topology on Eκ defined by ‖ · ‖κ is called strong.

In the rest of Section 2.2, the kernel κ is assumed to be strictly positive definite, which
means that the seminorm ‖µ‖κ , µ ∈ Eκ , is a norm. The following lemma from the geometry
of the pre-Hilbert space Eκ is often useful (see [11, Lemma 4.1.1]).

Lemma 2.2 Let Γ be a convex subset of Eκ . If there exists µ0 ∈ Γ with minimal norm

‖µ0‖κ = inf
µ∈Γ
‖µ‖κ ,

then such a minimal element is unique. Moreover,

‖µ−µ0‖2
κ 6 ‖µ‖2

κ −‖µ0‖2
κ for all µ ∈ Γ .

Given a set B⊂ X, let M+(B) be the convex cone of all nonnegative measures concen-
trated in B, and let M+(B,b), b > 0, consist of all µ ∈M+(B) with µ(B) = b. We also write
M+ :=M+(X), E +

κ (B) := Eκ ∩M+(B), E +
κ := E +

κ (X), and E +
κ (B,b) := Eκ ∩M+(B,b).

Let Cκ(B) denote the interior capacity of B relative to a kernel κ , defined by3

1
/

Cκ(B) := wκ(B) := inf
µ∈E+

κ (B,1)
Eκ(µ). (2.1)

Note that, in consequence of Lemma 2.2, a measure λB = λ κ
B ∈ E +

κ (B,1) with minimal
energy ‖λB‖2

κ = wκ(B) is unique (provided it exists).
Following [11], we call a kernel κ perfect if any strong Cauchy sequence in E +

κ con-
verges strongly and, in addition, the strong topology on E +

κ is finer than the induced vague
topology on E +

κ . Note that then the metric space E +
κ is strongly complete. What is also

important is that the solution λ κ
B to the minimum energy problem appeared in (2.1) exists,

provided that κ is perfect, B is closed, and 0 <Cκ(B)< ∞ (see [11, Theorem 4.1]).

Remark 2.1 When speaking of the vague topology, one has to consider nets or filters in M+

instead of sequences, since the vague topology in general does not satisfy the first axiom of
countability. We follow Moore’s and Smith’s theory of convergence, based on the concept
of nets (see [17]; cf. also [10, Chapter 0] and [15, Chapter 2]). However, if X is metrizable
and can be written as a countable union of compact sets, then M+ satisfies the first axiom
of countability (see [11, Lemma 1.2.1]) and the use of nets may be avoided.

Remark 2.2 Let X =Rn, n > 2. It is well known that, for any α ∈ (0,n), the α-Riesz kernel
κα(x,y) := |x− y|α−n (where |x− y| is the Euclidean distance in Rn between x and y) is
perfect (see, e.g., [5–7,11,16]); therefore, the metric space E +

κα
(Rn) is strongly complete.

However, by Cartan [5], the whole pre-Hilbert space Eκα
(Rn) is, in general, strongly incom-

plete, and this is the case even for the Coulomb kernel κ2(x,y) = |x− y|−1 on R3 (compare
with Theorem 2.3 below).

From now on we shall often write simply α instead of κα if it serves as an index. E.g.,
Cα(·) =Cκα

(·) denote the interior α-Riesz capacity of a set.

3 As usual, the infimum over the empty set is taken to be +∞. We put 1
/
(+∞) = 0 and 1

/
0 =+∞.
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2.3 α-Riesz balayage

Let a closed set Q⊂Rn, n > 3, a bounded measure µ ∈M(Rn), and α ∈ (0,2] be fixed. By
definition (cf. [16, Chapter IV, Section 5]), the α-Riesz balayage measure β α

Q µ of µ onto Q
is supported by Q and satisfies the relation

U
β α

Q µ

α (x) =U µ

α (x) n.e. in Q, (2.2)

where “n.e.” (nearly everywhere) means that the equality holds everywhere in Q except for a
subset with α-Riesz capacity zero. Such β α

Q µ exists and it is unique among the C-absolutely
continuous measures ν ∈M(Rn), namely those that ν(K) = 0 for every compact K ⊂ Rn

with Cα(K) = 0. Throughout the paper, when speaking of the α-Riesz balayage measure,
we always mean exactly this one. Then, by [16, Chapter IV, Section 5],

β
α
Q µ =

∫
β

α
Q εy dµ(y). (2.3)

If µ > 0, then also U
β α

Q µ

α (x)6U µ

α (x) for all x ∈ Rn. If, moreover, µ ∈ E +
α (Rn), then

Eα(β
α
Q µ)6 Eα(µ)

and also ∥∥µ−β
α
Q µ
∥∥

α
<
∥∥µ−ν

∥∥
α

for all ν ∈ E +
α (Q), ν 6= β

α
Q µ, (2.4)

so that β α
Q µ is, in fact, the orthogonal projection of µ in the pre-Hilbert space Eα(Rn) onto

the convex cone E +
α (Q).

It is well known (see [16]) that, for any bounded µ > 0, there holds β α
Q µ(Rn)6 µ(Rn).

This general fact is specified by the following assertion (see [22, Theorem 4]; for α = 2, see
also [21, Theorem B]).

Theorem 2.1 Q is not α-thin at the Alexandroff point ∞Rn of Rn if and only if, for every
bounded µ > 0,

β
α
Q µ(Rn) = µ(Rn). (2.5)

By definition, Q is not α-thin at ∞Rn if Q∗, the inverse of Q relative to the unit sphere
S(0,1) := {x∈Rn : |x|= 1}, is not α-thin at x = 0, or equivalently (see [16, Theorem 5.10]),
if x = 0 is an α-regular point for Q∗.4

2.4 α-Green kernels

Fix n > 3, a domain D ⊂ Rn, D 6= Rn, and α ∈ (0,2]. In the rest of the paper, unless stated
otherwise, one of the following two cases is assumed to hold: either X = Rn and κ is the
α-Riesz kernel κα , or X = D and κ is the generalized α-Green function gα

D of D, defined by

gα
D(x,y) =Uεx

α (y)−U
β α

Dc εx
α (y) for all x,y ∈ D, (2.6)

where εx denotes the unit Dirac measure at a point x and β α
Dc the α-Riesz balayage onto the

set Dc := Rn \D.

4 For α = 2, this definition is due to Brelot (see [4]; cf. also [12,14]). For α ∈ (0,2), such a notion has
been introduced in [22].
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The function gα
D(x,y), x,y ∈ D, is nonnegative and symmetric (see [13] and [16, Chap-

ter IV, Section 5]). To show that gα
D can be treated as a kernel on the locally compact space D,

we observe that the first term on the right in (2.6) is lower semicontinuous on D×D, while
the second one is continuous. To verify the latter, let ε > 0 and x0,y0 ∈ D be fixed. De-
note 2u0 := min

{
dist(x0,Dc),dist(y0,Dc)

}
> 0. The function tα−n, t ∈ [u0,∞), is uniformly

continuous, hence there is δ ∈ (0,u0] such that |tα−n− uα−n| < ε whenever |t − u| < δ ,
t,u ∈ [u0,∞). This implies that, for all x,y ∈ D with |x− x0|< δ and |y− y0|< δ ,∣∣Uβ α

Dc εy
α (x)−U

β α

Dc εy
α (x0)

∣∣6 ∫
Dc

∣∣|z− x|α−n−|z− x0|α−n∣∣dβ
α
Dc εy(z)< εβ

α
Dc εy(Dc)6 ε.

Similarly, ∣∣Uβ α

Dc εx0
α

(y)−U
β α

Dc εx0
α (y0)

∣∣< ε.

As U
β α

Dc εx0
α (y) =U

β α

Dc εy
α (x0) for all x0,y ∈ D,

∣∣Uβ α

Dc εy
α (x)−U

β α

Dc εy0
α (x0)

∣∣ < 2ε follows. Also
notice that, since for any y ∈ D the second term on the right in (2.6) takes finite values at
every x ∈ D, the function gα

D(x,y) is infinite on the diagonal in D×D and finite elsewhere.
To avoid triviality, assume each component of Dc to have nonzero α-Riesz capacity.

Note that, if α = 2 and D is regular in the sense of the solvability of the (classical) Dirichlet
problem, then g2

D is, in fact, the classical Green function of D.
It is often useful to consider the extension ĝα

D(x,y) of gα
D(x,y) from D×D to D×Rn,

defined for x ∈ D and y ∈ Dc by the same formula (2.6) (see [16, Chapter IV, Section 5]). If
x ∈ D is fixed, then ĝα

D(x,y)> 0 for all y ∈ Dc, where the strict inequality holds if and only
if y ∈ Dc is an α-irregular point of Dc. The notion of an α-irregular point of Dc does not
depend on the choice of x ∈ D; the collection IDc of all these points is a subset of ∂Rn D and
its α-Riesz capacity equals zero. If µ ∈M(D) is given, then for the sake of brevity we write

U µ

ĝα
D
(y) :=

∫
ĝα

D(x,y)dµ(x), y ∈ Rn,

provided the value on the right is well-defined. Then U µ

ĝα
D
(y) =U µ

gα
D
(y) for all y ∈ D.

2.5 Energy principle and Frostman’s maximum principle for the α-Green kernel

A measure µ ∈M(D) will be tacitly extended to Rn by 0 off D whenever such an extension
(denoted by the same symbol µ) is an element of M(Rn). This can be done, in particular, if
µ is bounded.

Lemma 2.3 Fix y ∈ Rn and a bounded µ ∈M(D). If U µ

α (y) or U
β α

Dc µ

α (y) is finite,5 then
U µ

ĝα
D
(y) is well defined and given by

U µ

ĝα
D
(y) =U

µ−β α

Dc µ

α (y). (2.7)

Proof Under the stated assumptions, in view of (2.3) and (2.6) we have

U µ

ĝα
D
(y) =

∫
ĝα

D(x,y)dµ(x) =
∫ [

Uεx
α (y)−U

β α

Dc εx
α (y)

]
dµ(x) =U µ

α (y)−U
β α

Dc µ

α (y),

and the lemma follows. ut
5 This holds for any y ∈ D; and also for any y ∈ Dc, the latter provided µ is compactly supported in D.
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Lemma 2.4 Fix a bounded measure µ ∈ Egα
D
(D), 0 < α 6 2. Then the measure µ (extended

to Rn by 0 off D) has finite α-Riesz energy, while Egα
D
(µ) can be written in the form

Egα
D
(µ) = Eα

(
µ−β

α
Dc µ

)
= Eα(µ)−Eα

(
β

α
Dc µ

)
. (2.8)

Proof It is seen from Lemma 2.3 that the potential U µ

gα
D
(y) is well defined for all y ∈ D and

given by (2.7). Besides, since Egα
D
(µ) is finite, U µ

gα
D

is finite µ-almost everywhere (µ-a.e.).
Integrating (2.7) with respect to µ , we therefore obtain

Egα
D
(µ) = Eα

(
µ−β

α
Dc µ,µ

)
.

As β α
Dc µ is C-absolutely continuous, while U

µ−β α

Dc µ

α (x) = 0 n.e. in Dc, this yields

∞ > Egα
D
(µ) = Eα

(
µ−β

α
Dc µ

)
. (2.9)

Likewise, (2.9) holds true for |µ| in place of µ , which in view of the pre-Hilbert structure
on Eα(Rn) implies that the measure |µ| extended by 0 off D belongs to Eα(Rn); hence, so
does µ . Since Eα(µ,β

α
Dc µ) = Eα(β

α
Dc µ), the lemma follows. ut

Corollary 2.1 Fix a bounded µ ∈ Egα
D
(D), 0 < α 6 2. For nearly all y ∈ Rn, the func-

tion U µ

ĝα
D
(y) is finite and given by relation (2.7).

Proof By Lemma 2.4, µ ∈ Eα(Rn) and, consequently, U µ

α (y) is finite n.e. in Rn (see, e.g.,

[11, p. 164]). Since so is U
β

µ

Dc
α (y), the corollary follows. ut

Lemma 2.5 Fix a bounded measure µ ∈ E +
gα

D
(D), 0 < α 6 2, possessing the property6

U µ

gα
D
(y)6 M µ-a.e., (2.10)

where M ∈ (0,∞). Then

U µ

α (y)6 M+U
β α

Dc µ

α (y) for all y ∈ Rn. (2.11)

Proof According to Lemma 2.4, µ ∈ E +
α (Rn). Therefore, by Corollary 2.1 and (2.10), we

have U µ

α (y)6 M+U
β α

Dc µ

α (y) µ-a.e. As M > 0, it is seen from [16, Theorems 1.24, 1.30] that
the function on the right-hand side of this inequality is nonnegative and α-superharmonic
on Rn, which in view of [16, Theorems 1.27, 1.29] yields (2.11). ut

Corollary 2.2 The kernel gα
D, 0 < α 6 2, satisfies Frostman’s maximum principle.

Proof Consider a compactly supported µ ∈M+(D) such that U µ

gα
D
(y)6M on Sµ

D. Since then

both (2.7) and Lemma 2.5 can be applied, we get U µ

gα
D
(y)6 M on D, as was to be proved. ut

Next we prove the strict positive definiteness of the α-Green kernel, also referred to as
the energy principle [20, p. 144].

Theorem 2.2 The kernel gα
D, 0 < α 6 2, is strictly positive definite.

6 Since U µ

gα
D

, where µ ∈M+(D), is lower semicontinuous on D, inequality (2.10) actually holds on Sµ

D.
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Proof It is enough to consider the case α 6= 2, for the 2-Green kernel is strictly positive
definite by [8, Chapter XIII, Section 7].

We start by showing that gα
D is positive definite. Although this follows immediately

from [18, Theorem 3] in view of Corollary 2.2, we present here a direct proof.
To this end, note that for any increasing sequence (or net) of compact subsets K ⊂ D

with the union D,

lim
K↑D

Egα
D
(ν ,µK) = lim

K↑D

〈
Uν

gα
D
,µK
〉
= Egα

D
(ν ,µ) for any ν ,µ ∈ Egα

D
(D), (2.12)

where ωK is the trace of a Radon measure ω on K. Indeed, assume first that ν ,µ ∈ E +
gα

D
(D).

Since then Uν

gα
D

is nonnegative and lower semicontinuous on D, while µK → µ vaguely as
K ↑ D, (2.12) is obtained directly from Lemma 2.1. On account of the definition of finite
energy for signed measures, (2.12) extends right-away to any µ,ν ∈ Egα

D
(D), as claimed.

Suppose µ ∈ Egα
D
(D). Then by (2.12) with µ = ν and Lemma 2.4 we have

Egα
D
(µ) = lim

K↑D
Egα

D
(µK) = lim

K↑D
Eα(µK−β

α
Dc µK)> 0,

for the α-Riesz kernel is strictly positive definite, and so gα
D is indeed positive definite.

Having chosen µ ∈ Egα
D
(D) with ‖µ‖gα

D
= 0, we next proceed to show that µ = 0. By

the Cauchy–Schwarz (Bunyakovski) inequality in the pre-Hilbert space Egα
D
(D),

Egα
D
(µ,ν) = 0 for any ν ∈ Egα

D
(D). (2.13)

To establish the claimed assertion µ = 0, fix an arbitrary ϕ ∈ C∞
0 (D)

(
⊂ C∞

0 (Rn)
)
. Accord-

ing to [16, Lemma 1.1], there exists a (signed Radon) absolutely continuous (with respect to
the n-dimensional Lebesgue measure) measure ψ ∈M(Rn) such that ϕ(x) =Uψ

α (x) for all
x ∈ Rn. Furthermore, according to [16, Eq. (1.3.16)], its density satisfies the assumption

ψ(x) = O
( 1
|x|n+α

)
,

and consequently ψ ∈ Eα(Rn). For any compact set K ⊂ D we then have, by (2.7) for µK
instead of µ and Corollary 2.1,〈

ϕ,µK
〉
=
〈
Uψ

α ,µK
〉
=
〈
U µK

α ,ψ
〉
=
〈
U

β α

Dc µK
α ,ψ

〉
+
〈
U µK

ĝα
D
,ψ
〉

=
〈
Uψ

α ,β α
Dc µK

〉
+
〈
U µK

ĝα
D
,ψ
〉
=
〈
U µK

gα
D
,ψD

〉
,

because Uψ

α (x) = ϕ(x) = 0 for all x ∈ S
β α

Dc µK
Rn ⊂ Dc, while U µK

ĝα
D
(x) = 0 n.e. in Dc by (2.7).

Observe that ψD, being of finite α-Riesz energy, has finite α-Green energy as well.
Therefore, by the preceding display,〈

ϕ,µK
〉
=
〈
UψD

gα
D
,µK
〉
.

Since ϕ is |µ|-integrable, we thus get, by (2.12),〈
ϕ,µ

〉
= lim

K↑D

〈
ϕ,µK

〉
= lim

K↑D

〈
UψD

gα
D
,µK
〉
= lim

K↑D
Egα

D
(ψD,µK) = Egα

D
(ψD,µ) = 0,

where the very last equality being valid because of (2.13) for ν = ψD.
In view of the arbitrary choice of ϕ ∈C∞

0 (D), µ = 0 as a distribution on D. Since C∞
0 (D)

is dense in C0(D), µ equals 0 as a Radon measure on D as well. ut
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Remark 2.3 If α = 2 and D is regular, then the (classical) Green kernel g2
D is known to be

perfect (see [5,11,16]). For a similar perfectness-type result related to the case where either
α < 2, or α = 2 but D is not regular, see Theorem 10.1 below. At the moment we can only
assert that then the restriction of gα

D to any compact subset of D is perfect, which is seen
from [11, Theorems 3.3, 3.4.1] and Theorem 2.2 in view of the regularity of gα

D, the latter
being obvious from (2.7) and the regularity of κα (see [16, Theorem 1.7]).

Lemma 2.6 For any B⊂ D, Cα(B) = 0 if and only if Cgα
D
(B) = 0.

Proof We need the following general facts related to an arbitrary strictly positive definite
kernel κ on a locally compact space X. First of all, for any B⊂ X,

Cκ(B) = sup
K∈{K}B

Cκ(K), (2.14)

where {K}B consists of all compact subsets of B (see [11]). Further, for any compact set
K ⊂ X one has Cκ(K)< ∞ and hence, by [11, Theorem 2.5],

Cκ(K) = sup µ(K), (2.15)

where µ ranges over all nonnegative measures supported by K with the additional property

U µ

κ (x)6 1 for all x ∈ Sµ

X.

Now we apply representation (2.15) to a compact set K ⊂ D and each of the α-Riesz
and the α-Green kernels, which is possible in view of their strict positive definiteness. Since
for every µ ∈M+(K), U µ

α (x)−U µ

gα
D
(x) is bounded on K in consequence of (2.7), the lemma

for B = K follows. To prove the lemma for any B⊂ D, it is thus left to apply (2.14). ut

Let B⊂D. By Lemma 2.6, if some expression U (x) is valid n.e. in B, then Cgα
D
(N) = 0,

N being the set of all x ∈ B with U (x) not to hold; and also the other way around.

2.6 Condensers. Existence of minimizers

By a condenser in Rn we mean an ordered pair B = (B1,B2) of nonintersecting sets B1,B2 ⊂
Rn (so far of arbitrary topological structure) treated as the positive and the negative plates
of B, respectively. Define

M(B) :=
{

ν ∈M(Rn) : ν
+ ∈M+(B1), ν

− ∈M+(B2)
}
,

Eα(B) :=M(B)∩Eα(Rn).

Then the following theorem on the strong completeness is true (see [23, Theorem 1]; com-
pare with [5] or [16, Theorem 1.19]).7

Theorem 2.3 Assume B1 and B2 to be closed in Rn. Then the metric space Eα(B) is com-
plete in the induced strong topology, and the strong convergence in this space implies the
vague convergence to the same limit.

7 In fact, Theorem 2.3 holds true also for α ∈ (2,n); see [23, Theorem 1]. Its proof is based on Deny’s
theorem [6] stating that, for the Riesz kernels, Eα can be completed by making use of distributions with finite
energy. Regarding the history of the question, see [21, Theorem A] and [22, Theorem 1].
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From now on we fix a (particular) condenser A= (A1,A2) in Rn with the plates A2 :=Dc

and A1 := F , where F j D is closed in the relative topology of D and Cα(F)> 0. Recall that
each component of Dc has been assumed in Section 2.4 to have nonzero α-Riesz capacity
as well; and therefore

Cα(Ai)> 0 for all i = 1, 2. (2.16)

Also fix a unit two-dimensional numerical vector 1 = (1,1), and define

Eα(A,1) :=
{

µ ∈ Eα(A) : µ
+(A1) = µ

−(A2) = 1
}
.

In view of (2.16), the class Eα(A,1) is nonempty and, hence, it makes sense to consider the
variational problem on the existence of λA ∈ Eα(A,1) with

Eα(λA) = inf
µ∈Eα (A,1)

Eα(µ)
(
=: Eα(A,1)

)
. (2.17)

In particular, the following theorem on the solvability holds (see [22, Theorems 5, 7]).8

Theorem 2.4 Let
inf

x∈F, y∈Dc
|x− y|> 0.

If, moreover, Cα(F)< ∞ then, for a solution to the minimum energy problem (2.17) to exist,
it is necessary and sufficient that either Cα(Dc)< ∞ or Dc be not α-thin at ∞Rn .9

In the paper, we are mainly interested in the case

F ∩∂Rn D 6=∅,

where Rn :=Rn∪{∞Rn} is the one-point compactification of Rn and F := C`Rn F . Then, in
general, the infimum in (2.17) can not be achieved among µ ∈ Eα(A,1). Using the physical
interpretation, which is possible for the Coulomb kernel, a short-circuit between the plates
of the condenser might occur.

Therefore, it is meaningful to investigate what kind of conditions on the objects under
consideration would prevent such a phenomenon, and a minimizer in the corresponding
minimum α-Riesz energy problem for the condenser A would, nevertheless, exist. One of
the ideas, to be discussed, is to find out such an upper constraint on the measures (charges)
from E +

α (F,1) which would not allow the “blow-up” effect between F and Dc. Note that we
do not intend to impose any constraint on the measures on Dc.

Assume also the measures from E +
α (F) to be influenced by some external field f , while

〈 f ,µ〉= 0 for all µ ∈ E +
α (Dc). Then, what kind of external fields, acting on the charges on F

only, would still guarantee the existence of minimizers?
Recently a similar problem for the logarithmic kernel in R2 has been investigated by

Beckermann and Gryson [1, Theorem 2.2]. Our study is related to the Riesz kernels and the
results obtained and the approaches applied are rather different from those in [1].

8 The first result of this type was obtained in [21, Theorem 1], where α = 2 and A1 was assumed to be
compact in D. See also [23, Theorem 12] where Theorem 2.4 has been generalized to any α ∈ (0,n) and any
a = (a1,a2) with ai > 0, i = 1,2. Instead of the balayage technique, which implicitly appears in Theorem 2.4,
for α ∈ (2,n) one should use the operator of orthogonal projection in the pre-Hilbert space Eα onto the convex
cone E +

α (Dc).
9 We refer to [21,27] for an example of a set with infinite Newtonian capacity, though 2-thin at ∞Rn .
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3 Constrained and unconstrained minimum energy problems

When speaking of the external field f , we shall tacitly assume that at least one of the fol-
lowing Cases I or II holds:

I. f
∣∣
F is lower semicontinuous, and it is > 0 unless F is compact, while f (x)= 0 n.e. in Dc;

II. f (x) =U
ζ−β α

Dc ζ

α (x), x ∈ Rn, where a (signed) bounded measure ζ ∈ Egα
D
(D) is given.

Applying relations (2.2) and (2.7) to ζ from Case II, on account of Corollary 2.1 we get

U
ζ−β α

Dc ζ

α (x) =Uζ

ĝα

Dc
(x) =

{
Uζ

gα

Dc
(x) for all x ∈ D,

0 n.e. in Dc.
(3.1)

Thus, Case II can be reduced to Case I provided ζ− = 0.
In both Cases I and II, the values Gα, f (µ) and Ggα

D, f
(ν) are well defined for all µ ∈

Eα(A) and ν ∈ E +
gα

D
(F), respectively, and

Gα, f (µ) = ‖µ‖2
α +2〈 f ,µ+〉>−∞, (3.2)

Ggα
D, f

(ν) = ‖ν‖2
gα

D
+2〈 f ,ν〉>−∞. (3.3)

If Case II takes place then, in consequence of (3.1) and the pre-Hilbert structures on Eα(Rn)
and Egα

D
(D), these values can alternatively be expressed in the form

Gα, f (µ) = ‖µ‖2
α +2Eα(ζ −β

α
Dc ζ ,µ) = ‖µ +ζ −β

α
Dc ζ‖2

α −‖ζ −β
α
Dc ζ‖2

α , (3.4)

Ggα
D, f

(ν) = ‖ν‖2
gα

D
+2Egα

D
(ζ ,ν) = ‖ν +ζ‖2

gα
D
−‖ζ‖2

gα
D
. (3.5)

Write

Eα, f (A,1) := Eα(A,1)∩Eα, f (Rn) and E +
gα

D, f
(F,1) := E +

gα
D
(F,1)∩Egα

D, f
(D);

these classes of measures are both convex. It is seen from (3.4) and (3.5) that, in Case II,

Eα, f (A,1) = Eα(A,1) and E +
gα

D, f
(F,1) = E +

gα
D
(F,1). (3.6)

We denote by C(F) the collection of all ξ ∈M+(D) with the properties

Sξ

D = F and ξ (F)> 1;

such ξ will be treated as constraints for measures from the class M+(F,1). Let C0(F)
consist of all bounded ξ ∈ C(F). Given ξ ∈ C(F), write

E ξ

α, f (A,1) :=
{

µ ∈ Eα, f (A,1) : µ
+ 6 ξ

}
,

E ξ

gα
D, f

(F,1) :=
{

ν ∈ E +
gα

D, f
(F,1) : ν 6 ξ

}
,

where ν1 6 ν2 means that ν2−ν1 is a nonnegative Radon measure.
To combine (where this is possible) assertions related to extremal problems in both the

constrained and unconstrained settings, we accept the notations

E ∞
α, f (A,1) := Eα, f (A,1) and E ∞

gα
D, f

(F,1) := E +
gα

D, f
(F,1).
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In all that follows, we consider a fixed σ ∈C(F)∪{∞}, where the formal formula σ =∞

means that no upper constraint is allowed,10 and we define

Gσ
α, f (A,1) := inf

µ∈E σ
α, f (A,1)

Gα, f (µ),

Gσ

gα
D, f

(F,1) := inf
ν∈E σ

gα
D , f

(F,1)
Ggα

D, f
(ν).

In the case σ = ∞, the upper index ∞ will often be omitted, i.e., we shall write

Gα, f (A,1) := G∞
α, f (A,1) and Ggα

D, f
(F,1) := G∞

gα
D, f

(F,1).

Note that each of Gσ
α, f (A,1) and Gσ

gα
D, f

(F,1) is > −∞. Indeed, in Case I this follows
from the fact that a lower semicontinuous function is bounded from below on a compact set,
while in Case II it is obtained directly from (3.4) and (3.5). One can also see from (2.16)
and Lemma 2.6 that any of the classes E σ

α, f (A,1) and E σ

gα
D, f

(F,1) is nonempty if and only if

so is the other, and therefore the following two assumptions are equivalent:11

Gσ
α, f (A,1)< ∞, (3.7)

Gσ

gα
D, f

(F,1)< ∞. (3.8)

Problem 3.1 Under condition (3.7), does there exist λ σ
A from E σ

α, f (A,1) whose f -weighted
α-Riesz energy is minimal in this class, i.e.

Gα, f (λ
σ
A ) = Gσ

α, f (A,1)? (3.9)

Problem 3.1 turns out to be intricately related to the following one.

Problem 3.2 Under condition (3.8), does there exist λ σ
F from E σ

gα
D, f

(F,1) whose f -weighted
α-Green energy is minimal in this class, i.e.

Ggα
D, f

(λ σ
F ) = Gσ

gα
D, f

(F,1)? (3.10)

Note that, if σ = ∞ and f = 0, then Problem 3.1 is in fact reduced to the minimum
energy problem (2.17), while Problem 3.2 to that appeared in (2.1) for B = F and κ = gα

D.
The rest of the paper is organized as follows. Sufficient and/or necessary conditions for

Problems 3.1 and 3.2 to be solvable are established in Sections 5, 6 and 7. In Section 5
they are formulated either in measure theory terms for the constraints under consideration,
or in geometric-potential terms for F and Dc, while in Sections 6 and 7 they are given in
terms of variational inequalities for the f -weighted potentials. Sections 6 and 7 provide also
a detailed analysis of the supports of the minimizers. The results obtained are proved in
Sections 8, 9, 12 and 13, and they are illustrated by the examples in Section 14.

E.g., by Theorem 5.2, in both Cases I and II, the condition Cgα
D
(F) < ∞ is close to

be sufficient for Problem 3.2 to be solvable for every σ ∈ C(F)∪ {∞}, while according
to Theorem 5.3, it is also necessary for this to happen provided Case II with ζ > 0 holds.
However, if we restricted our analysis to the constraints from the class C0(F) then, in Case I,
Problem 3.2 would already be always solvable (see Theorem 5.1). Further, if we assume Dc

10 It is natural to set ν 6 ∞ for all ν ∈M+(F).
11 See Lemmas 4.5, 4.6 and Remark 4.1 below, providing necessary and/or sufficient conditions for (3.7)

and (3.8) to hold.
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to be not α-thin at ∞Rn , then all this remains true for Problem 3.1 as well. See Section 5 for
the strict formulations of the results just described.

It is seen from the results obtained that the classes of condensers for which the problems
under discussion admit solutions in the constrained or the unconstrained settings, respec-
tively, are drastically different from each other. In fact, under quite general assumptions on
the external field, the solvability of these problems with a proper active constraint holds
(and, hence, no blow-up effect occurs) even if F touches the boundary of D over a set with
nonzero α-Riesz capacity, while this is no longer the case for σ = ∞ (see Remark 6.1).

A crucial key in the proofs is Theorem 10.1, which provides us with a perfectness-type
result for the kernel gα

D, α 6 2. It makes it possible, in particular, to establish Theorem 11.1
on the existence of the α-Green equilibrium measure of a set.

The uniqueness of solutions to Problems 3.1 and 3.2 is shown by Lemma 4.1 in the next
section. Another assertion of this section, Lemma 4.2, discovers an intimate relationship
between their solvability (or unsolvability), as well as their minimizers (provided they exist),
which turns out to be a powerful tool in the proofs of the above-mentioned results.

4 Auxiliary assertions

Lemma 4.1 A solution to Problem 3.1, as well as that to Problem 3.2, is unique (provided
it exists).

Proof We shall verify the latter part of the lemma. Assume there exist two solutions to
Problem 3.2, λ σ

F and λ̂ σ
F . Since the class E σ

gα
D, f

(F,1) is convex, from (3.3) we get

4Gσ

gα
D, f

(F,1)6 4Ggα
D, f

(
λ σ

F + λ̂ σ
F

2

)
= ‖λ σ

F + λ̂
σ
F ‖2

gα
D
+4〈 f ,λ σ

F + λ̂
σ
F 〉.

Applying the parallelogram identity in the pre-Hilbert space Egα
D
(D), we obtain

0 6 ‖λ σ
F − λ̂

σ
F ‖2

gα
D
6−4Gσ

gα
D, f

(F,1)+2Ggα
D, f

(λ σ
F )+2Ggα

D, f
(λ̂ σ

F ),

so that ‖λ σ
F − λ̂ σ

F ‖gα
D
= 0 by (3.10). As gα

D is strictly positive definite, λ σ
F = λ̂ σ

F .
Likewise, the former part of the lemma can be proved based on the convexity of the class

E σ
α, f (A,1), the pre-Hilbert structure in the space Eα(Rn), and the strict positive definiteness

of the kernel κα . ut

Lemma 4.2 Assume Dc to be not α-thin at ∞Rn . Then for every σ ∈ C(F)∪{∞},

Gσ

gα
D, f

(F,1) = Gσ
α, f (A,1). (4.1)

In addition, the solution to Problem 3.1 exists if and only if so does that to Problem 3.2, and
then they are related to each other by the formula

λ
σ
A = λ

σ
F −β

α
Dc λ

σ
F . (4.2)

Proof We begin by establishing the inequality

Gσ

gα
D, f

(F,1)> Gσ
α, f (A,1). (4.3)
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Having assumed Gσ

gα
D, f

(F,1)< ∞, we fix ν ∈ E σ

gα
D, f

(F,1); then, by Lemma 2.4 for ν in place
of µ and (2.5) for Q = Dc,

ν−β
α
Dc ν ∈ E σ

α, f (A,1).

On account of (2.8), (3.2) and (3.3), we therefore get

Ggα
D, f

(ν) = ‖ν‖2
gα

D
+2〈 f ,ν〉= ‖ν−β

α
Dc ν‖2

α +2〈 f ,ν〉= Gα, f (ν−β
α
Dc ν)> Gσ

α, f (A,1).

Since ν ∈ E σ

gα
D, f

(F,1) has been chosen arbitrarily, this yields (4.3).

On the other hand, for any µ ∈ E σ
α, f (A,1) we have µ+ ∈ E σ

gα
D, f

(F,1). Thus, due to (2.4)
and (2.8),

Gα, f (µ) = ‖µ‖2
α +2〈 f ,µ+〉> ‖µ+−β

α
Dc µ

+‖2
α +2〈 f ,µ+〉

= ‖µ+‖2
gα

Dc
+2〈 f ,µ+〉= Ggα

D, f
(µ+)> Gσ

gα
D, f

(F,1). (4.4)

In view of the arbitrary choice of µ ∈E σ
α, f (A,1), this proves (4.1) when combined with (4.3).

Let now λ σ
F ∈ E σ

gα
D, f

(F,1) satisfy (3.10). Then, in consequence of (2.5) and Lemma 2.4,

µ̂ := λ
σ
F −β

α
Dc λ

σ
F ∈ E σ

α, f (A,1).

Substituting µ̂ instead of µ in relation (4.4), we see that all the inequalities therein are, in
fact, equalities. Therefore, by (4.1),

Gα, f (µ̂) = Gσ

gα

Dc , f
(F,1) = Gσ

α, f (A,1),

so that the measure λ σ
A , defined by (4.2), solves Problem 3.1.

To complete the proof, assume further that λ σ
A = λ+−λ− ∈ E σ

α, f (A,1) satisfies (3.9).
Then, by (4.1) and (4.4), the latter with λ σ

A instead of µ ,

Gσ

gα
D, f

(F,1) = Gα, f (λ
σ
A )> ‖λ+−β

α
Dc λ

+‖2
α +2〈 f ,λ+〉

= ‖λ+‖2
gα

Dc
+2〈 f ,λ+〉= Ggα

D, f
(λ+)> Gσ

gα
D, f

(F,1).

Hence, all the inequalities here are, in fact, equalities. This shows that λ σ
F := λ+ solves

Problem 3.2 and, on account of (2.4), also that λ− = β α
Dc λ+ = β α

Dc λ σ
F . ut

Lemma 4.3 Assume (3.8) holds. For a measure λ = λ σ
F ∈ E σ

gα
D, f

(F,1) to solve Problem 3.2,
it is necessary and sufficient that〈

W λ

gα
D, f

,ν−λ
〉
> 0 for all ν ∈ E σ

gα
D, f

(F,1). (4.5)

Proof By direct calculation, for any ν ,µ ∈ E σ

gα
D, f

(F,1) and any h ∈ (0,1] we obtain

Ggα
D, f
(
hν +(1−h)µ

)
−Ggα

D, f
(
µ
)
= 2h

〈
W µ

gα
D, f

,ν−µ
〉
+h2∥∥ν−µ

∥∥2
gα

D
. (4.6)

If µ = λ σ
F solves Problem 3.2, then the left (hence, the right) side of (4.6) is > 0, for the

class E σ

gα
D, f

(F,1) is convex, which leads to (4.5) by letting h→ 0.
Conversely, if (4.5) holds, then (4.6) with µ = λ and h = 1 gives Ggα

D, f
(ν)> Ggα

D, f
(λ )

for all ν ∈ E σ

gα
D, f

(F,1), which means that λ = λ σ
F solves Problem 3.2. ut
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Lemma 4.4 Ggα
D, f

(·) is vaguely lower semicontinuous on E +
gα

D
(D) if Case I takes place, and

otherwise, it is strongly continuous.

Proof If Case I holds, then the lemma follows from Lemma 2.1 and [11, Lemma 2.2.1, (e)],
while otherwise it is a direct consequence of relation (3.5). ut

Lemmas 4.5 and 4.6 below provide sufficient and/or necessary conditions that guaran-
tee (3.7) and (3.8) (compare with Lemmas 4 and 5 from [25]). From now on we write

F0 :=
{

x ∈ F : f (x)< ∞
}
. (4.7)

Lemma 4.5 Let σ = ∞. Then (3.8) (hence, also (3.7)) holds if and only if Cα(F0)> 0.

Proof Suppose first that Cα(F0)> 0. On account of [11, Lemma 2.3.3], then one can choose
a compact set K ⊂ F0 with Cα(K)> 0 so that f (x)6 M < ∞ for all x ∈K. In turn, this yields
that there exists ν ∈ E +

gα
D
(K,1) with Ggα

D, f
(ν)< ∞, and (3.8) follows.

To prove the necessary part, assume, on the contrary, that Cα(F0)= 0. Since then Cgα
D
(F0)=

0 by Lemma 2.6, [11, Lemma 2.3.1] implies E +
gα

D, f
(F,1) =∅, which contradicts (3.8). ut

Definition 4.1 ξ ∈ C(F) is called admissible if its restriction to any compact subset of F
has finite α-Riesz (hence, α-Green) energy. Let A (F) consist of all admissible constraints.

When considering admissibility of a constraint, the parameter α and the set F should be
clear in each context. Observe that, for a constraint ξ ∈ C(F) to be admissible, it is suffi-
cient that its α-Green potential be continuous. Also note that any ξ ∈A (F) is C-absolutely
continuous.

Lemma 4.6 If ξ ∈A (F), then (3.8) (hence, also (3.7)) holds provided that ξ (F0)> 1.

Proof Choose a compact set K ⊂ F0 so that ξ (K)> 1 and f (x)6 M < ∞ for all x ∈ K. Then
ξ |K
/

ξ (K) ∈ E ξ

gα
D, f

(F,1), which results in (3.8). ut

Remark 4.1 If Case II takes place, then f (x) is finite n.e. in F and, hence, Lemma 4.5
(similarly, Lemma 4.6) remains true with Cα(F0)> 0 (respectively, ξ (F0)> 1) dropped.

5 Criteria of the solvability given either in measure theory terms for σ , or in
geometric-potential terms for F and Dc

Throughout this section and Sections 6 and 7, assume (3.7) or, equivalently, (3.8) to be
satisfied. See Lemmas 4.5, 4.6 and Remark 4.1 above, providing necessary and/or sufficient
conditions for these to hold.

Theorem 5.1 If Case I takes place, then Problem 3.2 is (uniquely) solvable for every con-
straint ξ ∈ C0(F).

Theorem 5.2 Assume that
Cgα

D
(F)< ∞ (5.1)

and

(∗) α = 2 and D is regular, or F ∩∂Rn D consists of at most one point.
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Then, in both Cases I and II, Problem 3.2 is (uniquely) solvable for every σ ∈ C(F)∪{∞}.12

Theorem 5.3 Suppose that Case II with ζ > 0 takes place. If, moreover, Cgα
D
(F) = ∞, then

Problem 3.2 is unsolvable for every σ ∈ C(F)∪{∞} such that σ > ξ0, where ξ0 ∈ C(F) \
C0(F) is properly chosen.

Combining Theorems 5.2 and 5.3 shows that, if assumption (∗) and Case II with ζ > 0
both hold, then (5.1) is necessary and sufficient for Problem 3.2 to be solvable for every
σ ∈ C(F)∪{∞}.

Theorems 5.1 and 5.3 are proved in Sections 8 and 9, respectively. The proof of Theo-
rem 5.2, to be given is Section 12, is based on the auxiliary Theorems 10.1 and 11.1 (see
Sections 10 and 11, respectively) which present also independent interest.

Theorem 5.4 Assume Dc to be not α-thin at ∞Rn . Under the hypotheses of Theorem 5.1
(similarly, Theorems 5.2 or 5.3), its conclusion remains true for Problem 3.1 as well.

Indeed, Theorem 5.4 is obtained from Theorems 5.1–5.3 with the help of Lemma 4.2.
In the next two sections we shall examine properties of the f -weighted potentials and

the supports of the minimizers λ σ
F and λ σ

A , whose existence has been ensured, e.g., by The-
orems 5.1, 5.2, and 5.4.

6 Variational inequalities for the f -weighted α-Green potentials

This section provides necessary and/or sufficient conditions for the solvability of Prob-
lem 3.2 in terms of variational inequalities for the f -weighted α-Green potentials. It also
presents a detailed analysis of properties of the supports of the minimizers. The proofs of
the results formulated in this section are given in Section 13.

Following [16, p. 164], we denote by F̆ the reduced kernel of F , i.e.

F̆ :=
{

x ∈ F : Cα

(
B(x,ε)∩F

)
> 0 for every ε > 0

}
. (6.1)

Here B(x,ε) := {y ∈Rn : |y−x|< ε}. Observe that, if the constraint under consideration is
admissible, then necessarily F = F̆ .

To simplify the formulations of the results obtained, throughout this section and Sec-
tion 7 we assume ∂D to be simultaneously the boundary of the (open) set IntDc. Here, the
boundary and the interior are considered relative to Rn. Notice that then mn(Dc)> 0, where
mn is the n-dimensional Lebesgue measure.

6.1 Variational inequalities in the constrained α-Green minimum energy problems

We start by studying Problem 3.2 in the constrained case (i.e., for σ 6= ∞). In this section,
we consider ξ ∈A (F) and assume that ξ (F0)> 1. Note that, for any ν ∈ E +

gα
D
(F), W ν

gα
D, f

(x)
is well defined and 6=−∞ n.e. in F , while it is finite n.e. in F0 (see (4.7)).

12 Compare with [26, Theorem 2.2] and [27, Theorem 8.1]. Also notice that the requirement (∗) guarantees
the completeness of a proper metric subspace of E +

gα

Dc
(F) (see Theorem 10.1), and it could be omitted if one

would establish the perfectness of the kernel gα
Dc , α ∈ (0,2], in its entire generality.
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Theorem 6.1 Let Case I take place. Then a measure λ ∈ E ξ

gα
D, f

(F,1) solves Problem 3.2 if

and only if there exists wλ ∈ R possessing the following two properties:13

W λ

gα
D, f

(x)> wλ (ξ −λ )-a.e. in F, (6.2)

W λ

gα
D, f

(x)6 wλ for all x ∈ Sλ
D. (6.3)

Corollary 6.1 Let f
∣∣
D=U χ

gα
D

, where χ ∈ E +
gα

Dc
(D) is bounded. If λ solves Problem 3.2, then

Cα

(
∂D∩C`Rn Sξ−λ

D

)
= 0.

When speaking of the non-weighted case f = 0, we simply write

E ξ

gα
D
(F,1) :=

{
ν ∈ E +

gα
D
(F,1) : ν 6 ξ

}
.

Then Problem 3.2 is in fact reduced to that on the existence of λ0 ∈ E ξ

gα
D
(F,1) with

Egα
D
(λ0) = inf

ν∈E ξ

gα
D
(F,1)

Egα
D
(ν). (6.4)

Corollary 6.2 Let f = 0. A measure λ0 ∈ E ξ

gα
D
(F,1) solves Problem 3.2 if and only if there

exists w′
λ0
∈ (0,∞) such that

Uλ0
gα

D
(x) = w′

λ0
(ξ −λ0)-a.e. in F, (6.5)

Uλ0
gα

D
(x)6 w′

λ0
for all x ∈ D. (6.6)

If, moreover, α < 2, then also

Sλ0
D = F. (6.7)

On account of the uniqueness of a solution to Problem 3.2, such w′
λ0

is unique (provided
it exists). If the constraint ξ is bounded, then integration (6.5) with respect to ξ −λ0 gives

w′
λ0

=
Egα

D
(λ0,ξ −λ0)

(ξ −λ0)(D)
. (6.8)

6.2 Variational inequalities in the unconstrained α-Green minimum energy problems

Throughout this section, it is assumed that σ =∞. We proceed with criteria of the solvability
of Problem 3.2, given in terms of variational inequalities for the f -weighted α-Green po-
tentials. In the unconstrained case, the results obtained take a simpler form if compare with
those in the constrained case, while provide us with much more detailed information about
the potentials and the supports of the minimizers.

13 The first results of such kind have been established by [9, Theorem 2.1] and [19, Theorem 3] for the
logarithmic kernel on the plane; see also [26, Theorem 2.3] pertaining to a positive definite kernel on a
locally compact space.
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Theorem 6.2 Suppose that Case I takes place. For λ ∈ E +
gα

D, f
(F,1) to solve Problem 3.2, it

is necessary and sufficient that there exist w f ∈ R possessing the properties

W λ

gα
D, f

(x)> w f n.e. in F, (6.9)

W λ

gα
D, f

(x)6 w f for all x ∈ Sλ
D.

Such a number w f is unique (provided it exists) and can be given by the formula

w f =
〈
W λ

gα
D, f

,λ
〉
.

Recall that F̆ , the reduced kernel of F , has been defined by (6.1).

Corollary 6.3 Let Problem 3.2 be solvable. Then the following two assertions hold:

(a) If Case II with ζ > 0 takes place, then Cgα
D
(F)< ∞;

(b) If f
∣∣
D=U χ

gα
D

, where χ ∈ E +
gα

Dc
(D) is bounded, then Cα

(
∂D∩C`Rn F̆

)
= 0.

Corollary 6.4 Let f = 0. Then λF ∈ E +
gα

D
(F,1) solves Problem 3.2 if and only if there exists

a number w ∈ (0,∞) admitting the properties

UλF
gα

D
(x) = w n.e. in F, (6.10)

UλF
gα

D
(x)6 w for all x ∈ D. (6.11)

Such a number w is unique (provided it exists) and can be written in the form

w = Egα
D
(λF) = wgα

D
(F) =

[
Cgα

D
(F)
]−1

. (6.12)

Furthermore, if the minimizer λF exists, then it is the unique measure in the class E +
gα

D
(F,1)

whose α-Green potential is constant n.e. in F. Namely, if ν ∈ E +
gα

D
(F,1) and Uν

gα
D
(x) = c

n.e. in F, where c ∈ R, then ν = λF .

For the sake of simplicity, in the following assertion we assume that, if α = 2, then D\F
is connected.

Corollary 6.5 Let f = 0. If λF solves Problem 3.2, then, in addition to (6.10) and (6.11),
we have

UλF
gα

D
(x)< w for all x ∈ D\ F̆ . (6.13)

Furthermore,

SλF
D =

{
F̆ if α < 2,

∂DF̆ if α = 2.
(6.14)

Remark 6.1 It follows from the above-mentioned results that the classes of condensers for
which Problem 3.2 is solvable in the constrained or the unconstrained settings, respec-
tively, are drastically different from each other. To be specific, consider f

∣∣
D= U χ

gα
D

where

χ ∈ E +
gα

Dc
(D) is bounded. Then f is finite n.e. in D and, hence, by Lemmas 4.5 and 4.6, as-

sumption (3.8) holds automatically for any σ ∈A (F)∪{∞}. If now σ ∈A (F) is bounded
then, according to Theorem 5.1, Problem 3.2 with the active constraint σ is solvable for
any F j D (e.g., that touches ∂D over a set with nonzero α-Riesz capacity or even over the
whole ∂D). But if Problem 3.2 admits a solution for σ = ∞, then, by Corollary 6.3, (b), F̆
has to touch ∂D only over a set with α-Riesz capacity zero.
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6.3 Duality relation between non-weighted constrained and weighted unconstrained
minimum α-Green energy problems

Throughout this section, F is compact. Consider the non-weighted Problem 3.2 with a con-
straint ξ ∈ C(F) whose potential Uξ

gα
D
(x) is continuous. Note that then ξ is bounded and

admissible. By either of Theorems 5.1 or 5.2, there exists the solution λ0 to the problem,
i.e. both λ0 ∈ E ξ

gα
D
(F,1) and (6.4) hold. Write

θ := q(ξ −λ0), where q :=
1

ξ (F)−1
.

Combining Corollary 6.2 and Theorem 6.2 allows us to formulate the following result.

Theorem 6.3 The measure θ solves Problem 3.2 with the external field f (x) := −qUξ

gα
D
(x)

in both the unconstrained and the qξ -constrained settings, i.e.

θ ∈ E qξ

gα
D, f

(F,1)⊂ E +
gα

D, f
(F,1) and Ggα

D, f
(θ) = Gqξ

gα
D, f

(F,1) = Ggα
D, f

(F,1).

Moreover,

W θ

gα
D, f

(x) =−qw′
λ0

for all x ∈ Sθ
D, (6.15)

W θ

gα
D, f

(x)>−qw′
λ0

for all x ∈ D, (6.16)

where w′
λ0

is the number determined uniquely by identity (6.8).

7 Variational inequalities for the f -weighted α-Riesz potentials

This section is devoted to necessary and/or sufficient conditions for the solvability of Prob-
lem 3.1 with σ ∈ C(F)∪{∞}, given in terms of variational inequalities for the f -weighted
α-Riesz potentials. Throughout this section, we assume Dc to be not α-thin at ∞Rn .

Then, by Lemma 4.2, for λ σ
A = λ+ − λ− to solve Problem 3.1, it is necessary and

sufficient that λ+ solve Problem 3.2 with the same σ . Furthermore, by (4.2),

λ
− = β

α
Dc λ

+, (7.1)

which yields

W
λ σ

A
α, f (x) =U

λ+−β α

Dc λ+

α (x)+ f (x) =W λ+

gα
D, f

(x) for all x ∈ D.

For the sake of simplicity, in the next assertion we assume that in the case α = 2, D is
simply connected.

Lemma 7.1 If λ σ
A = λ+−λ− solves Problem 3.1, then

Sλ−
Rn =

{
Dc if α < 2,
∂D if α = 2. (7.2)

Indeed, Lemma 7.1 follows from (7.1) and the description of the supports of the α-Riesz
balayage measures.
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7.1 Variational inequalities in the constrained α-Riesz minimum energy problems

In this section, consider ξ ∈ A (F) and assume ξ (F0) > 1, where F0 is given by (4.7).
Combining what has been noticed just above with the assertions of Section 6.1 (for λ+

instead of λ or λ0) results in the following Theorem 7.1 and Corollaries 7.1 and 7.2.

Theorem 7.1 Let Case I take place. Then λ
ξ

A = λ+−λ− ∈ E ξ

α, f (A,1) is the (unique) solu-
tion to Problem 3.1 if and only if (7.1) holds and, in addition, there exists w

λ
ξ

A
∈R possess-

ing the following two properties:

W
λ

ξ

A
α, f (x)> w

λ
ξ

A
(ξ −λ

+)-a.e. in F,

W
λ

ξ

A
α, f (x)6 w

λ
ξ

A
for all x ∈ Sλ+

D .

Corollary 7.1 Assume that f
∣∣
D= U χ

gα
D

, where χ ∈ E +
gα

Dc
(D) is bounded. If λ

ξ

A = λ+−λ−

solves Problem 3.1, then Cα

(
∂D∩C`Rn Sξ−λ+

D

)
= 0.

Corollary 7.2 Let f = 0. A measure λ
ξ

A = λ+−λ− ∈ E ξ

α, f (A,1) solves Problem 3.1 if and
only if (7.1) holds and, in addition, there exists a number w′

λ
ξ

A
∈ (0,∞) such that

U
λ

ξ

A
α (x) = w′

λ
ξ

A
(ξ −λ

+)-a.e. in F,

U
λ

ξ

A
α (x)6 w′

λ
ξ

A
for all x ∈ D.

Furthermore, if α < 2, then also Sλ+

D = F and Sλ−
Rn = Dc.

A number w′
λ

ξ

A
is unique (provided exists) and equal to w′

λ+ , where w′
λ+ is the number

from Corollary 6.2 for λ0 = λ+.

7.2 Variational inequalities in the unconstrained α-Riesz minimum energy problems

In this section, σ = ∞. Similarly as it has been done just above, we derive the following
corollaries from the assertions of Section 6.2.

Corollary 7.3 Assume Case I takes place. A measure λA = λ+− λ− ∈ Eα, f (A,1) solves
Problem 3.1 if and only if (7.1) holds and, in addition, there exists a (unique) number w′f ∈R
possessing the properties

W λA
α, f (x)> w′f n.e. in F,

W λA
α, f (x)6 w′f for all x ∈ Sλ+

D .

Furthermore, then w′f = w f , where w f is the number from Theorem 6.2, and assertions (a)
and (b) of Corollary 6.3 both hold.

For the sake of simplicity, in the following assertion we assume that in the case α = 2,
D\F is simply connected.
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Corollary 7.4 Let f = 0. A measure λA = λ+−λ− ∈ Eα(A,1) solves Problem 3.1 if and
only if (7.1) holds and there exists a (unique) number w′ ∈ (0,∞) such that

UλA
α (x) = w′ n.e. in F,

UλA
α (x)6 w′ for all x ∈ D,

UλA
α (x)< w′ for all x ∈ D\ F̆ .

Furthermore, then w′ = w, where w is the number from Corollary 6.4, i.e.

w′ = Eα(λA,λ
+) = Eα(λA) = Egα

D
(λ+) = wgα

D
(F) =

[
Cgα

D
(F)
]−1

= Eα(A,1).

The descriptions of Sλ+

D and Sλ−
Rn are given by (6.14) for λ+ in place of λF and (7.2),

respectively.

8 Proof of Theorem 5.1

Consider an exhaustion of F by an increasing sequence of compact sets Kk, k ∈N. Since the
constraint ξ is bounded, it holds

lim
k→∞

ξ (F \Kk) = 0. (8.1)

Because of assumption (3.8), there exists {µ`}`∈N ⊂ E ξ

gα
D, f

(F,1) such that

lim
`→∞

Ggα
D, f

(µ`) = Gξ

gα
D, f

(F,1). (8.2)

This sequence {µ`}`∈N is vaguely bounded; hence, by [3, Chapter III, Section 2, Prop. 9], it
has a vague cluster point µ0. We assert that, in Case I, µ0 is the solution to Problem 3.2.

Since M+(F) is vaguely closed in M+(D), we get µ0 ∈M+(F) and µ0 6 ξ . As, due
to [11, Lemma 1.2.1], M+(F) is actually sequentially closed, there exists a subsequence
{µ`m}m∈N of {µ`}`∈N converging vaguely to µ0. Then, in consequence of Lemma 2.1,

1 = lim
m→∞

µ`m(F)> µ0(D) = µ0(F) = lim
k→∞

µ0(Kk)

> lim
k→∞

limsup
m→∞

µ`m(Kk) = 1− lim
k→∞

liminf
m→∞

µ`m(F \Kk).

On account of the fact that µ`m(F \Kk)6 ξ (F \Kk) for all m,k∈N, combining the preceding
chain of inequalities with (8.1) yields µ0(F) = 1.

To complete the proof, it thus remains to observe that Ggα
D, f

(µ0)6 Gξ

gα
D, f

(F,1), which is

seen from (8.2) in view of the lower semicontinuity of Ggα
D, f

on E +
gα

D
(D) (see Lemma 4.4).

ut
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9 Proof of Theorem 5.3

Under the assumptions of the theorem, Case II with ζ > 0 takes place, and therefore

Ggα
D, f

(ν) = ‖ν‖2
gα

D
+2Egα

D
(ζ ,ν)> ‖ν‖2

gα
D
> 0 for all ν ∈ E +

gα
D
(D). (9.1)

Consider an exhaustion of F by an increasing sequence of compact sets Kk, k ∈N. Since
Cgα

D
(F) = ∞, the strict positive definiteness of the α-Green kernel and the subadditivity

of Cgα
D
(·) on the universally measurable sets yield Cgα

D
(F \Kk) = ∞ for all k ∈N. Hence, for

every k one can choose a measure νk ∈ E +
gα

D
(F \Kk,1) with compact support so that

lim
k→∞
‖νk‖2

gα
D
= 0. (9.2)

Certainly, there is no loss of generality in assuming Kk ∪Sνk
D ⊂ Kk+1.

Fix ξ ∈ C(F) and write ξ0 := ξ +∑k∈N νk; then ξ0 ∈ C(F) \C0(F). Due to (3.6), for
each σ ∈ C(F)∪{∞} such that σ > ξ0, it holds

νk ∈ E σ

gα
D, f

(F,1) for all k ∈ N.

From the Cauchy–Schwarz inequality in the pre-Hilbert space Egα
D
(D) and (9.2) we get

lim
k→∞

Ggα
D, f

(νk) = lim
k→∞

[
‖νk‖2

gα
D
+2Egα

D
(ζ ,νk)

]
6 2‖ζ‖gα

D
lim
k→∞
‖νk‖gα

D
= 0.

Combined with (9.1), this yields Gσ

gα
D, f

(F,1) = 0. In view of the strict positive definiteness
of gα

D, repeated application of (9.1) shows also that such infimum value can be attained only
at zero measure. As 0 6∈ E σ

gα
D, f

(F,1), Problem 3.2 with σ specified above is unsolvable. ut

10 Perfectness-type result for the α-Green kernel

A crucial point in our proof of Theorem 5.2, given in Section 12, is the following perfectness-
type result for the α-Green kernel, 0 < α 6 2.

Theorem 10.1 Let E ⊂ D be relatively closed. Suppose that α = 2 and D is regular, or
E∩∂Rn D consists of at most one point. Then any strong Cauchy sequence {νk}k∈N⊂ E +

gα
D
(E)

with
sup
k∈N

νk(E)6 M, (10.1)

where M ∈ (0,∞), converges both strongly and vaguely to the unique ν0 ∈ E +
gα

D
(E).

Proof We can certainly assume that either α < 2, or α = 2 but D is not regular, since oth-
erwise the theorem holds true due to the perfectness of the classical g2

D-kernel, established
in [5] (see also [16]).

The (strongly fundamental) sequence {νk}k∈N ⊂ E +
gα

D
(E) is strongly bounded, i.e.

sup
k∈N
‖νk‖gα

D
< ∞.

Besides, by (10.1), {νk}k∈N is vaguely bounded and hence, according to [3, Chapter III,
Section 2, Prop. 9], it has a vague cluster point ν0. Since E +

gα
D
(E) is a vaguely closed subset
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of M+(D), we actually have ν0 ∈ E +
gα

D
(E). Also observe that ν0 is bounded, which follows

from (10.1) in view of Lemma 2.1.
Application of [11, Lemma 1.2.1] shows that one can choose a subsequence {νk`}`∈N

of {νk}k∈N so that
νk` → ν0 vaguely as `→ ∞. (10.2)

We next proceed to show that νk` → ν0 also strongly in E +
gα

D
(E), i.e.

lim
`→∞
‖νk` −ν0‖gα

D
= 0. (10.3)

As {νk`}`∈N ⊂ E +
gα

D
(E), being a subsequence of the strong Cauchy sequence {νk}k∈N, is

strongly fundamental as well, we see from (2.8) that

ν̃k` := νk` −β
α
Dc νk` , ` ∈ N, (10.4)

is strongly fundamental in Eα(Rn). The proof of (10.3) is given in two steps.
Step 1. Throughout this step, let E ∩ ∂Rn D either be empty or consist of only ∞Rn .

Then νk` and β α
Dc νk` are supported by the sets E and Dc, which due to the assumptions

made are closed in Rn and nonintersecting. Consider the condenser B := (E,Dc). The strong
completeness theorem from [23] (or see Theorem 2.3 above) yields that there exists the
unique measure ν̃ = ν̃+− ν̃− ∈ Eα(B) such that

lim
`→∞
‖ν̃k` − ν̃‖α = 0. (10.5)

Furthermore, by this theorem, ν̃+ and ν̃− are the vague limits of the positive and the negative
parts of ν̃k` , ` ∈ N, respectively. In view of (10.2), we thus have

ν̃
+ = ν0, (10.6)

for the vague topology is Hausdorff.
By the remark in [11, p. 166], it follows from (10.5) that there exists a subsequence of

the sequence
{

ν̃k`

}
`∈N (denote it again by the same symbol) such that

U ν̃
α (x) = lim

`→∞
U

ν̃k`
α (x) n.e. in Rn.

On account of (10.4) and the countable subadditivity of Cα(·) over Borel sets, we see from
the preceding relation that U ν̃

α (x) = 0 n.e. in Dc and, therefore, ν̃− = β α
Dc ν̃+. Combining

this with (10.4), (10.5) and (10.6) implies

lim
`→∞

∥∥(νk` −ν0
)
−β

α
Dc
(
νk` −ν0

)∥∥
α
= 0,

which in view of (2.8), applied to the (bounded) measures νk` −ν0 ∈ Egα
D
(D), ` ∈ N, estab-

lishes (10.3).
Step 2. We next prove relation (10.3) in the case E ∩ ∂Rn D = {x0}, where x0 6= ∞Rn .

Throughout this step, all the measures can be assumed to have zero mass at x0, for we can
restrict our consideration to those with finite energy.

Define the inversion with respect to S(x0,1), namely, each point x 6= x0 is mapped to the
point x∗ on the ray through x which issues from x0, determined uniquely by

|x− x0| · |x∗− x0|= 1.
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This is a one-to-one, bicontinuous mapping of Rn \{x0} onto itself; furthermore,

|x∗− y∗|= |x− y|
|x0− x||x0− y|

. (10.7)

It can be extended to a one-to-one, bicontinuous map of Rn onto itself by setting x0 7→ ∞Rn .
To each ν ∈ M(Rn) (with ν({x0}) = 0) we correspond the Kelvin transform ν∗ ∈

M(Rn) by means of the formula

dν
∗(x∗) = |x− x0|α−n dν(x), x∗ ∈ Rn.

Then, in view of (10.7),

Uν∗
α (x∗) = |x− x0|n−αUν

α (x), x∗ ∈ Rn, (10.8)

and therefore
Eα(ν

∗) = Eα(ν) (10.9)

(see [16, Chapter IV, Section 5, n◦ 19] and [16, Chapter V, Section 2, n◦ 8], respectively).
It is obvious that the Kelvin transformation is additive, i.e.(

ν1 +ν2
)∗

= ν
∗
1 +ν

∗
2 . (10.10)

We also observe that
(β α

Dc ν)∗ = β
α

(Dc)∗ν
∗, (10.11)

where (Dc)∗ is the image of Dc under the inversion x 7→ x∗. Indeed, in view of (10.8) and
the definition of the α-Riesz balayage, we get

U
(β α

Dc ν)∗

α (x∗) = |x− x0|n−αU
β α

Dc ν

α (x) = |x− x0|n−αUν
α (x) =Uν∗

α (x∗),

the relation being valid for nearly all x ∈ Dc. Consequently, it also holds for nearly all
x∗ ∈ (Dc)∗, because the inversion of a set with Cα(·) = 0 has the interior α-Riesz capacity
zero as well (see [16, Chapter IV, Section 5, n◦ 19]). Since (β α

Dc ν)∗ is supported by (Dc)∗,
identity (10.11) follows.

Applying [16, Lemma 4.3] to νk` , ` ∈N, and ν0 (where νk` , ` ∈N, and ν0 are as above),
on account of (10.1) and (10.2) we have

ν
∗
k` → ν

∗
0 vaguely as `→ ∞. (10.12)

Also observe that, according to (10.9) and the fact that {ν̃k`}`∈N is strongly fundamental, so
is the sequence

(
ν̃k`

)∗ ∈ Eα(Rn), `∈N, which in consequence of (10.4), (10.10) and (10.11)
can be rewritten in the form(

ν̃k`

)∗
= ν

∗
k` −

(
β

α
Dc νk`

)∗
= ν

∗
k` −β

α

(Dc)∗ν
∗
k` , ` ∈ N. (10.13)

The positive and the negative parts of
(
ν̃k`

)∗ are supported by the sets E∗ and (Dc)∗, respec-
tively, which are closed in Rn and nonintersecting; hence, the strong completeness theorem
from [23] (see Theorem 2.3 above) can be applied. Therefore, there exists the unique mea-
sure ν̂ = ν̂+− ν̂− ∈ Eα(Rn), where ν̂+ and ν̂− are supported by E∗ and (Dc)∗, respectively,
such that

lim
`→∞

∥∥(ν̃k`

)∗− ν̂
∥∥

α
= 0. (10.14)
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Furthermore, ν̂+ and ν̂− are the vague limits of the positive and the negative parts of
(
ν̃k`

)∗,
` ∈ N, respectively. When combined with (10.12), (10.13) and the fact that the vague topol-
ogy is Hausdorff, this implies

ν̂
+ = ν

∗
0 . (10.15)

In view of (10.14) and the remark in [11, p. 166], one can choose a subsequence of the
sequence

{(
ν̃k`

)∗}
`∈N (denote it again by the same symbol) so that

U ν̂
α (x) = lim

`→∞
U

(ν̃k`
)∗

α (x) n.e. in Rn.

On account of (10.13), we thus have U ν̂
α (x) = 0 n.e. in (Dc)∗, and therefore, by (10.15),

ν̂
− = β

α

(Dc)∗ ν̂
+ = β

α

(Dc)∗ν
∗
0 . (10.16)

Using the fact that the Kelvin transformation is an involution and applying (10.9),
(10.10) and (10.11) again, we conclude from (10.14), (10.15) and (10.16) that

ν̃k` → ν0−β
α
Dc ν0 (as `→ ∞) in Eα(Rn),

or equivalently, by the definition of ν̃k` ,

lim
`→∞

∥∥(νk` −ν0
)
−β

α
Dc
(
νk` −ν0

)∥∥
α
= 0.

Repeated application of (2.8) then proves relation (10.3) also in the case E ∩∂Rn D = {x0},
where x0 6= ∞Rn . This completes Step 2.

Since the sequence {νk}k∈N is strongly fundamental, νk→ ν0 strongly by (10.3). It has
thus been proved that {νk}k∈N converges strongly to any of its vague cluster points. As the
α-Green kernel is strictly positive definite, any two cluster points of {νk}k∈N, ν0 and ν ′0,
have to coincide. Thus, ν0 is the only vague cluster point of {νk}k∈N, and so νk → ν0 also
vaguely (cf. [2, Chapter I, Section 9, n◦ 1, cor.]). ut

11 α-Green equilibrium measure

Theorem 11.1 Let E ⊂ D be relatively closed. Suppose that α = 2 and D is regular, or
E ∩ ∂Rn D consists of at most one point. If, moreover, Cgα

D
(E) < ∞, then there exists an α-

Green equilibrium measure γ = γE on E, that is, a one possessing the properties γ ∈ E +
gα

D
(E)

and 14

Egα
D
(γ) = γ(E) =Cgα

D
(E), (11.1)

U γ

gα
D
(x)> 1 n.e. in E, (11.2)

U γ

gα
D
(x)6 1 for all x ∈ Sγ

D. (11.3)

This γ solves the problem of minimizing the energy Egα
D
(ν) over the convex class ΓE of

all ν ∈ Egα
D
(D) such that Uν

gα
D
(x)> 1 n.e. in E, and hence it is unique.

14 See also Remark 11.1.
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Proof The theorem needs to be established only in the case where either α < 2, or both
α = 2 and D is non-regular, since otherwise it is a special case of [11, Theorem 4.1] in view
of the perfectness of the classical g2

D-Green kernel.
Also note that, while proving the existence of an α-Green equilibrium measure γ = γE

on E possessing the properties γ ∈ E +
gα

D
(E) and (11.1)–(11.3), one can certainly assume E

to be noncompact in D, for if not, then this follows from [11, Theorem 2.5]. Now, consider
an exhaustion of E by an increasing sequence of sets Kk ⊂ E, k ∈ N, compact in D, and
let γk = γKk be an α-Green equilibrium measure on Kk. Then, by [11, Lemma 2.3.3] and
relation (11.1) with E = Kk,

lim
k→∞
‖γk‖2

gα
D
= lim

k→∞
Cgα

D
(Kk) =Cgα

D
(E)< ∞. (11.4)

Since γk ∈ ΓKp for all k > p, which is seen from the monotonicity of {Kk}k∈N and inequal-
ity (11.2) with E = Kk, Lemma 2.2 yields

‖γk− γp‖2
gα

D
6 ‖γk‖2

gα
D
−‖γp‖2

gα
D

for all k > p.

In consequence of the last two relations, {γk}k∈N ⊂ E +
gα

D
(E) is strongly fundamental. In

addition, by (11.1) with E = Kk,

γk(E) =Cgα
D
(Kk)6Cgα

D
(E)< ∞ for all k ∈ N, (11.5)

so that all the assumptions of Theorem 10.1 for {γk}k∈N are satisfied. Hence, there exists the
unique γ ∈ E +

gα
D
(E) such that γk→ γ both strongly and vaguely.

On account of (11.4), we thus get

‖γ‖2
gα

D
= lim

k→∞
‖γk‖2

gα
D
=Cgα

D
(E). (11.6)

According to [11] (see the remark on p. 166 therein), the strong convergence of γk to γ also
yields that there exists a subsequence γk` = γKk`

, ` ∈ N, of {γk}k∈N such that

lim
`→∞

U
γk`
gα

D
(x) =U γ

gα
D
(x) n.e. in D,

while by (11.2) for E = Kk` ,

U
γk`
gα

D
(x)> 1 n.e. in Kk` .

Since the sets Kk` , ` ∈ N, increase and E =
⋃

`∈N Kk` , the last two relations imply (11.2).
Here we have used the fact that the α-Green capacity of a countable union of Borel sets
with zero α-Green capacity is still zero; see [11].

Fix x∈ Sγ

D. As γk→ γ vaguely, one can choose xk ∈ Sγk
D so that xk→ x as k→∞. Because

of the lower semicontinuity of U µ

gα
D
(x) on the product space D×M+(D), where M+(D) is

equipped with the vague topology (cf. [11, Lemma 2.2.1]), we get

U γ

gα
D
(x)6 liminf

k→∞
U γk

gα
D
(xk).

Since, by (11.3) for E = Kk, U γk
gα

D
(xk)6 1 for all k ∈ N, inequality (11.3) follows.

In view of the vague convergence of γk to γ , we also have

γ(E)6 liminf
k→∞

γk(E),
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so that γ(E) 6 Cgα
D
(E) by (11.5). When combined with (11.6), this shows that, in order

to complete the proof of (11.1), it is left to establish the inequality γ(E) > Cgα
D
(E), but it

follows at once by integrating (11.3) with respect to γ .
Finally, [11, Lemma 3.2.2] with t = 1 yields that such a γ solves the problem of mini-

mizing the energy Egα
D
(ν) over the convex class ΓE of all ν ∈ Egα

D
(D) such that Uν

gα
D
(x)> 1

n.e. in E. Application of Lemma 2.2 then shows that any two α-Green equilibrium measures
on E are actually equal. ut

Remark 11.1 Let the hypotheses of Theorem 11.1 be satisfied. To exclude the trivial case
γ = 0, assume Cgα

D
(E) > 0. Then λE := Cgα

D
(E)−1γ solves Problem 3.2 for F = E, σ = ∞

and f = 0. See Corollaries 6.4 and 6.5 for a more detailed information about the properties
of the α-Green potential and the support of λE (and, hence, γ). In particular, relations (6.10)
and (6.11) are equivalent to

U γ

gα
D
(x) = 1 n.e. in E, U γ

gα
D
(x)6 1 for all x ∈ D,

respectively, so that γ is an actual equilibrium.

12 Proof of Theorem 5.2

In this section we follow methods developed in [26] (see Theorems 2.2 and 3.1 therein).
Under the assumptions of Theorem 5.2, the following auxiliary result holds.

Lemma 12.1 For any σ ∈ C(F)∪{∞}, the metric space

E σ

gα
D
(F,1) :=

{
µ ∈ E +

gα
D
(F,1) : µ 6 σ

}
is strongly complete. In more detail, any strong Cauchy sequence {µk}k∈N ⊂ E σ

gα
D
(F,1) con-

verges both strongly and vaguely to the unique µ0 ∈ E σ

gα
D
(F,1).

Proof Fix a strong Cauchy sequence {µk}k∈N ⊂ E σ

gα
D
(F,1). According to Theorem 10.1,

there exists the unique µ0 ∈ E +
gα

D
(F) such that

µk→ µ0 strongly and vaguely.

Actually, µ0 ∈ E σ

gα
D
(F), since E σ

gα
D
(F) is vaguely closed. Hence, it is left to show that

µ0(F) = 1. (12.1)

Assume F to be noncompact, for if not, then (12.1) is evident. Consider an exhaustion
of F by an increasing sequence of sets Km ⊂ F , m ∈ N, compact in D; then

1 = lim
k→∞

µk(F)> µ0(F) = lim
m→∞

µ0(Km)> lim
m→∞

limsup
k→∞

µk(Km)

= 1− lim
m→∞

liminf
k→∞

µk(F \Km).

Therefore, identity (12.1) will be established once we prove

lim
m→∞

liminf
k→∞

µk(F \Km) = 0. (12.2)
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Write K∗m := C`D(F \Km). It is seen from Theorem 11.1 that, under the assumptions
made, there exists the α-Green equilibrium measure γm on K∗m, and it solves the problem of
minimizing Egα

D
(ν) over the convex cone ΓK∗m . Since, by the monotonicity of K∗m, m∈N, and

relation (11.2) for E = K∗m, γm belongs to Γp for all p > m, Lemma 2.2 yields

‖γm− γp‖2
gα

D
6 ‖γm‖2

gα
D
−‖γp‖2

gα
D

for all p > m.

Furthermore, it is clear from (11.1) for E = K∗m that the sequence ‖γm‖2
gα

D
, m∈N, is bounded

and nonincreasing, and hence it is fundamental in R. The preceding inequality thus implies
that γm, m ∈ N, is strongly fundamental in E +

gα
D
(D). Since it obviously converges vaguely to

zero, zero is also its strong limit due to Theorem 10.1. Hence,

lim
m→∞

‖γm‖gα
D
= 0.

Besides, by (11.2) for E = K∗m,

µk(F \Km)6 µk(K∗m)6
〈
U γm

gα
D
,µk
〉
6 ‖γm‖gα

D
· ‖µk‖gα

D
for all k, m ∈ N.

As ‖µk‖gα
D

, k ∈ N, is bounded, combining the last two relations yields (12.2). ut

Now we are able to complete the proof of Theorem 5.2. In view of (3.8), one can choose
νk ∈ E σ

gα
D, f

(F,1), k ∈ N, so that

lim
k→∞

Ggα
D, f

(νk) = Gσ

gα
D, f

(F,1)< ∞. (12.3)

Based on the convexity of the class E σ

gα
D, f

(F,1) and the pre-Hilbert structure on Egα
D
(D), with

the help of arguments similar to those in the proof of Lemma 4.1 we obtain

0 6 ‖νk−νp‖2
gα

D
6−4Gσ

gα
D, f

(F,1)+2Ggα
D, f

(νk)+2Ggα
D, f

(νp) for all k, p ∈ N.

Substituting (12.3) into this relation implies that {νk}k∈N is strongly fundamental in the
metric space E σ

gα
D
(F,1). By Lemma 12.1, {νk}k∈N therefore converges both strongly and

vaguely to the unique ν0 ∈ E σ

gα
D
(F,1). On account of Lemma 4.4, we thus get

Ggα
D, f

(ν0)6 lim
k→∞

Ggα
D, f

(νk) = Gσ

gα
D, f

(F,1)< ∞. (12.4)

Hence, ν0 ∈ E σ

gα
D, f

(F,1) and, consequently, Ggα
D, f

(ν0)> Gσ

gα
D, f

(F,1). Combined with (12.4),
this shows that ν0 =: λ σ

F is the solution to Problem 3.2. ut

13 Proof of the assertions formulated in Section 6

13.1 Proof of Theorem 6.1

Fix λ ∈ E ξ

gα
D, f

(F,1), and first assume that it solves Problem 3.2. Then inequality (6.2) holds
for wλ = L, where

L := sup
{

q ∈ R : W λ

gα
D, f

(x)> q (ξ −λ )-a.e. in F
}
.
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In turn, (6.2) with wλ = L implies L<∞, since W λ

gα
D, f

(x)<∞ holds n.e. in F0, hence (ξ−λ )-
a.e. in F0, while (ξ −λ )(F0)> 0. Also, L >−∞, for f is bounded from below.

We proceed by establishing (6.3) for wλ = L. Having denoted (cf. [9,19])

F+(w) :=
{

x ∈ F : W λ

gα
D, f

(x)> w
}

and F−(w) :=
{

x ∈ F : W λ

gα
D, f

(x)< w
}
,

where w ∈ R is arbitrary, we assume on the contrary that (6.3) for wλ = L does not hold.
In view of the lower semicontinuity of W λ

gα
D, f

on F , then one can choose w1 ∈ (L,∞) so that

λ
(
F+(w1)

)
> 0. At the same time, as w1 > L, relation (6.2) with wλ = L yields

(ξ −λ )
(
F−(w1)

)
> 0.

Therefore, there exist compact sets K1 ⊂ F+(w1) and K2 ⊂ F−(w1) such that

0 < λ (K1)< (ξ −λ )(K2).

Write τ := (ξ − λ )
∣∣
K2

; then τ ∈ E +
gα

D
(K2). Since

〈
W λ

gα
D, f

,τ
〉
6 w1τ(K2) < ∞, we get

〈 f ,τ〉< ∞. Define

θ := λ −λ
∣∣
K1
+cτ, where c := λ (K1)

/
τ(K2) ∈ (0,1).

A straightforward verification shows that θ(F) = 1 and θ 6 ξ , and so θ ∈ E ξ

gα
D, f

(F,1). On
the other hand,〈

W λ

gα
D, f

,θ −λ
〉
=
〈
W λ

gα
D, f
−w1,θ −λ

〉
=−

〈
W λ

gα
D, f
−w1,λ

∣∣
K1

〉
+ c
〈
W λ

gα
D, f
−w1,τ

〉
< 0,

which is impossible in view of Lemma 4.3. This proves the necessary part of the theorem.
Next, let λ satisfy both (6.2) and (6.3) for some wλ ∈ R. Then λ

(
F+(wλ )

)
= 0 and(

ξ −λ
)(

F−(wλ )
)
= 0. For any ν ∈ E ξ

gα
D, f

(F,1), we therefore obtain

〈
W λ

gα
D, f

,ν−λ
〉
=
〈
W λ

gα
D, f
−wλ ,ν−λ

〉
=
〈
W λ

gα
D, f
−wλ ,ν

∣∣
F+(wλ )

〉
+
〈
W λ

gα
D, f
−wλ ,(ν−ξ )

∣∣
F−(wλ )

〉
> 0.

Application of Lemma 4.3 shows that, indeed, λ is the solution to Problem 3.2. ut

13.2 Proof of Corollary 6.1

Under the conditions of the corollary, W λ

gα
D, f

(x) = Uλ+χ

gα
D

(x) > 0 for all x ∈ D; hence, the
number wλ from Theorem 6.1 satisfies the relation

wλ ∈ (0,∞). (13.1)

Furthermore, since λ +χ ∈ E +
gα

D
(D) is bounded, Corollary 2.1 with λ +χ in place of µ yields

Uλ+χ

ĝα
D

(x) =Uλ+χ

α (x)−U
β α

Dc (λ+χ)
α (x) n.e. in Rn.
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As Uλ+χ

gα
D

(x) = Uλ+χ

ĝα
D

(x) for all x ∈ D, while ξ − λ is C-absolutely continuous, inequal-
ity (6.2) can be rewritten in the form

Uλ+χ

ĝα
D

(x)> wλ > 0 (ξ −λ )-a.e. in F.

We can certainly assume that there is y0 ∈ ∂D∩C`Rn Sξ−λ

D , for if not, then the corollary
is obvious. Since for every ε > 0 it holds (ξ −λ )

(
B(y0,ε)

)
> 0, one can choose xε ∈ F ∩

B(y0,ε) so that Uλ+χ

ĝα
D

(xε)> wλ > 0. Therefore,

limsup
x→y0, x∈D

Uλ+χ

ĝα
D

(x)> wλ > 0.

On the other hand, Uλ+χ

ĝα
D

(x) = 0 for all x ∈ IntDc, for IDc ⊂ ∂D. As, by assumption, y0

is a boundary point of IntDc as well, we get

liminf
x→y0, x∈Dc

Uλ+χ

ĝα
D

(x) = 0.

Consequently, Uλ+χ

ĝα
D

is discontinuous on ∂D∩C`Rn Sξ−λ

D , and Lusin’s type theorem for the
α-Riesz potentials (see [16, Theorem 3.6]) establishes the corollary. ut

13.3 Proof of Corollary 6.2

Fix λ0 ∈ E ξ

gα
D, f

(F). We first assume that it solves Problem 3.2, and let w′
λ0
∈ R be the

number from (6.2) and (6.3) for f = 0. Note that then w′
λ0

> 0 by (13.1), and also that

W λ0
gα

D, f
(x) = Uλ0

gα
D
(x) for all x ∈ D. Therefore, using Lemma 2.5, from (6.3) we obtain (6.6),

while assertion (2.11) takes the form

Uλ0
α (x)6 w′

λ0
+U

β α

Dc λ0
α (x) for all x ∈ Rn. (13.2)

Combining (6.6) with (6.2) for λ = λ0 and wλ = w′
λ0

results in (6.5).
Assuming now that both (6.5) and (6.6) hold for some w′

λ0
∈ (0,∞), we conclude from

Theorem 6.1 that λ0 solves Problem 3.2, as was to be proved.
Finally, let α < 2 and let λ0 solve Problem 3.2. To establish (6.7), assume on the contrary

that there exists x0 ∈ F such that x0 6∈ Sλ0
D . Then one can choose r > 0 so that

B(x0,r) := {x ∈ Rn : |x− x0|6 r} ⊂ D and B(x0,r)∩Sλ0
D =∅.

It follows that (ξ −λ0)
(
B(x0,r)∩F

)
> 0. Therefore, by (6.5),

Uλ0
α (x1) = w′

λ0
+U

β α

Dc λ0
α (x1) for some x1 ∈ B(x0,r)∩F. (13.3)

As Uλ0
α (·) is α-harmonic in B(x0,r) and continuous on B(x0,r), while w′

λ0
+U

β α

Dc λ0
α (·) is

α-superharmonic in Rn, we conclude from (13.2) and (13.3) with the help of [16, Theo-
rem 1.28] that

Uλ0
α (x) = w′

λ0
+U

β α

Dc λ0
α (x) mn-a.e. in Rn.

This implies w′
λ0

= 0, for U
β α

Dc λ0
α (x) =Uλ0

α (x) holds n.e. in Dc, hence, also mn-a.e. in Dc. A
contradiction. ut
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13.4 Proof of Theorem 6.2

This theorem is a very particular case of [27, Theorems 7.1, 7.2, 7.3] (see also [24] and
Theorems 1, 2 and Proposition 1 therein). ut

13.5 Proof of Corollary 6.3

Since (a) follows directly from Theorem 5.3, assume the conditions of assertion (b) to hold.
Then the number w f from Theorem 6.2 is strictly positive. Hence, by (6.9),

Uλ+χ

ĝα
D

(x)> w f > 0 n.e. in F.

We can certainly assume that there is y0 ∈ ∂D∩C`Rn F̆ , for if not, then (b) is obvious. For
every ε > 0, it holds Cα

(
B(y0,ε)∩ F̆

)
> 0, and therefore one can choose xε ∈ B(y0,ε)∩ F̆

so that Uλ+χ

ĝα
D

(xε)> w f > 0. This yields

limsup
x→y0, x∈D

Uλ+χ

ĝα
D

(x)> w f > 0.

Likewise as in Section 13.2, we can thus see that Uλ+χ

ĝα
D

is discontinuous on ∂D∩C`Rn F̆ ,
and Lusin’s type theorem for the α-Riesz potentials establishes the corollary. ut

13.6 Proof of Corollary 6.4

Let w := w f be the number from Theorem 6.2 for f = 0; then w > 0. Proof of the statement
that λF ∈ E +

gα
D
(F,1) solves Problem 3.2 if and only if both (6.10) and (6.11) hold is based on

Theorem 6.2 and runs in a way similar to that in the proof of Corollary 6.2. In particular, if
λF solves Problem 3.2, then (compare with (13.2))

UλF
α (x)6 w+U

β α

Dc λF
α (x) for all x ∈ Rn. (13.4)

Integrating (6.10) with respect to λF and taking (2.1) into account, we obtain (6.12).
To complete the proof, assume the minimizer λF to exist and consider ν ∈ E +

gα
D
(F,1)

with the property that Uν

gα
D
(x) = c n.e. in F , where c ∈ R. Then, by (2.1) and (6.12),

‖ν‖2
gα

D
=
〈
Uν

gα
D
,ν
〉
= c > wgα

D
(F) = ‖λF‖2

gα
D

and, hence,

‖ν−λF‖2
gα

D
= ‖ν‖2

gα
D
+‖λF‖2

gα
D
−2Egα

D
(ν ,λF)

= c+wgα
D
(F)−2

〈
Uν

gα
D
,λF
〉
= wgα

D
(F)− c 6 0,

which in view of the strict positive definiteness of gα
D proves ν = λF . ut
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13.7 Proof of Corollary 6.5

Having first assumed α < 2, we start by showing that

UλF
gα

D
(x)< w for all x ∈ D\SλF

D . (13.5)

Suppose to the contrary that (13.5) is not satisfied for some x0 ∈D\SλF
D . Then UλF

gα
D
(x0) = w

in accordance with (6.11), or equivalently

UλF
α (x0) = w+U

β α

Dc λF
α (x0). (13.6)

Choose ε > 0 so that B(x0,ε) ⊂ D \ SλF
D . Since then UλF

α (·) is α-harmonic in B(x0,ε)

and continuous on B(x0,ε), while w+U
β α

Dc λF
α (·) is α-superharmonic in Rn, we conclude

from (13.4) and (13.6) with the help of [16, Theorem 1.28] that

UλF
α (x) = w+U

β α

Dc λF
α (x) mn-a.e. in Rn.

As U
β α

Dc λF
α (x) =UλF

α (x) n.e. in Dc, we thus get w = 0. A contradiction.
We next proceed by proving the former identity in (6.14). Let, on the contrary, there

exist x1 ∈ F̆ such that x1 6∈ SλF
D , and let V ⊂ D \ SλF

D be an open neighborhood of x1. Then,
by (13.5), UλF

gα
D
(x) < w for all x ∈ V . On the other hand, since V ∩F has nonzero capacity,

UλF
gα

D
(x2) = w for some x2 ∈ V by (6.10). The contradiction obtained shows that, indeed,

SλF
D = F̆ . Substituting this identity into (13.5) establishes (6.13) for α < 2.

In the rest of the proof, α = 2. To verify (6.13), assume, on the contrary, that it does not
hold for some x3 in the domain D0 := D\ F̆ . According to (6.11), then UλF

g2
D
(x3) = w, which

in view of the harmonicity of UλF
g2

D
in D0 implies, by the maximum principle, that

UλF
g2

D
(x) = w for all x ∈ D0.

Thus,

lim
x→z, x∈D0

UλF
g2

D
(x) = w > 0 for all z ∈ ∂D0.

Since Cα(∂D∩∂D0)> 0 in consequence of Corollary 6.3, (b), Lusin’s type theorem for the
Newtonian potentials shows that the preceding relation is impossible.

In view of (6.10), [16, Theorem 1.13] yields λF
∣∣
IntF= 0, and so SλF

D ⊂ ∂DF̆ . Thus, if we
prove the converse inclusion, the latter identity in (6.14) follows. Assume, on the contrary, it
not to hold; then one can choose a point y∈ ∂DF̆ and a neighborhood V1 ⊂D of y so that V1∩
SλF

D =∅. As V1∩F has nonzero capacity, we see from (6.10) that there exists y1 ∈V1 such
that UλF

g2
D
(y1) = w. Taking (6.11) into account and applying the maximum principle to the

harmonic in V1 function UλF
g2

D
, we thus have UλF

g2
D
(x)=w for all x∈V1. This contradicts (6.13),

because V1∩D0 6=∅. ut
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13.8 Proof of Theorem 6.3

Since Uξ

gα
D
(x) is continuous, so is Uλ0

gα
D
(x). Indeed, Uλ0

gα
D
(x) = Uξ

gα
D
(x)−Uξ−λ0

gα
D

(x), which im-

plies that Uλ0
gα

D
(x) is both lower semicontinuous and upper semicontinuous. Next, since λ0

solves the non-weighted Problem 3.2 with the constraint ξ , both (6.5) and (6.6) are fulfilled.
As Uλ0

gα
D
(·) is continuous, equality in (6.5) holds in fact everywhere on Sξ−λ0

D . This allows us
to rewrite (6.5) and (6.6) respectively as

Uξ−λ0
gα

D
(x)−Uξ

gα
D
(x) =−w′

λ0
on Sξ−λ0

D ,

Uξ−λ0
gα

D
(x)−Uξ

gα
D
(x)>−w′

λ0
on D,

which in the notations accepted in Section 6.3 are equivalent to (6.15) and (6.16). Since
θ ∈ E qξ

gα
D, f

(F,1)⊂ E +
gα

D, f
(F,1), application of Theorem 6.2 completes the proof. ut

14 Examples

In this section, n = 3 and x = (x1,x2,x3) is a point in R3. In the following Examples 14.1–
14.3, consider 0 < α 6 2, D := B(0,1) and A2 := Dc; then A2 is not α-thin at ∞Rn .

Example 14.1 Write E :=
{

x ∈ B(0,1) : 0 6 x1 < 1, x2 = x3 = 0
}

. Since Cα(E) = 0,
Lemma 2.6 yields Cgα

D
(E) = 0. Consequently, there exists a neighborhood F of E, closed

in D, with 0 < Cgα
D
(F) < ∞. We can certainly assume that ∂D∩C`R3 F = {(1,0,0)}. Con-

sider an external field f such that f (x) < ∞ n.e. in F unless Case II holds. Application of
Lemma 4.6, Theorems 5.2 and 5.4 then shows that, in both Cases I and II, Problem 3.1 is
(uniquely) solvable for every σ ∈A (F)∪{∞}.

Example 14.2 Let F = D. Define ξ := m3|F ; then ξ ∈ C0(F) and has finite α-Riesz energy
and thus it is admissible (see Definition 4.1). Consider an external field f such that Case I
holds and f (x) < ∞ m3|F -a.e. Hence, by Lemma 4.6, assumptions (3.7) and (3.8) hold and
so we can apply Theorems 5.1 and 5.4 to conclude that Problem 3.1 is solvable; that is, no
short-circuit between the conductors F and Dc occurs, though they touch each other over
the whole sphere S(0,1).

Example 14.3 Let F = S(x0,1/2)∩D, where x0 = (1/2,0,0). Consider an external field f
such that Case I holds and f (x) < ∞ m2|F -a.e. We further assume 1 < α ≤ 2. Define ξ :=
m2|F ; then (since α > 1) ξ has finite α-Riesz energy and so, as in the previous example, we
can apply Theorems 5.1 and 5.4 to obtain the solvability of Problem 3.1.

Example 14.4 Let α = 2, D =
{

x ∈ R3 : x1 > 0
}

and F =
{

x ∈ D : x1 = 1
}

; then A2 = Dc

is not 2-thin at ∞Rn , while Cg2
D
(F) = ∞, for C2(F) = ∞ by [16, Chapter II, Section 3, n◦ 14].

Let, in addition, Case II with ζ > 0 hold. Then, by Theorems 5.3 and 5.4, Problem 3.1
is nonsolvable for every σ ∈ A (F)∪{∞} such that σ > ξ0, where ξ0 ∈ C(F) \C0(F) is
properly chosen. Thus, for these σ , a short-circuit between F and Dc occurs at ∞Rn . To
construct a constraint which would not allow such a short-circuit, consider Kk, k ∈N, where
Kk :=

{
x ∈ F : (k−1)2 6 x2

2 +x2
3 6 k2

}
for all k > 2 and K1 :=

{
x ∈ F : x2

2 +x2
3 6 1

}
, and

write

ξ := ∑
k∈N

m2|Kk

k3 .
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Then ξ is bounded and admissible, and so we can again use Theorems 5.1 and 5.4 to see
that Problem 3.1 for this constraint ξ is solvable.

D

F

Fig. 14.1 The condenser for Example 14.5.

Example 14.5 Let α = 2, Case II with ζ > 0 hold, and let F and D be defined by

F :=
{

x ∈ R3 : 2 6 x1 < ∞, x2
2 + x2

3 = ρ
2
1 (x1), where ρ1(x1) = exp(−x1)

}
,

D :=
{

x ∈ R3 : 1 < x1 < ∞, x2
2 + x2

3 < ρ
2
2 (x1), where ρ2(x1) = x−1

1
}
.

Then A2 = Dc is not 2-thin at ∞Rn , while Cg2
D
(F) = ∞, for C2(F) = ∞ by [21]. Hence, by

Theorems 5.3 and 5.4, Problem 3.1 is nonsolvable for every σ ∈ A (F)∪ {∞} such that
σ > ξ0, where ξ0 ∈ C(F)\C0(F) is properly chosen. However, Problem 3.1 with ξ := m2|F
is already solvable, which is seen from Theorems 5.1 and 5.4.
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73, 74–106 (1945)
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