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We derive fundamental asymptotic results for the expected covering radius ρ(XN) for N

points that are randomly and independently distributed with respect to surface measure

on a sphere as well as on a class of smooth manifolds. For the unit sphere S
d ⊂ R

d+1,

we obtain the precise asymptotic that Eρ(XN)[N/ log N]1/d has limit [(d+ 1)υd+1/υd]1/d

as N → ∞, where υd is the volume of the d-dimensional unit ball. This proves a recent

conjecture of Brauchart et al. as well as extends a result previously known only for the

circle. Likewise, we obtain precise asymptotics for the expected covering radius of N

points randomly distributed on a d-dimensional ball, a d-dimensional cube, as well as

on a three-dimensional polyhedron (where the points are independently distributed with

respect to volume measure). More generally, we deduce upper and lower bounds for the

expected covering radius of N points that are randomly and independently distributed

on a compact metric measure space, provided the measure satisfies certain regularity

assumptions.

1 Introduction and Notation

The purpose of this paper is to obtain asymptotic results for the expected value of the

covering radius of N points XN = {x1, x2, . . . , xN} that are randomly and independently

distributed with respect to a given measure μ over a metric space (X , m). By the covering
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2 A. Reznikov and E. B. Saff

radius ρ(XN,X ) (also known as the mesh norm or fill radius) of the set XN with respect

to X , we mean the radius of the largest neighborhood centered at a point of X that

contains no points of XN ; more precisely,

ρ (XN,X ) := sup
y∈X

inf
j

m
(
y, xj

)
.

Our focus is on the limiting behavior as N → ∞ of the expected value Eρ(XN,X ).

The covering radius of a discrete point set is an important characteristic that

arises in a variety of contexts. For example, it plays an essential role in determin-

ing the accuracy of various numerical approximation schemes such as those involving

radial basis techniques [8, 12]. Another area where the covering radius arises is in “1-bit

sensing”, that is, the problem of approximating an unknown vector (signal) x ∈ K from

knowledge of m numbers sign〈x, θ j〉, j = 1, . . . , m, where the vectors θ j are selected inde-

pendently and randomly on a sphere; see discussion after Corollary 2.9 for details.

With regard to asymptotics for the expected value of the covering radius, of

particular interest is the case where X is the unit sphere S
d in R

d+1, and the metric is

Euclidean distance in R
d+1. Bourgain et al. [2] study local statistics of certain spherical

point configurations derived from normalized sums of squares of integers. Their inves-

tigation focuses on whether such configurations exhibit features of randomness, and for

this purpose, they study various local statistics, including the covering radius of random

points on S
d. They prove that this radius is bounded from above by N−1/d+o(1) as N → ∞.

For d= 1, that is, the unit circle, it is shown in [6], by using order statistics, that

for N points independently and randomly distributed with respect to arclength on the

circle,

lim
N→∞

Eρ
(
XN, S

1) ( N

log N

)
= π.

Up to now, there has been no extension of this result to higher-dimensional spheres

where the order statistics approach is more elusive. Based on a heuristic argument and

numerical experiments, Brauchart et al. [4] have conjectured that the appropriate exten-

sion of the circle case is the following

lim
N→∞

Eρ
(
XN, S

d) ·
(

N

log N

)1/d

=
(

(d+ 1) υd+1

υd

)1/d

=
(

2
√

π
Γ
(

d+2
2

)
Γ
(

d+1
2

)
)1/d

, (1.1)

where υd := πd/2

Γ (1+d/2)
is the volume of a d-dimensional unit ball in R

d, and the points

of XN are randomly and independently distributed with respect to surface measure

on S
d (more precisely, d-dimensional Hausdorff measure Hd). Their conjecture is also
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The Covering Radius of Randomly Distributed Points on a Manifold 3

consistent with a result of Maehara [10], who obtained probabilistic estimates for the

size of random caps that cover the sphere S
2. He showed that with asymptotic proba-

bility one, random caps with radii that are a constant factor larger than the expected

radii will cover the sphere, whereas this asymptotic probability becomes zero when the

random caps all have radii that are a factor smaller. However, his results fall short of

providing a sharp asymptotic for the expected covering radius (in addition, his meth-

ods do not readily generalize to other smooth manifolds). As discussed in Section 3, our

results for the sphere cannot be directly derived from Maehara’s; however, his results

are a direct consequence of our Corollary 3.3.

The main goal of this article is to provide a proof of (1.1) and its various gener-

alizations.

We remark that for any compact metric space (X , m) with X having finite

d-dimensional Hausdorff measure, there exists a positive constant C such that for any

YN = {y1, . . . , yN} ⊂X , there holds

ρN := ρ (YN,X ) ≥ C

N1/d
, N ≥ 1. (1.2)

Indeed, a lemma of Frostman [11, Theorem 8.17] implies the existence of a finite positive

measure μ on X for which μ(B(x, r)) ≤ (2r)d for all x ∈X and all 0 < r ≤ diam(X ), where

B(x, r) denotes the closed ball centered at x having radius r. Consequently,

0 < μ (X ) ≤
N∑

i=1

μ (B (yi, ρN)) ≤ N (2ρN)d

that verifies (1.2). Thus, as also remarked in [2] and made more explicit by (1.1), randomly

distributed points have relatively good covering properties, differing from the optimal

order by a multiplicative factor of (log N)1/d.

The outline of this paper is as follows. In Section 2, we state our probabilistic

and expected covering radius estimates for general compact metric spaces, where the

points are randomly distributed with respect to a measure satisfying certain regular-

ity conditions. Results for compact subsets of Euclidean space are given in Section 3,

including sharp asymptotic results for randomly distributed points with respect to

Hausdorff measure on rectifiable curves, smooth surfaces, bodies with smooth bound-

aries, d-dimensional cubes, and three-dimensional polyhedra. The proofs of our stated

results are provided in Section 5 utilizing properties established in Section 4 for a com-

monly arising probability function.

We conclude this section with a listing of some notational conventions and ter-

minology that is utilized throughout the paper.
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4 A. Reznikov and E. B. Saff

(1) We denote by B(x, r) a closed ball in the metric space (X , m); more precisely,

B(x, r) := {y∈X : m(y, x) � r}. For d-dimensional balls in Euclidean space, we

write Bd(x, r).

(2) For a positive finite Borel measure μ supported on a set X , we say that a

point x is randomly distributed over X with respect to μ, if it is distributed

with respect to the probability measure μ/μ(X ); that is, for any Borel set K,

it holds that P[x ∈ K] = μ(K)/μ(X ).

(3) For a positive integer s � d, we denote by Hs the s-dimensional Hausdorff

measure on the Euclidean space R
d with the Euclidean metric, normalized by

Hs([0, 1]s) = 1. Thus, Hs(E) = π s/2

2sΓ (1+s/2)
Hs(E), where Hs is the Hausdorff mea-

sure defined in [7].

(4) If K is a subset of the Euclidean space R
d, we always equip it with the

Euclidean metric m(x, y) = |x − y|.
(5) The symbols c1, c2, . . ., and C1, C2, . . . shall denote positive constants that may

differ from one inequality to another. These constants never depend on N.

2 Main Theorems for Metric Spaces

Throughout this section, we assume that (X , m) is a metric space, μ is a finite positive

Borel measure supported on X , and XN = {x1, . . . , xN} is a set of N points, independently

and randomly distributed over X with respect to μ. Our theorems provide estimates for

the probability and expected values of the covering radius ρ(XN,X ) when the measure

μ satisfies certain regularity conditions described by a function Φ.

Theorem 2.1. Suppose Φ is a continuous positive strictly increasing function on (0,∞)

satisfying Φ(r) → 0 as r → 0+. If there exists a positive number r0 such that μ(B(x, r)) �
Φ(r) holds for all x ∈X and every r < r0, then there exist positive constants c1, c2, c3, and

α0 such that for any α > α0, we have

P

[
ρ (XN,X ) � c1Φ

−1

(
α log N

N

)]
� c2 N1−c3α. (2.1)

If, in addition, Φ satisfies Φ(r) � rσ for all small r and some positive number σ , then

there exist positive constants c1, c2 such that

Eρ (XN,X ) � c1Φ
−1

(
c2

log N

N

)
. (2.2)

�

A lower bound for the expected covering radius is given in our next result.
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The Covering Radius of Randomly Distributed Points on a Manifold 5

Theorem 2.2. Let Φ be a continuous positive strictly increasing function on (0,∞) sat-

isfying Φ(r) → 0 as r → 0+ and the strict doubling property; that is, for some constants

C1, C2 > 1 and any small r, it holds that C1Φ(r) � Φ(2r) � C2Φ(r). Suppose further that

there exists a subset X1 ⊂X with the following properties:

(i) μ(X1) > 0;

(ii) there exist positive numbers r0 and c such that for any x ∈X1 and every r < r0

the function t �→ μ(B(x, t)) is continuous at t = r and the regularity condition

cΦ(r) � μ(B(x, r)) � Φ(r) holds.

Then there exist positive constants c1 , c2, and c3 such that

P

[
ρ (XN,X ) � c1Φ

−1

(
c2 log N − c3 log log N

N

)]
= 1 − o (1) , N → ∞. (2.3)

Consequently, there exist positive constants c1 and c2 such that

Eρ (XN,X ) � c1Φ
−1

(
c2

log N

N

)
. (2.4)

�

Combining Theorems 2.1 and 2.2, we deduce the following.

Corollary 2.3. Assume the function Φ is continuous positive, strictly increasing, strictly

doubling, and that there exist positive numbers r0 and σ such that Φ(r) � rσ for every

r < r0. If, for some positive constants c, C , any x ∈X and every r < r0, the function t �→
μ(B(x, t)) is continuous at t = r and

cΦ (r) � μ (B (x, r)) � CΦ (r) , (2.5)

then there exist positive constants c1, c2, c3, c4 such that for any ε > 0, there is a number

N(ε) such that for any N > N(ε), we have

P

[
c1Φ

−1

(
c2

log N

N

)
� ρ (XN,X ) � c3Φ

−1

(
c4

log N

N

)]
> 1 − ε. (2.6)

Moreover, there exist positive constants C1, C2, C3, C4 such that

C1Φ
−1

(
C2

log N

N

)
� Eρ (XN,X ) � C3Φ

−1

(
C4

log N

N

)
. (2.7)

�

For recent estimates similar to (2.6) and (2.7) for the spherical cap discrepancy

of random points on the unit sphere S
2 ⊂ R

3, see [1, Theorems 9 and 10].
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6 A. Reznikov and E. B. Saff

An important class of sets in R
d to which Corollary 2.3 applies is described in

Definition 2.4.

Definition 2.4. We call a set X ⊂ R
d s-regular if condition (2.5) holds for μ =Hs and

Φ(r) = rs; that is, for some positive constants r0, c, and C there holds

crs �Hs (Bd (x, r) ∩ X ) � Crs for any x ∈X and every r < r0. (2.8)

�

Remark 2.5. Examples of sets in Euclidean space for which Corollary 2.3 holds include

the unit cube [0, 1]d, a rectifiable curve Γ ⊂ R
d, the unit sphere S

d−1 ⊂ R
d, or any s-regular

set X ⊂ R
d. Furthermore, the results of Corollary 2.3 hold not only for Φ(r) = rs, but also

for more general regularity functions, such as Φ(r) = rα logβ
(1/r), with α > 0 and β � 0.

In particular, Corollary 2.3 applies for the “middle 1/3” Cantor set C in [0, 1] with

dμ = 1CdHlog 2/ log 3. We remark that for μ-a.e. point x ∈ C, we have

lim inf
r→0+

μ (B1 (x, r) ∩ C)

rlog 2/ log 3
�= lim sup

r→0+

μ (B1 (x, r) ∩ C)

rlog 2/ log 3
;

that is, at μ-a.e. point x of C the density of μ at x does not exist, which essentially

precludes obtaining a sharp asymptotic for Eρ(XN, C). However, Corollary 2.3 provides

the two-sided estimate

c1

(
log N

N

)log 3/ log 2

� Eρ (XN, C) � c2

(
log N

N

)log 3/ log 2

. �

Remark 2.6. The condition in Theorem 2.1 that μ(B(x, r)) � Φ(r) for every x ∈X is

essential. Indeed, if we consider the set X = [0, 1] ∪ {2} with μ Lebesgue measure, then

μ(B1(x, r)) � r for all r < 1 and x ∈X \ {2}. However, we have P[ρ(XN,X ) � 1] = 1, and so

Eρ(XN,X ) � 1. The reason that inequality (2.2) fails in this case is that for the point

x = 2 we have μ(B1(x, r)) = 0 for small values of r. However, Theorem 2.1 does apply if

μ = m[0,1] + αδ2, where m[0,1] is Lebesgue measure on [0, 1], δ2 is the unit point mass at

x = 2, and α > 0. In this case, we obtain

Eρ (XN,X ) � C (α) · log N

N
.

In fact, repeating the proofs from Sections 5.5 and 5.6 (with K1 = [0, 1]), we obtain

lim
N→∞

Eρ (XN,X ) · N

log N
= 1 + α

2
for any α > 0. �
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The Covering Radius of Randomly Distributed Points on a Manifold 7

The above shown results have immediate consequences for ε-nets. Since differ-

ent definitions of an “ε-net” occur in the literature, the terminologies that we use are

made precise in what follows.

Definition 2.7. A subset A of a metric space (X , m) is called an ε-net (or ε-covering) if,

for any point y∈X , there exists a point x ∈ A such that m(x, y) � ε. Equivalently, A is an

ε-net if ρ(A,X ) � ε. �

Definition 2.8. A subset A of a metric space (X , m) with a positive Borel measure μ is

called a measure ε-net if any ball B(y, r) with μ(B(y, r)) � ε intersects A. �

We remind the reader that on S
d with μ surface area measure Hd, the minimal

ε-net has cardinality cε−d (for the proof see, for example, [15, Lemma 5.2]), whereas the

minimal measure ε-net has cardinality cε−1.

Corollary 2.9. If Φ and μ are as in the first part of Theorem 2.1, then there exists a

positive constant c1 such that for any positive number α there is a positive constant Cα

for which

P
[
XN is an ε-net

]
� 1 − N−α, for ε = c1Φ

−1

(
Cα

log N

N

)
.

Furthermore, if the function Φ is doubling, and the measure μ satisfies the con-

dition (2.5), then for any positive number α, there exists a positive constant Cα such

that

P
[
XN is a measure ε-net

]
� 1 − N−α, for ε = Cα

log N

N
. �

By way of illustration, suppose, for the sake of simplicity, that Φ(r) = Crd for

some positive constant C and ε = [(log N)/N]1/d, which implies that N is of the order

ε−d log(1/ε). Then, from the first part of Corollary 2.9, if we take C1ε
−d log(1/ε) random

points, we get an ε-net (ε-covering) with high probability.

The cardinality of an ε-covering of a set K ⊂ S
d plays an important role in “1-bit

compressed sensing”. The estimates for the number m of random vectors {θ j}m
j=1, essen-

tial to approximate an unknown signal x ∈ K from knowledge of m “bits” sign〈x, θ j〉,
involve finding an ε-covering of the set K with log(N(K, ε)) � C ε−2w(K), where N(K, ε)

is the cardinality of the covering, and w is the so-called “mean width” of K. As can be

seen from our results, for many sets K a random set of C ε−d log(1/ε) points satisfies this

condition with high probability. For further discussion, see [13, 14].
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8 A. Reznikov and E. B. Saff

3 Expected Covering Radii for Subsets of Euclidean Space

In some cases, we are able to “glue” upper and lower estimates together to obtain sharp

asymptotic results. For this purpose, we state the following definitions.

Definition 3.1. Let s be a positive integer, s � d. Suppose K is a compact s-dimensional

set in R
d with the Euclidean metric.

We call K an asymptotically flat s-regular set if for any x ∈ K it holds that

r−sHs (Bd (x, r) ∩ K) ⇒ υs as r → 0+, (3.1)

where the convergence is uniform in x, and υs is the volume of the s-dimensional unit

ball Bs(0, 1).

We call K a quasi-nice s-regular set if

(i) K is countably s-rectifiable; that is, K is of the form
⋃∞

j=1 fj(E j) ∪ G, where

Hs(G) = 0 and where each fj is a Lipschitz function from a bounded subset

E j of R
s to R

d;

(ii) There exist positive numbers c, C , r0 such that for any x ∈ K and any r < r0,

the s-regularity condition holds: crs �Hs(Bd(x, r) ∩ K) � Crs;

(iii) There is a finite set T ⊂ K such that for any r < r0 and y∈ K \⋃xt∈T Bd(xt, r),

it holds that Hs(Bd(y, r) ∩ K) � υsrs. �

We remark that the appearance of the constant υs in the above definitions is quite

natural. Indeed, if K is a countably s-rectifiable compact set and 0 <Hs(K) < ∞, then for

Hs-almost every point x ∈ K, the following holds: r−sHs(Bd(x, r) ∩ K) → υs as r → 0+. For

the details, see the Theorem 17.6 in [11] or Theorem 3.33 in [7]. Thus, if any uniform limit

in (3.1) exists, then it must equal υs.

For asymptotically flat s-regular and quasi-nice s-regular sets, we deduce the

following precise asymptotics for the expected covering radius as well as its moments.

Theorem 3.2. Suppose K ⊂ R
d is an asymptotically flat s-regular or a quasi-nice s-

regular set for integer s � d. Then for XN = {x1, . . . , xN}, a set of N independently and

randomly distributed points over K with respect to the measure μ given by dμ :=
1K · dHs/Hs(K), and any p≥ 1,

lim
N→∞

E[ρ (XN, K)p] ·
(

N

log N

)p/s

=
(Hs (K)

υs

)p/s

. (3.2)

�
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The Covering Radius of Randomly Distributed Points on a Manifold 9

Important examples of asymptotically flat s-regular sets are given in the follow-

ing result, which includes the verification of the conjecture of Brauchart et al. [3] for the

expected covering radius of randomly distributed points on the unit sphere.

Corollary 3.3. Suppose K is a closed C (1,1) s-dimensional embedded submanifold of

R
d; that is, 0 <Hs(K) < ∞ and, for any embedding ϕ, all its first partial derivatives

exist and are uniformly Lipschitz. Then K is an asymptotically flat s-regular manifold,

and thus for N points independently and randomly distributed over K with respect to

dμ = 1K · dHs/Hs(K), equation (3.2) holds.

In particular, if K = S
d is a unit sphere in R

d+1 and p≥ 1, then

lim
N→∞

E[ρ
(
XN, S

d)p
] ·
(

N

log N

)p/d

=
(

(d+ 1) υd+1

υd

)p/d

=
(

2
√

π
Γ
(

d+2
2

)
Γ
(

d+1
2

)
)p/d

. (3.3)

Thus relation (1.1) holds. �

As a consequence of the corollary, we shall deduce in Section 5 the result of

Maehara mentioned in the Introduction.

Corollary 3.4 (Maehara [10]). Suppose XN = {x1, . . . , xN} is a set of N points, indepen-

dently and randomly distributed over the unit sphere S
d with respect to the measure μ

given by dμ = 1Sd · dHd/Hs(S
d) and set

ZN := ρ
(
XN, S

d) ·
(

υd

(d+ 1) υd+1
· N

log N

)1/d

.

Then ZN converges in probability to 1 as N → ∞; that is, for each ε > 0,

lim
N→∞

P (|ZN − 1| ≥ ε) = 0. (3.4)

�

Remark 3.5. We remark that our results for S
d do not directly (i.e., by means of basic

measure theory) follow from (3.4). Maehara’s result implies that the bounded sequence

pN (t) := P (ZN � t) → 1[0,1] (t) for a.e. t > 0;

however, since the range of t is [0,∞), the constant function 1 is not inte-

grable, and we cannot apply the Lebesgue dominated convergence theorem to get

EZN = ∫∞
0 pN(t) dt → 1. �

Corollary 3.6 gives an example of a quasi-nice 1-regular set.
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10 A. Reznikov and E. B. Saff

Corollary 3.6. Suppose γ is a rectifiable curve in R
d (i.e., 0 <H1(γ ) < ∞ and γ is a con-

tinuous injection of a closed interval of R). If XN denotes a set of N points independently

and randomly distributed over γ with respect to dμ := 1γ · dH1/H1(γ ), then γ is a quasi-

nice 1-regular set, and for any p� 1

lim
N→∞

E[ρ (XN, γ )p] ·
(

N

log N

)p

=
(H1 (γ )

2

)p

. (3.5)

�

Next we deal with the following problem: suppose A⊂ R
d is a d-dimensional set,

but the condition

Hd (A∩ Bd (x, r)) � υdrd

fails for a certain subset of points x ∈ Aand the limit (3.1) in Definition 3.1 is not uniform.

Such situations arise for sets with boundary, which include the unit ball Bd(0, 1) and the

unit cube [0, 1]d. The case of the ball is included in Theorem 3.7, whereas the case of the

cube is studied in Theorem 3.9.

Theorem 3.7. Let d� 2 and K ⊂ R
d a set that satisfies the following conditions.

(i) K is compact and 0 <Hd(K) < ∞;

(ii) K = clos(K0), where K0 is an open set in R
d with ∂K0 = ∂K;

(iii) The boundary ∂K of K is a C 2 smooth (d− 1)-dimensional embedded sub-

manifold of R
d.

Let XN = {x1, . . . , xN} be a set of N points, independently and randomly dis-

tributed over K with respect to dμ = 1K · dHd/Hd(K). Then for any p� 1

lim
N→∞

E[ρ (XN, K)p] ·
(

N

log N

)p/d

=
(

2 (d− 1)

d
· Hd (K)

υd

)p/d

. (3.6)

In particular, for the unit ball,

lim
N→∞

E[ρ (XN, Bd (0, 1))p] ·
(

N

log N

)p/d

=
(

2 (d− 1)

d

)p/d

. (3.7)

�

Remark 3.8. We see that in the case d= 2 we have 2(d− 1)/d= 1, and so the constant

on the right-hand side of (3.6) coincides with the constant for smooth closed manifolds,

see (3.2). However, when d> 2, we have 2(d− 1)/d> 1; thus this constant becomes bigger

than for smooth closed manifolds. �

 by guest on D
ecem

ber 22, 2015
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


The Covering Radius of Randomly Distributed Points on a Manifold 11

Propositions 3.9 and 3.10 deal with cases when the boundary of the set is not

smooth. For the sake of simplicity, we formulate them for the unit cube [0, 1]d and a poly-

hedron in R
3. However, the proof can be applied to other examples, such as cylinders.

Proposition 3.9. Suppose d� 2 and [0, 1]d is the d-dimensional unit cube. Let dμ =
1[0,1]d · dHd. If XN = {x1, . . . , xN} is a set of N points, independently and randomly dis-

tributed over [0, 1]d with respect to μ, then for any p� 1

lim
N→∞

E[ρ
(
XN, [0, 1]d

)p
] ·
(

N

log N

)p/d

=
(

2d−1

dυd

)p/d

. (3.8)

�

Proposition 3.10. Suppose P is a polyhedron in R
3 of volume V(P ). Let XN = {x1, . . . , xN}

be a set of N points, independently and randomly distributed over P with respect to

dμ = 1P · dH3/V(P ). If θ is the smallest angle at which two faces of P intersect, then for

any p� 1

lim
N→∞

E[ρ (XN, P )p] ·
(

N

log N

)p/3

=
(

2πV (P )

3θυ3

)p/3

=
(

V (P )

2θ

)p/3

, if θ � π

2
; (3.9)

lim
N→∞

E[ρ (XN, P )p] ·
(

N

log N

)p/3

=
(

V (P )

π

)p/3

, if θ � π

2
. (3.10)

�

In the theorems up to now, we dealt with measures μ on sets X satisfying for

all x ∈X the condition crs � μ(B(x, r) ∩ X ) � Crs (i.e., the regularity function Φ was the

same for all points of X ); only the values of best constants c, C differed for points x deep

inside X from those near the boundary. We now give an example of a measure for which

the regularity function parameter s depends upon the distance to the boundary.

Proposition 3.11. Consider the interval [−1, 1] and the measure μ given by dμ = dx
π

√
1−x2 .

Let XN = {x1, . . . , xN} be a set of N points, independently and randomly distributed over

[−1, 1] with respect to μ. Define

ρ̂ (XN, [0, 1]) := sup
y∈[1− 1

Na ,1]

inf
j

|y − xj|, ρ̃ (XN, [0, 1]) := sup
y∈[−1+ 1

Na ,1− 1
Na ]

inf
j

|y − xj|.

(i) If a= 2, then there exist positive constants c1 and c2 such that

c1

N2
� Eρ̂ (XN, [0, 1]) � c2

N2
. (3.11)
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12 A. Reznikov and E. B. Saff

(ii) If 0 < a< 2, then there exist positive constants c1 and c2 such that

c1 log N

N1+ a
2

� Eρ̂ (XN, [0, 1]) � c2 log N

N1+ a
2

. (3.12)

(iii) For any a> 0, there exist positive constants c1 and c2 such that

c1 log N

N
� Eρ̃ (XN, [0, 1]) � c2 log N

N
. (3.13)

�

Observe that if we stay away from the endpoints ±1, the measure μ acts as

the Lebesgue measure, and thus the order of the expectation of the covering radius is

(log N)/N. However, when we are close to the points ±1 (where “close” depends on N),

the measure μ acts somewhat like the Hausdorff measure H1/2, and we get a different

order for the covering radius.

4 An Auxiliary Function

The proofs of the results stated in Sections 2 and 3 rely heavily on the properties of the

following function. For three positive numbers N, n, m, with m and N being integers and

m � n� N, set

f (N, n, m) :=
∑m

k=1
(−1)k+1

(
m

k

)(
1 − k

n

)N

. (4.1)

The useful fact about the function f(N, n, m) is the following.

Lemma 4.1. Suppose XN = {x1, . . . , xN} is a set of N points independently and randomly

distributed on a set X with respect to a Borel probability measure μ. Let B1, . . . , Bm be

disjoint subsets of X each of μ-measure 1/n. Then

P (∃k: Bk ∩ XN = ∅) = f (N, n, m) . (4.2)

�

Proof. We use well-known formula that, for any m events A1, . . . , Am,

P

(
m⋃

k=1

Aj

)
=
∑m

k=1
(−1)k+1

∑
( j1,..., jk)

P
(
Aj1 ∩ Aj2 ∩ · · · ∩ Ajk

)
, (4.3)

where the integers j1, . . . , jk are distinct.

Let the event Ai occur if the set Bi does not intersect XN . Then for any k-tuple

( j1, . . . , jk), the event Aj1 ∩ · · · ∩ Ajk occurs if the points x1, . . . , xN are in the complement
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The Covering Radius of Randomly Distributed Points on a Manifold 13

of the union Bj1 ∪ · · · ∪ Bjk; that is, x1, . . . , xN are in a set of measure 1 − k/n. We see that

for any k-tuple the probability of this event is equal to (1 − k/n)N . Moreover, there are

exactly
(m

k

)
such k-tuples. Therefore,

∑
( j1,..., jk)

P
(
Aj1 ∩ · · · ∩ Ajk

)=
(

m

k

)(
1 − k

n

)N

,

and (4.2) follows from (4.3). �

For the lower bounds in Theorems 2.2 and 3.2, we will need the following esti-

mate on the function f(N, n, m).

Lemma 4.2. For any three numbers 0 < m � n� N, such that m and N are integers,

f (N, n, m) � 1 −
[

1 −
(

1 − 1

n

)N
]m

− N

n2
· m (m − 1)

2
·
(

1 − 1

n

)2(N−1)

·
[

1 +
(

1 − 1

n

)N−1
]m−2

. (4.4)

�

Proof. Note first that for k� 1 and 0 � x � 1, we have

1 − kx � (1 − x)k � 1 − kx + k (k − 1)

2
x2.

Thus, for x = 1/n, we get

(
1 − 1

n

)k

− k (k − 1)

2

1

n2
� 1 − k

n
�
(

1 − 1

n

)k

.

Suppose (1 − 1
n)k � k(k−1)

2
1
n2 . Using the inequality

aN − (a − b)N = b · (aN−1 + (a − b) aN−2 + · · · + (a − b)N−1)
� N · b · aN−1, if a> b > 0,

we get

(
1 − k

n

)N

�
((

1 − 1

n

)k

− k (k − 1)

2

1

n2

)N

�
(

1 − 1

n

)kN

− N · k (k − 1)

2

1

n2
·
(

1 − 1

n

)k(N−1)

. (4.5)
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14 A. Reznikov and E. B. Saff

Suppose now that (1 − 1
n)k < k(k−1)

2
1
n2 . Then

(
1 − 1

n

)kN

− N · k (k − 1)

2

1

n2
·
(

1 − 1

n

)k(N−1)

=
(

1 − 1

n

)k(N−1)
((

1 − 1

n

)k

− N
k (k − 1)

2

1

n2

)
< 0,

so as in inequality (4.5) for k� n,

(
1 − k

n

)N

�
(

1 − 1

n

)kN

− N · k (k − 1)

2

1

n2
·
(

1 − 1

n

)k(N−1)

also holds. Therefore,

f(N, n, m) =
∑

k odd, k� m

(
m

k

)(
1 − k

n

)N

−
∑

k even, k� m

(
m

k

)(
1 − k

n

)N

�
∑

k odd

(
m

k

)[(
1 − 1

n

)kN

− N · k (k − 1)

2

1

n2
·
(

1 − 1

n

)k(N−1)
]

−
∑

k even

(
m

k

)(
1 − 1

n

)kN

�
∑m

k=1
(−1)k+1

(
m

k

)(
1 − 1

n

)kN

− N

n2

∑m

k=0

(
m

k

)
k (k − 1)

2
·
(

1 − 1

n

)k(N−1)

.

(4.6)

The first sum in (4.6) is equal to 1 − (1 − (1 − 1
n)N)m. To calculate the second sum,

we note that

m (m − 1)

2
x2 (1 + x)m−2 = 1

2
x2 ((1 + x)m)′′ =∑m

k=0

(
m

k

)
· k (k − 1)

2
xk.

Thus, for x = (1 − 1
n)N−1, we get

∑m

k=0

(
m

k

)
k (k − 1)

2
·
(

1 − 1

n

)k(N−1)

= m (m − 1)

2

(
1 − 1

n

)2(N−1)

·
(

1 +
(

1 − 1

n

)N−1
)m−2

.

Combining the above estimates, we obtain (4.4). �

With the help of (4.4), we can deduce some asymptotic properties of f(N, n, m)

as N → ∞.
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The Covering Radius of Randomly Distributed Points on a Manifold 15

Lemma 4.3. Let N be a positive integer and n, m be numbers satisfying 1 � m � n� N.

Further, let κn denote constants depending on n such that 0 < c1 � κn � c2 for all n.

(i) If m = �κnn� and c2 � 1, then there exists a number α such that for n=
N

log N−α log log N , we have f(N, n, m) → 1 as N → ∞.

(ii) If d> 1 and m = �κnn
d−1

d �, then there exists a number α such that for n=
N

d−1
d log N−α log log N

, we have f(N, n, m) → 1 as N → ∞.

(iii) If d> 1 and m = �κnn
1
d �, then there exists a number α such that for n=

N
1
d log N−α log log N

, we have f(N, n, m) → 1 as N → ∞. �

Proof. We prove only part (i) since the proofs of the second and third parts are similar.

In what follows, to simplify the displays, we omit the symbol for the integer part.

If aN and bN are two sequences of positive numbers, we write aN ∼ bN to mean aN/bN → 1

as N → ∞.

For our choice of n in part (i), we have

(
1 − 1

n

)N

∼ exp
(

− N

n

)
∼ (log N)

α

N
.

Thus,(
1 −

(
1 − 1

n

)N
)κnn

∼
(

1 − (log N)
α

N

) κnN
log N−α log log N

∼ exp
(

− κn (log N)
α

log N − α log log N

)
.

If α > 1, then the last expression tends to zero. Moreover,

N

n2
· m (m − 1)

2

(
1 − 1

n

)2(N−1)

·
(

1 +
(

1 − 1

n

)N−1
)m−2

∼ κ2
n

2
· (log N)

2α

N
·
(

1 + (log N)
α

N

) κnN
log N−α log log N

∼ κ2
n

2
· (log N)

2α

N
· exp

(
κn (log N)

α−1)
.

For α = 3/2 (actually, any 0 < α < 2 will work), the last expression is comparable to

(log N)
3

N
exp

(
κn (log N)

1
2

)
,

which tends to zero as N tends to infinity. Thus from (4.4), we deduce that

lim inf
N→∞

f (N, n, m) � 1.
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16 A. Reznikov and E. B. Saff

However, since f(N, n, m) is equal to a certain probability, we have that

f(N, n, m) � 1, and so limN→∞ f(N, n, m) = 1. �

5 Proofs

5.1 Preliminary objects

Fix a compact set X0 with a metric m. For any large positive number n, let En(X0) be a

maximal set of points such that for any y, z∈ En(X0), we have m(y, z) � 1/n. Then for any

x ∈X0, there exists a point y∈ En(X0) such that m(x, y) � 1/n (otherwise, we can add x to

En(X0), which contradicts its maximality).

5.2 Proof of the Theorem 2.1

Recall that (X , m) is a metric space, μ is a finite positive measure supported on X ,

and B(x, r) denotes a closed ball (in the metric m) with center x ∈X and radius r. Put

En := En(X ) and note that

μ (X ) �
∑

x∈En
μ

(
B
(

x,
1

3n

))
� card (En)Φ (1/ (3n)) . (5.1)

Suppose now that XN = {x1, . . . , xN} is a set of N random points, independently

distributed over X with respect to the measure μ. We denote its covering radius by

ρ (XN) := ρ (XN,X ) .

Suppose ρ(XN) > 2
n. Then there exists a point y∈X such that XN ∩ B(y, 2

n) = ∅. Choose a

point x ∈ En such that m(x, y) < 1
n. Then B(x, 1

n) ⊂ B(y, 2
n), and so the ball B(x, 1

n) (and thus

B(x, 1
3n)) does not intersect XN . Therefore,

P

(
ρ (XN) � 2

n

)
� P (∃x ∈ En: B (x, 1/ (3n)) ∩ XN = ∅)

� card (En) ·
(

1 − Φ
(

1
3n

)
μ (X )

)N

. (5.2)

We now choose n to be such that 1
3n = Φ−1(

α log N
N ). There exists such an n since Φ

is continuous and Φ(r) → 0 as r → 0+. Then utilizing the upper bound for card(En) from
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(5.1), we deduce that for some C > 0, we have

P

[
ρ (XN) � 2

n

]
� C

N

log N
· N−Cα,

which concludes the proof of the estimate (2.1).

To establish the estimate (2.2), note that since for small values of r we have

Φ(r) � rσ , it follows that for small r and D = 1
σ

we have Φ−1(r) � rD. Choose α so large

that N1−Cα = o(N−D) as N → ∞. Then

Eρ (XN) � 2

n
+ C diam (X ) · o

(
N−D)= 6Φ−1

(
α log N

N

)
+ o

(
N−D) .

Finally, since Φ−1(
α log N

N ) � Φ−1(N−1) � N−D, inequality (2.2) follows. �

5.3 Proof of the Theorem 2.2

Let En := En(X1), where X1 is as in the hypothesis. Note that

0 < μ (X1) �
∑

x∈En
μ

(
B
(

x,
1

n

))
� card (En)Φ

(
1

n

)
. (5.3)

An estimate as in (5.1) together with the doubling property of Φ implies that

μ (X ) � c · card (En)Φ

(
1

3n

)
� c̃ · card (En)Φ

(
1

n

)
.

Thus, τn := card(En) · Φ(1/n) satisfies 0 < c1 < τn < c2 for some constants c1 and c2 inde-

pendent of n. Clearly, if a ball B(x, 1
3n) does not intersect XN , then ρ(XN) = ρ(XN,X ) � 1

3n.

Thus

P

(
ρ (XN) � 1

3n

)
� P (∃x ∈ En: B (x, 1/ (3n)) ∩ XN = ∅) .

Note that the balls B(x, 1
3n) are disjoint for x ∈ En, and their μ-measure is comparable to

t := Φ( 1
n).

Next we claim that for every x ∈ En there exists a constant cx � 1 such that the

balls B(x, cx
1
3n) have the same measure c0Φ( 1

n) = c0t, and moreover, that the uniform esti-

mate cx > c > 0 holds for some constant c. To see this, take two points x1, x2 ∈X1 and

assume that the balls Bi := B(xi, r), i = 1, 2 are disjoint. Suppose μ(B1) < μ(B2). Define

the function ϕ(s) := μ(B(x2, s · r)). The strict doubling property of Φ implies

μ (B1) � cΦ (r) � c · C k
1Φ

(
r/2k) .
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18 A. Reznikov and E. B. Saff

Choose k such that c · C k
1 � 1. Then

μ (B1) � Φ
(
r/2k)� ϕ

(
2−k) .

Thus, ϕ(2−k) � μ(B1) < μ(B2) = ϕ(1). Since xi ∈X1 and n is large, we can use continuity of

ϕ to see that there exists a constant cx2 such that μ(B(x2, cx2r)) = μ(B(x1, r)). Note that

cx2 � 2−k =: c0, where k depends only on the constants c, C1 from Theorem 2.2 and not on

x1, x2, or r. Applying this procedure to all balls B(x, 1/(3n)), x ∈ En, and using the fact

that card(En) = τn/t, we obtain

P

(
ρ (XN) � c0

3
Φ−1 (t)

)
� P

(
one of

τn

t
disjoint balls of measure c0t is disjoint from XN

)

= f
(

N,
1

c0t
,
τn

t

)
= f

(
N,

1

c0t
,

κn

c0t

)
, (5.4)

where κn := c0τn and f is given in (4.1). If necessary, we can decrease the size of c0 so that

κn � 1 for n large. As we have seen in Lemma 4.3(i), there exists a number α such that if

1

c0t
= N

log N − α log log N
,

then f(N, 1
c0t ,

κn
c0t) → 1 as N → ∞. Thus, for any sufficiently large number N, we have

P

(
ρ (XN) � c0

3
Φ−1

(
log N − α log log N

c0N

))
� 1 − o (1) , N → ∞,

which is the desired inequality (2.3).

Moreover, for large values of N, we have log N − α log log N � 1
2 log N, thus

Eρ (XN) � c1Φ
−1

(
c2

log N

N

)
,

which proves inequality (2.4). �

5.4 Estimates from above for asymptotically flat sets

Let K be an asymptotically flat s-regular subset of R
d and put

ρ (XN) = ρ (XN, K) , εN := 1

log N
.

In order to deduce sharp asymptotic results, we first improve our estimates from above

by considering a better net of points. For each N > 4, let En/εN := En/εN (K). From estimates

similar to (5.1) and (5.3), we see that card(En) is comparable to (n/εN)s independently

of N.
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Suppose ρ(XN) > 1
n. Then, since K is compact, for some y∈ K, we have Bd(y, 1

n) ∩
XN = ∅, and thus there exists a point x ∈ En/εN such that Bd(x, 1−εN

n ) ∩ XN = ∅. We fix a

number δ, 0 < δ < 1, and take n so large that

Hs

(
Bd

(
x,

1 − εN

n

)
∩ K

)
� (1 − δ) υs

(1 − εN)s

ns
� (1 − δ) υs

1 − sεN

ns
.

As in (5.2)

P

(
ρ (XN) >

1

n

)
� C

(
n

εN

)s (
1 − 1

Hs (K)
(1 − δ) υs

1 − sεN

ns

)N

. (5.5)

Fix a number A> 0 and choose

n1 :=
(

(1 − δ) υs

Hs (K)

N

log N + Alog log N

)1/s

.

Then with n= n1 in (5.5), we get for all N large,

P

(
ρ (XN) >

1

n1

)
� C · N (log N)

s−1 e−(1−s/ log N)(log N+Alog log N). (5.6)

Recall that C does not depend on N. Thus if A and N are sufficiently large, it follows

that

P

(
ρ (XN) >

1

n1

)
� 1

log N
. (5.7)

Furthermore, if we plug n= n2 := ( N
B log N )1/s in (5.5), we get for sufficiently large B

P

(
ρ (XN) >

1

n2

)
� N−p/s−1. (5.8)

With dμ = 1KdHs/Hs(K), we make use of the formula

E[ρ(XN)p] =
∫

K N
ρ(XN)pdμ(x1) . . . dμ(xN) =

∫
ρ(XN )�1/n1

ρ(XN)pdμ(x1) . . . dμ(xN)

+
∫

1/n1<ρ(XN )�1/n2

ρ(XN)pdμ(x1) . . . dμ(xN)

+
∫

ρ(XN )>1/n2

ρ(XN)pdμ(x1) . . . dμ(xN)

� 1

np
1

+ 1

np
2

· P

(
ρ(XN) >

1

n1

)
+ (diam(K))p · P

(
ρ(XN) >

1

n2

)
. (5.9)
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20 A. Reznikov and E. B. Saff

From (5.7), (5.8), and the definitions of n1 and n2, we obtain

E[ρ(XN)p] �
(

log N + Alog log N

N

)p/s

·
(Hs(K)

υs

)p/s

· (1 − δ)−p/s + C
(

log N

N

)p/s 1

log N
+ C N−p/s−1. (5.10)

Therefore, for any δ with 0 < δ < 1,

lim sup
N→∞

E[ρ (XN)p] ·
(

N

log N

)p/s

� (1 − δ)−p/s ·
(Hs (K)

υs

)p/s

,

and consequently,

lim sup
N→∞

E[ρ (XN)p] ·
(

N

log N

)p/s

�
(Hs (K)

υs

)p/s

. (5.11)

5.5 Estimate from above for quasi-nice sets

Let K be a quasi-nice s-regular subset of R
d, and again set εN := 1/ log N and En/εN :=

En/εN (K), where n/εN → ∞ as N → ∞. Since the set T from part (iii) of Definition 3.1 is

finite, the regularity condition (ii) implies

Hs

(⋃
x∈T

Bd (x, r)

)
� C · card (T) · rs = C1rs, 0 < r < r0.

Suppose y1, . . . , yk ∈ En/εN ∩⋃x∈T Bd(x, 1−εN
n ). Then the balls Bd(yj,

εN
3n) are disjoint and

Bd(yj,
εN
3n) ⊂⋃

x∈T Bd(x, 1+εN
n ) for j = 1, . . . , k. The chain of inequalities

C1

(
1 + εN

n

)s

�Hs

(⋃
x∈T

Bd

(
x,

1 + εN

n

))
�
∑k

j=1
Hs

(
Bd

(
yj,

εN

3n

))
� c · k ·

(εN

n

)s

implies that k� C2/ε
s
N , and C2 does not depend on N. Further, if y∈ En/εN \⋃

x∈T Bd(x, 1−εN
n ), then Hs(Bd(y, 1−εN

n )) � υs(
1−εN

n )s.

As we have seen in (5.5), P(ρ(XN) > 1/n) is bounded from above by the prob-

ability that for some y∈ En/εN , we have Bd(y, 1−εN
n ) ∩ XN = ∅. Taking into account that

card(En/εN ) � C3(n/εN)s, we obtain

P

(
ρ(XN) >

1

n

)
� P

(
one of � C2

εs
N

balls of measure � c1

ns
is disjoint from XN or

one of � C3

(
n

εN

)s

balls of measure� υs(1 − εN)s

ns
is disjoint from XN

)
.
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This last probability is bounded from above by

C2

εs
N

(
1 − c1

ns

)N
+ C4

(
n

εN

)s (
1 − 1

Hs (K)

υs (1 − εN)s

ns

)N

.

As in the preceding proof, if

n1 =
(

υs

Hs (K)

N

log N + Alog log N

)1/s

,

then, for N large,

C4

(
n1

εN

)s

·
(

1 − 1

Hs (K)

υs (1 − εN)s

ns
1

)N

� C5

log N
.

Furthermore, note that if C6 is sufficiently large, then

C2

εs
N

(
1 − c1

ns
1

)N

� C6 (log N)
s N−c2 , N → ∞.

Repeating estimates (5.9) and (5.10), we obtain

lim sup
N→∞

E[ρ (XN)p] ·
(

N

log N

)p/s

�
(Hs (K)

υs

)p/s

. (5.12)

Note that (5.12) holds whether or not K is countably s-rectifiable; it requires only

that properties (ii) and (iii) of Definition 3.1 hold.

5.6 Estimate from below for quasi-nice sets

For the proof of Theorem 3.2, it remains in view of inequalities (5.11) and (5.12), to estab-

lish

lim inf
N→∞

E[ρ (XN)p] ·
(

N

log N

)p/s

�
(Hs (K)

υs

)p/s

(5.13)

for asymptotically flat and quasi-nice s-regular set K. Since by the Hölder inequality, we

have

lim inf
N→∞

E[ρ (XN)p] ·
[

N

log N

]p/s

�
(

lim inf
N→∞

Eρ (NN) ·
[

N

log N

]1/s
)p

,

it is enough to prove (5.13) for p= 1. If K is a quasi-nice s-regular set, then K is count-

ably s-rectifiable (s is an integer) and 0 <Hs(K) < ∞; thus as previously remarked, the
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22 A. Reznikov and E. B. Saff

following holds for Hs-almost every point x ∈ K:

r−s · Hs (Bd (x, r) ∩ K) → υs, r → 0+.

Fix a number δ with 0 < δ < 1 and a countable unbounded set N . For n∈N define

rn := 1/n and qn := ( 1−δ
1+δ

)1/s · 1/n. By Egoroff’s theorem, there exists a set K1 = K1(δ) ⊂ K

with Hs(K1) > 1
2Hs(K) on which the above limit is uniform for radii r equal to rn and qn.

That is,

r−sHs (Bd (x, r) ∩ K) ⇒ υs, r = rn or r = qn, n∈N , n→ ∞. (5.14)

This means that there exists a large number n(δ), such that for any n> n(δ) we

have, for every x ∈ K1,

(1 − δ) υsr
s
n �Hs (Bd (x, rn) ∩ K) � (1 + δ) υsr

s
n, (5.15)

(1 − δ) υsq
s
n �Hs (Bd (x, qn) ∩ K) � (1 + δ) υsq

s
n = (1 − δ) υsr

s
n. (5.16)

Recalling the notation of Section 5.1, we set En/2 := En/2(K1). Then, as in the pre-

ceding sections, there exist positive constants c1 and c2 (independent of n) such that

c1ns � card(En/2) � c2ns where, for the lower bound, we use

0 <Hs (K1) �Hs

⎛
⎝ ⋃

x∈En/2

(Bd (x, 2/n) ∩ K)

⎞
⎠� C · card

(En/2
)
(2/n)s .

Thus, τn := card(En/2)/ns satisfies 0 < c1 � τn � c2. Clearly, if for some x ∈ En/2 the ball

Bd(x, 1
n) is disjoint from XN , then ρ(XN) � 1

n. Thus, for a given δ > 0 and sufficiently large

n, we have a family {Bd(x, 1/n) ∩ K : x ∈ En/2(K1)} of τnns balls (relative to K) with disjoint

interiors of radius 1/n and Hs-measure between (1 − δ)υs/ns and (1 + δ)υs/ns. For a fixed

x ∈ En/2(K1), define ϕ(t) :=Hs(B(x, t/n) ∩ K). Then ϕ(1) � (1 − δ)υs/ns. On the other hand,

inequalities (5.16) imply

ϕ

((
1 − δ

1 + δ

)1/s
)

� (1 − δ) υs/ns.

Thus, there is a number cx = cx,n, with cx � ( 1−δ
1+δ

)1/s, such that ϕ(cx) = (1 − δ)υs/ns. That is,

there exists a new family {Bd(x, cx/n) ∩ K : x ∈ En/2(K1)}, with cx � ( 1−δ
1+δ

)1/s, and the sets

Bd(x, cx/n) ∩ K all have the same Hs measure, namely (1 − δ)υs/ns.
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As in (5.4), it follows that

P

(
ρ (XN) �

(
1 − δ

1 + δ

)1/s 1

n

)
� f

(
N,

Hs (K) ns

(1 − δ) υs
, τnns

)

= f
(

N,
Hs (K) ns

(1 − δ) υs
, κn · Hs (K) ns

(1 − δ) υs

)
, (5.17)

where

κn := τn · (1 − δ) υs

Hs (K)
.

It is easily seen that

Hs (K) � τnns · (1 − δ) υs

ns
=Hs (K) κn;

thus κn � 1. Part (i) of Lemma 4.3, therefore, implies that the sequence in (5.17) tends to

1 as N → ∞ if (for suitable α), we have

(1 − δ) υs

Hs (K) ns
= log N − α log log N

N
,

which is equivalent to

n:=
[
(1 − δ) υs

Hs (K)
· N

log N − α log log N

]1/s

. (5.18)

We take N so large that n exceeds n(δ), which ensures that the inequalities (5.15)–(5.16)

hold. From (5.17), we obtain

Eρ (XN) �
(

1 − δ

1 + δ

)1/s 1

n
· f
(

N,
Hs (K) ns

(1 − δ) υs
, τnns

)
.

Using the definition of n in (5.18), we get

Eρ(XN) ·
[

N

log N

]1/s

�
[

N

log N

]1/s

·
(

1 − δ

1 + δ

)1/s

·
[ Hs(K)

(1 − δ)υs
· log N − α log log N

N

]1/s

· f
(

N,
Hs(K)ns

(1 − δ)υs
, τnns

)
, (5.19)

and passing to the lim inf as N → ∞ yields

lim inf
N→∞

Eρ (XN) ·
(

N

log N

)1/s

�
(

1

1 + δ

)1/s

·
[Hs (K)

υs

]1/s

.

Recalling that δ can be taken arbitrarily small, we obtain (5.13) for quasi-nice sets. For

asymptotically flat sets, the same (but even simpler) argument applies.
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24 A. Reznikov and E. B. Saff

5.7 Proof of Corollary 3.4

Recall that

ZN = ρ
(
XN, S

d) ·
(

υd

(d+ 1) υd+1
· N

log N

)1/d

.

Corollary 3.3 implies that EZN → 1 and E[Z2
N ] → 1; thus E[(ZN − 1)2] = E[Z2

N ] − 2EZN +
1 → 0. The Chebyshev inequality then implies

P (|ZN − 1| > ε) � E[(ZN − 1)2]

ε2
→ 0,

which completes the proof. �

5.8 Proof of the Corollaries 3.3 and 3.6

It is well known that a closed C (1,1) manifold is an asymptotically flat set, and a rec-

tifiable curve is a quasi-nice 1-regular set. For the first fact, we refer the reader to a

textbook on Riemannian geometry, for instance, [5, Chapters 5–10]. The second fact can

be deduced from [7, Section 3.2]. �

5.9 Proof of the Theorem 3.7: estimate from above

The proof of the theorem is similar to the proof for asymptotically flat sets. However, we

need to take into account that the limit (3.1) is not equal to υd for points on the boundary.

We use properties (ii) and (iii) of K to obtain

r−dHd (Bd (x, r) ∩ K) ⇒ 1
2υd, r → 0, x ∈ ∂K; (5.20)

x ∈ K, dist (x, ∂K) > r ⇒Hd (Bd (x, r) ∩ K) =Hd (Bd (x, r)) = υdrd; (5.21)

∀δ > 0 ∃r (δ) > 0: ∀r < r (δ) ,∀x ∈ K : Hd (Bd (x, r) ∩ K) �
(

1

2
− δ

)
υdrd. (5.22)

For the details, we refer the reader to Lee [9, Chapter 5]. For large N, set En/εN := En/εN (K)

and εN := 1/ log N, where n(N) is a sequence such that n� (N/ log N)1/d. We now fix a

number δ with 0 < δ < 1/2. Note that if x ∈ En/εN and dist(x, ∂K) > (1 − εN)/n, then

Hd (Bd (x, (1 − εN) /n) ∩ K) = υd ((1 − εN) /n)d ;

if x ∈ En/εN and dist(x, ∂K) � (1 − εN)/n then, for large enough n,

Hd (Bd (x, (1 − εN) /n) ∩ K) �
(

1
2 − δ

)
υd ((1 − εN) /n)d .
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On considering disjoint balls (relative to K) of radius εN/(3n) and using that

Hd
({

x : dist (x, ∂K) �
(
1 − 2

3εN
)
/n
})

� C1/n,

we deduce, as in (5.1), that

card
{

x ∈ En/εN : dist (x, ∂K) � 1 − εN

n

}
� C2

nd−1

εd
N

.

Therefore, for large enough n, we get

P

(
ρ(XN) >

1

n

)
� P

(
∃x ∈ En/εN : Bd

(
x,

1 − εN

n

)
∩ K ∩ XN = ∅

)

� C2
nd−1

εd
N

(
1 − (1/2 − δ)υd

Hd(K)

(
1 − εN

n

)d
)N

+ C3
nd

εd
N

(
1 − υd

Hd(K)

(
1 − εN

n

)d
)N

. (5.23)

Repeating the estimates (5.7)–(5.11) with

n1 :=
(

(1/2 − δ) υd

Hd (K)
· N

d−1
d log N + Alog log N

)1/d

,

and

n2 :=
(

N

B log N

)1/d

,

where A and B are sufficiently large, we obtain, after letting δ → 0+, the estimate

lim sup
N→∞

E[ρ (XN)p]
(

N

log N

)p/d

�
(

2 (d− 1)

d
· Hd (K)

υd

)p/d

.

5.10 Proof of the Theorem 3.7: estimate from below

We repeat the proof from the Section 5.6, but now we will place our net E only on the

boundary ∂K. Namely, put En/2 := En/2(∂K). Since ∂K is a smooth d− 1-dimensional sub-

manifold, we see that card(En/2) = τnnd−1 with 0 < c1 < τn < c2. Moreover, from (5.20), we

obtain as in (5.14) that

r−dHd (Bd (x, 1/n) ∩ K) ⇒ 1
2υd/nd, r = rn or r = qn, n→ ∞,

uniformly for x ∈ En/2.
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26 A. Reznikov and E. B. Saff

The remainder of the proof just involves repeating the estimates (5.17)–(5.19),

using part (ii) of Lemma 4.3. �

5.11 Estimate from above for the cube [0, 1]d

The proof is similar to the case of the bodies with smooth boundary. The only change we

need to make is to the formula (5.20). Namely, if a point x lies on a (d− k)-dimensional

edge of the cube, then Hd(Bd(x, r) ∩ [0, 1]d) � 2−kυdrd. Moreover, Hd(Bd(x, r) ∩ [0, 1]d) =
2−kυdrd for points x on the (d− k)-dimensional edge that are at distance larger than

r from all (d− k − 1)-dimensional edges. Thus, if we consider a set En/εN := En/εN ([0, 1]d),

we have for any k= 0, . . . , d at most Cknd−k/εd
N points x ∈ En/εN with Hd(Bd(x, (1 − εN)/n) ∩

[0, 1]d) � 2−kυd((1 − εN)/n)d . In particular, if k= d, we have only finitely many such points

x ∈ En/εN ; and if k= d− 1, we have no more than C n/εd
N such points. We now repeat the

estimates (5.7)–(5.11) and (5.23) with

n1 :=
(

2−(d−1) · d · υd · N

log N + Alog log N

)1/d

.

5.12 Estimate from below for the cube [0, 1]d

The proof is almost identical to the proof in Section 5.10; the only difference is that now

we take En/2 := En/2(L), where L is a one-dimensional edge of the cube [0, 1]d. To complete

the analysis, we appeal to part (iii) of Lemma 4.3.

5.13 Estimates for a polyhedron in R
3

The estimates here are the same as for the unit cube [0, 1]d. The only difference is that,

for points x ∈ L, where L is the edge where two faces intersect at angle θ , we have, if x

is far enough from the vertices of P :

H3 (B (x, r) ∩ P ) = θ

2π
· υ3 · r3.

Consequently, for k= 0, 1, 2, 3, we have at most akn3−k/ε3
N points x ∈ En/εN (P ) with

H3(B3(x, (1 − εN)/n) ∩ P ) � ckυ3((1 − εN)/n)3, where a0 = 1, a1 = 1/2, and a2 = θ/(2π). In

the case θ � π/2, one needs to choose

n1 :=
(

2θ

V (P )
· N

log N + Alog log N

)1/3

,
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and in the case θ � π/2, one needs to choose

n1 :=
(

π

V (P )
· N

log N + Alog log N

)1/3

.

For the estimate from above, consider En/2(L) and repeat the estimates for the cube. �

5.14 Estimates for dµ = dx√
1−x2

We remind the reader that ρ̂(XN) = ρ̂(XN, [0, 1]) = supy∈[1− 1
Na ,1] inf j |y − xj|, where xj, j =

1, . . . , N, are randomly and independently distributed over [0, 1] with respect to μ.

5.14.1 Case a= 2

Suppose that an interval Iα := [1 − α
N2 , 1] is disjoint from XN for some α > 1. Then we get

ρ̂ (XN) � α − 1

N2
.

We note that if α < C1 log2
(N), and N is sufficiently large, then

μ (Iα) � C2

√
α

N
.

Therefore, if α is some number greater than 1,

P

(
ρ̂ � α − 1

N2

)
�
(

1 − C2

√
α

N

)N

� C3.

Consequently,

Eρ̂ � C4

N2
,

where C4 = C3(α − 1).

For the estimate from above, note that μ(Iα) � √
α/(

√
2π N). Assuming ρ̂(XN) � α

N2 ,

we get that the distance from 1 to any xj exceeds α/N2, and thus the interval [1 − α
N2 , 1]

is disjoint from XN . The probability of this event is less than

(
1 − C5

√
α

N

)N

� e−C5
√

α.

Thus, for any α, 1 < α < N2, it follows that

P

(
ρ̂ (XN) � α

N2

)
� e−C5

√
α.
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In particular, for sufficiently large C6, we have

P

(
ρ̂ (XN) � C6 log2

(N)

N2

)
� N−3.

Therefore,

Eρ̂ (XN) � 1

N2
+
∑C6 log2

(N)

α=1

α + 1

N2
e−C5

√
α + N−3.

It is easy to see that the latter expression is bounded by C7/N2, which completes the

proof for this case.

5.14.2 Case 0 < a< 2

We again note that, if α is a number and I = [α, α + ε] ⊂ [1 − 1
Na , 1] is an interval of length

ε, then

μ (I ) =
∫α+ε

α

dt

π
√

1 − t2
� 1

π

ε√
1 − α2

� 1

π

ε√
1 − (

1 − 1
Na

)2 � C1εN
a
2 .

Now consider n intervals of length 1
nNa (and thus having μ-measure μ greater than C1

nN
a
2

)

inside [1 − 1
Na , 1]. As we have seen before, if ρ̂(XN) > 2

nNa , then for some y∈ [1 − 1
Na , 1], the

interval of length 2
nNa centered at y is disjoint from XN ; thus one of the fixed intervals of

length 1
nNa is disjoint from XN . Consequently,

P

(
ρ̂ (XN) � 2

nNa

)
� n

(
1 − C1

nN
a
2

)N

.

With

n:= N1− a
2

Alog N
,

where A large enough, we get

P

(
ρ̂ (XN) � 2

nNa

)
� n

(
1 − C1

nN
a
2

)N

� N−3.

Therefore,

Eρ̂ � C
log N

N1+ a
2

+ N−3,

which finishes the estimate from above.
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For the estimate from below, we note that if I = [α, α + ε] ⊂ [1 − 1
Na , 1 − 1

2Na ], then

μ (I ) � C2
ε√

1 − (
1 − 1

2Na

)2 � 2C2εN
a
2 .

Take n intervals in [1 − 1
Na , 1 − 1

2Na ] of length comparable to 1
nNa and having equal

μ-measures C3
1

nN
a
2

(note that if we are allowed to take such intervals near 1, then the

best measure we can get is 1√
nNa ). If one of them is disjoint from XN , then ρ̂(XN) � C4

nNa .

Thus,

P

(
ρ̂ (XN) � C4

nNa

)
� f

(
N, nN

a
2 /C3, n

)
.

It is easy to see that if we take

n:= N1− a
2

Alog N − B log log N

for suitable A and B, then the latter expression tends to one. Recall that 0 < a< 2. There-

fore, for large values of N, we have

P

(
ρ̂ (XN) � C4

log N

N1+ a
2

)
� 1

2
,

which completes the proof for this case.

5.14.3 The estimate for ρ̃

For the estimate from above simply note that for any interval I, we have μ(I ) � |I |. For

the estimate from below, take the interval [− 1
2 , 1

2 ]. For any interval I ⊂ [− 1
2 , 1

2 ], we have

μ(I ) � C |I |, and thus the estimation from below runs as usual. �
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