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We consider periodic energy problems in Euclidean space with a special emphasis
on long-range potentials that cannot be defined through the usual infinite sum. One
of our main results builds on more recent developments of Ewald summation to
define the periodic energy corresponding to a large class of long-range potentials.
Two particularly interesting examples are the logarithmic potential and the Riesz
potential when the Riesz parameter is smaller than the dimension of the space. For
these examples, we use analytic continuation methods to provide concise formulas
for the periodic kernel in terms of the Epstein Hurwitz Zeta function. We apply
our energy definition to deduce several properties of the minimal energy including
the asymptotic order of growth and the distribution of points in energy minimizing
configurations as the number of points becomes large. We conclude with some
detailed calculations in the case of one dimension, which shows the utility of this
approach. C 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4903975]

I. INTRODUCTION

For an N-tuple ωN = (x j)Nj=1 of points confined to a compact subset Ω0 ⊆ Rd, we define its
f -energy as

E f (ωN) B

i, j

f (xi − x j), (1)

where f is a lower-semicontinuous function from Rd to R ∪ {∞}. The study of minimal energy
investigates configurations that minimize this energy among all such N-tuples. Therefore, we define

E f (Ω0,N) B inf
ωN ∈ΩN

E f (ωN). (2)

The lower semi-continuity of the function f implies that minimizers exist and so the infimum in
(2) is, in fact, a minimum. In recent years, there has been much interest in studying the asymptotics
of E f (Ω0,N) as N becomes large and deducing properties of the energy minimizing configurations
(see Refs. 4, 8, 9, 20, 21, and 23). Of particular interest is the case of a Riesz potential, where
f (w) = |w |−s and | · | denotes the Euclidean norm.

We will consider the energy problem in a related setting, which includes additional symme-
try that will simplify many of our computations. Let {v1, . . . , vd} be a collection of d linearly
independent vectors in Rd and let V be the d × d matrix whose j th column is equal to v j. We set

Ω B


w : w =

d
j=1

α jv j, α j ∈ [0,1), j = 1,2, . . . ,d


,

and we will denote its closure in Rd by Ω. LetV be the lattice determined by the matrix V ; that is,
V B {V k : k ∈ Zd} and let V∗ be the lattice dual to V; that is, V∗ =

�
w ∈ Rd : w · v ∈ Z for all
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v ∈ V
	
. We can think of Ω as a fundamental cell of the quotient space Rd/V , and we highlight the

fact that in the quotient topology,Ω is compact.
If f is a lower-semicontinuous function from Rd to R ∪ {∞} that decays sufficiently quickly at

infinity, then we define the classical periodic f -energy of a configuration ωN = (x j)Nj=1 ∈ (Rd)N by

Ecp
f
(ωN) B


i, j

*
,


v∈V

f (xi − x j + v)+
-
. (3)

In this context, the function f is referred to as the potential function. If A ⊆ Ω is compact (in the
quotient topology on Rd/V) and infinite, then we define

Ecp
f
(A,N) B inf

ωN ∈AN
Ecp
f
(ωN). (4)

The physical interpretation of energy (3) is easy to describe. Consider a crystal that consists of
a particular configuration of particles that is confined to a compact set and this configuration is
repeated in a periodic fashion throughout a very large region of space. If the particles exhibit a
repelling force on one another, they will arrange themselves in a manner that minimizes the energy
of the entire crystal. To approximate the energy of this crystal, it suffices to approximate the energy
of one cell of the crystal lattice and then multiply by the number of cells. When calculating the
energy of a single cell, we make the further approximation that the lattice is infinite, so we must
sum up the contribution to the energy of the interaction between every particle in the cell and every
other particle in the entire crystal. When the interaction between the particles x and y is given by
f (x − y), the resulting sum is of form (3).

We should point out that some authors define the periodic energy using a different notation (see
Ref. 11) by choosing x j ∈ Rd for j ∈ {1, . . . ,N}, defining the set Λ by

Λ B
N
j=1

�
x j + v : v ∈ V

	
,

and then defining the periodic energy by

N
k=1

*...
,


q∈Λ
q,xk

f (xk − q)
+///
-

.

It is easy to see that this sum and (3) differ by the so-called self-energy term, which takes the form

N ·


v∈V\{0}
f (v).

In the specific case of a Coulomb potential, an alternating sum similar to this self-energy term is
related to the Madelung constant, which is of significant interest in its own right (see Refs. 5 and
7). Since the self-energy term is independent of the points in the configuration, its presence does
not meaningfully effect the asymptotics of Ecp

f
(A,N) for large N , so its inclusion or omission is not

relevant for our investigation.
Of course, sum (3) will not converge without the decay assumption on the function f , so

we will introduce a renormalized energy given by (6) and (7) below to compute the energy of a
configuration for a broader class of potentials. We provide a derivation of kernel formula (7) in
Sec. IV, and describe its relation to formulas that have previously appeared in the physics literature
(see, for example, Refs. 26 and 31).

The problem of summing divergent or conditionally convergent series related to physical phe-
nomena has a long history. One of the most widely used methods is known as Ewald summation
(see Ref. 14), which is a method for defining Coulomb (that is, electrostatic) energies. Various
improvements of the Ewald summation method have arisen since that original paper. Indeed, the
recent advances in computational mathematics have inspired many faster and more stable algo-
rithms related to lattice summation (see, for example, Refs. 2, 15, 17, 18, 28, and 31). There have
also been improvements to the scope of the Ewald method. In Ref. 22, Heyes studied the effect
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of utilizing different charge distribution functions in the Ewald method and in Ref. 31 the Ewald
method is applied to a large collection of potentials that includes the Coulomb interaction. We also
note that the recent methods of Ref. 33 can be utilized to define such “renormalized” energies for
infinite point configurations (e.g., the periodic case) interacting through the Coulomb potential in
two-dimensions.

Compared with the physics literature, extensive results in the mathematics literature on peri-
odic discrete energy are more difficult to find. Some analytic methods for evaluating conditionally
convergent sums can be found in Ref. 6 and rigorous results concerning the Madelung constant
appear in Refs. 5, 7, and 34. One of our goals is to define an energy functional that admits a
mathematically rigorous derivation, has certain desirable properties (see Theorems 1.1 and 2.2), and
generalizes the ideas presented in many of the aforementioned papers.

Before we state the definition of our energy functional, we need to specify the potential func-
tions that we will consider. If ν is a signed measure, we will denote by ν+ and ν− its positive and
negative parts, respectively.

Definition 1. We will say that a lower-semicontinuous function f : Rd → R ∪ {∞} is a G-type
potential if it satisfies the following property:

(G) for every q ∈ Rd \ {0}, f (q) is finite and can be expressed as

f (q) =
 ∞

0
e−|q |

2tdµ f (t),
for some signed measure µ f on (0,∞) having finite negative part. We also define f (0) B
µ f (Rd), which exists as an element of R ∪ {∞}.

We will say that a lower-semicontinuous function f : Rd → R ∪ {∞} is a weak G-type potential if
there is a function f ∗ : (0,1) → R and a signed measure µ f on (0,∞) with finite negative part so that
the following conditions are satisfied:

(W1) for every q ∈ Rd \ {0}, f (q) is finite and can be expressed as

f (q) = lim
α→0+

( ∞

α

e−|q |
2tdµ f (t) + f ∗(α)

)
,

where
 ∞
α e−|q |2tdµ f (t) < ∞ for all α > 0, and

(W2) If w0 is an element ofV∗ \ {0} of minimal length, then 1

0

e−π
2|w0|2/t

td/2 dµ f (t) < ∞.
The terminology “G-type potential” is short for Gaussian-type potential in that we are ex-

pressing the potentials f in the form f (q) = F(|q|2), where F is the Laplace transform of a signed
measure on (0,∞). If µ f is positive, then its Laplace transform is a completely monotone function
from (0,∞) to itself. (A function F is said to be completely monotone on (0,∞) if (−1)kF(k)(x) ≥ 0
holds on (0,∞) for every k ∈ {0,1,2, . . .}). Therefore, G-type potentials are defined via the differ-
ence of two completely monotone functions on (0,∞) and weak G-type potentials are renormalized
limits of G-type potentials.

Whenever we refer to a weak G-type potential f , we will associate to it the measure µ f that
appears in the definition. It is clear that every G-type potential is a weak G-type potential, but the
converse is false. An example of a weak G-type potential that is not a G-type potential is the loga-
rithm f (x) = − log(|x |2). Indeed, the logarithm motivates our definition of weak G-type potentials
and it is true that

− log(r2) = lim
α→0+

*
,

 ∞

α

e−r
2t

t
dt + γ + log α+

-
, (5)

where γ is the Euler-Mascheroni constant (see Eq. (3.77) in Ref. 10). The corresponding function
f ∗ is given by f ∗(α) = γ + log α and the corresponding measure µ f is t−1dt. We will see some
examples of G-type potentials in Sec. III, such as the Riesz potential f (x) = |x |−s where s > 0.
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With these preliminaries, we now present a definition that will be of fundamental importance to
the remainder of the paper.

Definition 2. Let f be a weak G-type potential with corresponding measure µ f . Assume that
the matrix V that determines V satisfies det(V ) = 1 and consider ωN = (x j)Nj=1 ∈ (Rd)N . We define
the periodic f -energy of ωN associated with the latticeV by

Ep
f
(ωN) B


1≤k, j≤N

k, j

Kp
f
(x j, xk), (6)

where

Kp
f
(x, y) B


v∈V

 ∞

1
e−|x−y+v |

2tdµ f (t) +


w∈V∗\{0}
e2πiw ·(x−y)

 1

0

πd/2

td/2 e−π
2|w |2/tdµ f (t). (7)

We also define

Ep
f
(A,N) B inf

ωN ∈AN
Ep
f
(ωN), (8)

whereA ⊆ Ω is infinite.

Remark. When we write
 b

a h(t)dµ(t) for any measure µ, we mean the integral over the half-open
interval [a,b).
Remark. We allow for the possibility of a configuration having infinite energy, but this can only
happen if xi − x j ∈ V for some i , j.

Formula (7) arises from a renormalization process involving limits of classical periodic energy
functionals. Namely, we derive (7) by first modifying the potential so that sum (3) for the modified
potential converges, and then continuously remove this added decay by pushing it out to infinity and
renormalizing the sum in a way that is independent of the configuration. Further details are provided
in Sec. IV.

The focus of this paper will be on applications of (6) and (7) to minimal energy problems.
Before we apply Definition 2, we list some of its properties. The following theorem shows that (6)
and (7) have several properties one would expect from a periodic energy definition.

Theorem 1.1. If f is a weak G-type potential, then its kernel has the following properties:

(a) Kp
f

is well defined and continuous as a function from Rd × Rd to R ∪ {∞}. Furthermore,
Kp

f
(x, y) is finite for any x, y ∈ Rd such that x − y < V .

(b) Kp
f
(x, y) is symmetric, periodic in each coordinate with respect to the lattice V and depends

only on x − y .
(c) If f is a G-type potential and the sum (3) converges absolutely, then Ecp

f
and Ep

f
differ by a

constant multiple of N(N − 1), where the constant does not depend on the configuration.

Remark. As shown in the proof, if µ+f ([1,∞)) < ∞, then Kp
f
(x, y) is also finite for x − y ∈ V ,

otherwise Kp
f
(x, y) = ∞ for x − y ∈ V . A configuration (x j)Nj=1 will be called non-degenerate if

x j − xk < V for any j , k and so the energy in (6) of such a configuration must be finite.

Proof of Theorem 1.1(a). By assumption on f , we have µ f = µ
+
f − µ

−
f for some positive µ+f and

some finite positive measure µ−f . We shall begin by establishing that the second sum in (7) converges
uniformly on Rd × Rd by verifying that the sum of the integrals converges absolutely. From the
representation 

w∈V∗\{0}

e−π
2|w |2/t

td/2 =
e−π

2|w0|2/t

td/2


w∈V∗\{0}

eπ
2(|w0|2−|w |2)/t
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and the fact that the last sum is increasing in t and converges when t = 1, it follows that the sum of
the integrands converges and is bounded on [0,1] by a constant multiple of e−π

2|w0|2/tt−d/2. Conse-
quently, applying condition (W2), we obtain that the second sum converges to a finite continuous
function on Rd × Rd.

Next, we consider the first sum in (7). Since
v∈V

e−|x−y+v |
2

converges uniformly for (x, y) ∈ Rd × Rd, it follows that
v∈V

 ∞

1
e−|x−y+v |

2tdν(t)

also converges uniformly on Rd × Rd if ν is a finite measure. Thus, if µ+f ([1,∞)) is finite, we have
that K p

f
is continuous and finite on Rd × Rd.

Finally, we consider the case that µ+f ([1,∞)) = ∞. Let x, y ∈ Rd be such that x − y < V and
choose δ so that 0 < δ < |x − y + v |2 for all v ∈ V . Define

ΘV(t) B

v∈V

e(δ−|x−y+v |
2)t

and observe from the finiteness property of (W1) that
v∈V

 ∞

1
e−|x−y+v |

2tdµ+f (t) =
 ∞

1


v∈V

e(δ−|x−y+v |
2)te−δtdµ+f (t)

=

 ∞

1
ΘV(t)e−δtdµ+f (t) < ∞,

since ΘV(t) is bounded and decreasing on [1,∞). This establishes convergence of the first sum in
(7). It is not difficult to show that the convergence is uniform on any closed subset ofD ′ = {(x, y) ∈
Rd × Rd : x − y < V} and so the first sum is continuous onD ′.

Fix v ∈ V . For x − y in a sufficiently small neighborhood of −v , the dominant term in the first
sum in (7) is h(x − y) B  ∞

1 e−|x−y+v |2tdµ+f (t) while the remainder is continuous and finite for x − y
in this neighborhood. Since µ+f ([1,∞)) = ∞, h(x − y) → ∞ as x − y → −v . Consequently, K p

f
is

continuous as a function from Rd × Rd to R ∪ {∞}. �

Proof of Theorem 1.1(b). The symmetry and periodicity of the kernel is clear from the form of
the kernel and the definition of the dual lattice. �

Remark. We postpone the proof of Theorem 1.1(c) until Sec. IV.
One of our goals is to investigate the asymptotics of the minimal energy (as defined in (8)) as

N becomes large. One of our results (see Theorem 2.2 below) states that if µ f is positive (more
generally, if the kernel Kp

f
is integrable), then the limit

lim
N→∞

Ep
f
(A,N)
N2 ,

exists, is finite, and can be expressed as an explicit integral provided A satisfies some additional
hypotheses. We will apply this result to determine the leading order of growth of the minimal
periodic energy corresponding to the potential function f s(x) B |x |−s for all values of s ∈ (0,d)
when A = Ω (see Corollary 3.5). When s ≥ d, we will show that the leading order of growth is the
same as in the non-periodic setting, even ifA , Ω (see Theorem 3.2). This is not surprising because
for large values of s, it is the nearest neighbor interactions that dominate the asymptotics, so the
periodization of the problem should only have a slight effect.

In Sec. II, we will investigate minimal energy asymptotics for positive integrable kernels.
In Sec. III, will study the resulting kernels and the minimal energy asymptotics for Riesz and
log-Riesz potentials and also introduce a convenient formula for the periodic logarithmic kernel.
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In Sec. IV, we will provide the details of our derivation of formula (7) and show that it arises
naturally from a certain renormalization process. We will place a particular emphasis on the
robust nature of our derivation and show that many different approaches to defining a periodic
energy yield the same result. Section V contains some detailed minimal energy calculations for
several potentials—including the Riesz potential—in the one-dimensional setting. These results are
extremely precise and highlight the possible advantages of considering the periodic problem when
studying minimal energy configurations.

For notation, we use x jk to mean x j − xk. We always assume that our lattice V is determined
by a matrix V satisfying det(V ) = 1; i.e., the co-volume ofV is 1. This is achieved by an appropriate
rescaling of the lattice and simplify some of our formulas. For any integrable function h, we denote
its Fourier transform by ĥ, that is,

ĥ(y) B

Rd

e−2πiy ·th(t)dt .

If ν is a signed measure, we write ν̂ to denote its Fourier transform ν̂(y)B

Rd

e−2πiy ·tdν(t).
We useHq(X) to denote the q-dimensional Hausdorffmeasure of a set X .

II. INTEGRABLE KERNELS

In this section, we will fixA ⊆ Ω to be an infinite set that is compact in the quotient topology on
Rd/V . LetM+,1(A) be the collection of all positive probability measures with support inA, where
we define the support of the measure in the topology of Rd/V . Our goal in this section is to prove the
following pair of theorems:

Theorem 2.1. Suppose f is a weak G-type potential and there exists someλ ∈ M+,1(A) satisfying

L f (λ) B
 

Kp
f
(x, y)dλ(x)dλ(y) < ∞. (9)

If the signed measure µ f associated with f satisfies ∞

0

πd/2

td/2 e−π
2|w |2/tdµ f (t) > 0, for all w ∈ V∗ \ {0}, (10)

then the set 
λ ∈ M+,1(A) : L f (λ) = inf

ν∈M+,1(A)
L f (ν)


(11)

consists of a single element (denoted by νf ).
In particular, if A = Ω, then νf is d-dimensional Lebesgue measure restricted toΩ and

L f (νf ) B
 

Kp
f
(x, y)dxdy =

 ∞

1

πd/2

td/2 dµ f (t). (12)

Remark. It is clear that the condition (10) is satisfied if µ−f = 0.

Theorem 2.2. Suppose f is a weak G-type potential.

(I) If (9) holds for some λ ∈ M+,1(A) and µ f satisfies (10), then

lim
N→∞

Ep
f
(A,N)
N2 =


A


A

Kp
f
(x, y)dνf (x)dνf (y), (13)

where νf is the unique element of set (11).
(II) If µ f satisfies (10) butL f (λ) = ∞ for all λ ∈ M+,1(A), then the limit in (13) is positive infinity.
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Theorem 2.2(I) tells us that if the kernel Kp
f

does not blow up too quickly along the diagonal
of A ×A, then we can write down the leading term in the asymptotic expansion of Ep

f
(A,N). This

conclusion will also have implications for the macroscopic distribution as N→ ∞ of minimal energy
configurations (which exist becauseA is compact inRd/V; see Corollary 2.5).

It will be no trouble to prove Theorem 2.1 (using standard machinery) once we have established
the following result:

Theorem 2.3. Suppose f is a weak G-type potential and µ f satisfies (10). If λ = λ1 − λ2, where
each λi ∈ M+,1(A) and 

A


A

Kp
f
(x, y) dλi(x)dλi(y) < ∞, i = 1,2 (14)

then 
A


A

Kp
f
(x, y) dλ(x)dλ(y) ≥ 0, (15)

with equality if and only if λ is the zero measure.

The proof will rely on our next lemma involving the Fourier transform.

Lemma 2.4. Let γ be a signed measure onA that can be written as the difference of two members
of M+,1(A). If the Fourier transform γ̂(w) = 0 for all w ∈ V∗, then γ is the zero measure.

Proof. Throughout this proof, we keep in mind thatA is a (compact) subset ofRd/V . Define

W B



k(x) =
m
j=0

a je2πiw j ·x : a j ∈ R, w j ∈ V∗, m ∈ N0



.

LetW be the closure ofW in the uniform norm on A. It is easily seen thatW is a closed algebra
of continuous functions on A that includes the constant functions and separates points. The Stone-
Weierstrass Theorem tells us thatW is all continuous functions on A. Our hypotheses imply that
γ(k) = 0 for all k ∈ W , and hence γ is the zero measure. �

Proof of Theorem 2.3. For the purpose of future reference, we initially only assume that λ1 and
λ2 are positive finite measures on A satisfying (14); i.e., we postpone the assumption that λ(A) =
λ1(A) − λ2(A) = 0 until later in the proof. First, notice that the proof of Theorem 1.1(a) shows that the
sum overV∗ in (7) is uniformly bounded in x and y . Therefore, we may apply the Fubini Theorem and
switch the infinite sum with the integral to obtain

A


A

*.
,


w∈V∗\{0}

e2πiw ·(x−y)
 1

0

πd/2

td/2 e−π
2|w |2/tdµ f (t)+/

-
dλ(x)dλ(y)

=


w∈V∗\{0}
|λ̂(w)|2

 1

0

πd/2

td/2 e−π
2|w |2/tdµ f (t). (16)

Consider now the sum overV in (7). Given a measure λ as in the statement of the theorem, define
Gt(x) B e−t |x |2 and ht(x) B Gt(x)|λ̂(x)|2 = Gt(x)λ̂(x)λ̂(−x). Since λ has bounded support, it is easily
seen that λ̂ is infinitely differentiable and every derivative of λ̂ is a bounded function onRd. Recall that
Gt is a Gaussian; i.e.,

Gt(y) = πd/2

td/2 e−π
2|y |2/t, (y ∈ Rd), (17)

and so ht(x) is a Schwartz function for every t > 0.
Notice that Gt ∗ λ and its Fourier transform are in L1(Rd) (see Proposition 8.49 in Ref. 16), so we

may use the Fourier inversion formula and the Fubini Theorem to see that for any fixed v ∈ V and any
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fixed t > 0 we have
A


A

e−|x−y+v |
2tdλ(x)dλ(y) =


A
(Gt ∗ λ)(x + v) dλ(x)

=


A


Rd

e2πi(x+v)·q(FGt ∗ λ)(q) dq dλ(x)

=


Rd


A

e2πi(x+v)·q(FGt ∗ λ)(q) dλ(x) dq

=


Rd

e2πiv ·qht(q) dq

= ĥt(−v). (18)

Let us split V into two subsets. We define V1 to be all v ∈ V such that there exist two points
a,b ∈ A with a − b = v and we setV2 B V \V1 (here,A means the closure ofA in Rd). As in the
proof of Theorem 1.1(a), it is straightforward to show that

v∈V2

 ∞

1
e−|x−y+v |

2tdµ f (t)

is uniformly bounded in x, y ∈ A. Therefore, we may change the order of integration and summation
and write


A


A

*.
,


v∈V2

 ∞

1
e−|x−y+v |

2tdµ f (t)+/
-

dλ(x)dλ(y) =
 ∞

1


v∈V2

ĥt(−v)dµ f (t), (19)

which we know is finite.
It remains to deal with the finite collectionV1. For any v ∈ V1, the finiteness of µ−f implies that

there is a constant σ > 0 so that

L f (λi) ≥
 ∞

1


A


A

e−|x−y+v |
2tdλi(x)dλi(y)dµ+f (t) − σ, i = 1,2,

whereL f is defined as in (9). Therefore, when we write
A


A

 ∞

1
e−|x−y+v |

2tdµ+f (t)dλ(x)dλ(y) =

A


A

 ∞

1
e−|x−y+v |

2tdµ+f (t)dλ1(x)dλ1(y)

+


A


A

 ∞

1
e−|x−y+v |

2tdµ+f (t)dλ2(x)dλ2(y) − 2

A


A

 ∞

1
e−|x−y+v |

2tdµ+f (t)dλ1(x)dλ2(y)

=

 ∞

1


A


A

e−|x−y+v |
2tdλ1(x)dλ1(y)dµ+f (t) +

 ∞

1


A


A

e−|x−y+v |
2tdλ2(x)dλ2(y)dµ+f (t)

−2
 ∞

1


A


A

e−|x−y+v |
2tdλ1(x)dλ2(y)dµ+f (t),

we know that the first two terms in this last expression are finite, while the third is in [−∞,0]. Therefore,
for each v ∈ V1, we have  ∞

1
ĥt(−v)dµ+f (t) ∈ [−∞,∞).

Furthermore, from (18), we obtain ∞

1
ĥt(−v)dµ−f (t) =

 ∞

1


A


A

e−|x−y+v |
2tdλ(x)dλ(y)dµ−f (t) ∈ (−∞,∞)

because µ−f is finite. Consequently, ∞

1


v∈V1

ĥt(−v)dµ f (t) ∈ [−∞,∞),
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which—together with (19)—implies  ∞

1


v∈V

ĥt(v)dµ f (t)

exists as an extended real number inR ∪ {−∞}.
Since ht is a Schwartz function, we may apply the Poisson summation formula (see Appendix) to

conclude that ∞

1


v∈V

ĥt(v)dµ f (t) =
 ∞

1


w∈V∗

ht(w)dµ f (t) =
 ∞

1


w∈V∗

|λ̂(w)|2Gt(w)dµ f (t). (20)

In order to show that this quantity is finite, it suffices to show that it is not negative infinity, and for this
it is enough to consider the integral with respect to µ−f . Indeed, another application of Poisson summa -
tion shows ∞

1


w∈V∗

|λ̂(w)|2Gt(w)dµ−f (t) =
 ∞

1


v∈V


A


A

e−|x−y+v |
2tdλ(x)dλ(y)dµ−f (t),

which is clearly finite because µ−f is finite. Therefore, the integrand on the far right-hand side of (20) is
integrable with respect to |µ f |, which means we may bring the sum outside of the integral. Combining
(16) and (20), we obtain

Kp
f
(x, y)dλ(x)dλ(y) =


w∈V∗\{0}

 1

0
|λ̂(w)|2Gt(w)dµ f (t) +


w∈V∗

 ∞

1
|λ̂(w)|2Gt(w)dµ f (t). (21)

Now we impose the assumption that λ(A) = λ(Rd) = 0 so that λ̂(0) = 0 and the first summation
can be taken over all ofV∗. Since both of these sums are absolutely convergent, we may combine them
to get  

Kp
f
(x, y)dλ(x)dλ(y) =


w∈V∗

|λ̂(w)|2
 ∞

0

Gt(w)dµ f (t).

Appealing to Eq. (17), condition (10), and Lemma 2.4 completes the proof. �

Now we can prove Theorem 2.1.

Proof of Theorem 2.1. Suppose λ1 and λ2 are both minimizers of L f . The proof of Theorem 2.3
shows that

�����


A


A

Kp
f
(x, y)dλ1(x)dλ2(y)

�����
< ∞,

so we may apply the parallelogram law to deduce that

L f

(
λ1 + λ2

2

)
= L f (λ1) − L f

(
λ1 − λ2

2

)
≤ L f (λ1),

where the inequality is strict unless λ1 = λ2 (by Theorem 2.3). The minimality of λ1 implies λ1 = λ2 as
desired.

In the caseA = Ω, the translation invariance of the periodic problem implies that the unique equi-
librium measure νf must be the Haar measure which, restricted to Ω, is Lebesgue measure. Finally,
applying (21) with λ = νf and noting thatνf (w) = 0 for w ∈ V∗ \ {0} andνf (0) = 1, gives (12). �

Theorem 2.1 establishes that set (11) has a unique element when f satisfies the appropriate hypoth-
eses. Now we can turn to the proof of Theorem 2.2, which we will prove using a standard argument
(see Chap. 2 in Ref. 24) that we provide for completeness.

Proof of Theorem 2.2. (I): Let νf be the unique element of the set (11). Define

H(x1, . . . , xN) B

k, j

Kp
f
(xk, x j).
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Then, Ep
f
(A,N) is the minimum of H onAN . Therefore, we have the upper bound

Ep
f
(A,N) ≤


A
· · ·


A

H(x1, . . . , xN)dνf (x1) · · · dνf (xN).
This last integral is easily evaluated and equals N(N − 1) times the expression on the right hand side
of (13). Therefore,

Ep
f
(A,N)

N(N − 1) ≤

A


A

Kp
f
(x, y)dνf (x)dνf (y). (22)

To get a lower bound, let K ℓ
f (x, y)be a kernel that is continuous onA ×A and satisfies K ℓ

f (x, y) ≤
Kp

f
(x, y) for all x, y ∈ A. For each N ∈ N, let ωN ∈ AN be a configuration satisfying Ep

f
(ωN) = Ep

f

(A,N). Let νN be the measure that assigns weight N−1 to each point inωN and letN ⊆ N be a subse-
quence so that N−2Ep

f
(A,N) converges to its lim inf as N→ ∞ throughN . By taking a further subse-

quence if necessary, we may assume that νN converges weakly to some probability measure ν∞ ∈
M+,1(A) as N→ ∞ throughN . The continuity of K ℓ

f implies

Ep
f
(A,N)
N2 ≥


A


A

K ℓ
f (x, y)dνN(x)dνN(y) −

1
N2

N
j=1

K ℓ
f (x j, x j)

=


A


A

K ℓ
f (x, y)dν∞(x)dν∞(y) + o(1)

as N→ ∞ throughN . By taking a supremum over all such continuous K ℓ
f , we deduce

lim inf
N→∞

Ep
f
(A,N)
N2 ≥


A


A

Kp
f
(x, y)dν∞(x)dν∞(y),

where we used Theorem 1.1(a) to approximate the kernel Kp
f

from below by finite, continuous kernels.
In the case thatL f (λ) is finite for some λ ∈ M+,1(A), we would have a contradiction with (22) for large
N unless ν∞ = νf , so we have proven the claim.

(II): IfL f (λ) = ∞ for every λ ∈ M+,1(A), then our above arguments show that the limit in (13) is
positive infinity as desired. �

We can also state the following corollary, which was proven in the proof of Theorem 2.2:

Corollary 2.5. Let f , µ f , and Kp
f

satisfy the hypotheses of Theorem 2.2(I) and for each N ∈ N, let
ωN be a configuration satisfying Ep

f
(ωN) = Ep

f
(A,N). If νN is the measure that assigns weight N−1 to

each point inωN , then νf is the unique weak limit of the measures {νN}N ≥2 as N→ ∞.

We will apply Theorem 2.1 to some specific examples in Sec. III, where we discuss potential
functions of special interest in more detail.

III. THE PERIODIC RIESZ, LOG-RIESZ, AND LOGARITHMIC POTENTIALS

In this section, we will apply Definition 2 to define the periodic energy associated to some partic-
ularly interesting potential functions, namely, the Riesz potential, the log-Riesz potential, and the log-
arithmic potential. In the case of the Riesz potential, we will also discuss the asymptotic behavior of
the minimal energy.

A. The periodic Riesz energy

In this section, we consider the potential function f s(w) = |w |−s for any s > 0. We will refer to the
corresponding energy as the periodic Riesz s-energy.

First, let us briefly describe the situation when s > d. In this case, the sum (3) converges and
has a convenient description in terms of special functions. Let us denote (as usual) the Epstein Zeta
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function ofV by

ζV(s) B


v∈V\{0}
|v |−s, s > d,

which is well-defined for s > d. Similarly, we will denote the Epstein Hurwitz Zeta function ofV by

ζV(s; q) B

v∈V

|q + v |−s, q < V , s > d,

which is also well-defined for s > d. We will see shortly that ζV(s; q) − 2πd/2

Γ( s2 )(s−d) is actually an entire

function of s ∈ Cwhenever q ∈ Rd \ V . Now we can write

Ecp
fs
((x j)Nj=1) =


k, j

ζV(s; xk j), s > d,

with the understanding that ζV(s; v) = ∞ when v ∈ V . Properties of the classical periodic Riesz s-
energy for s > d have been studied before in Refs. 11 and 12.

Definition 2 extends the definition of the periodic Riesz s-energy to allow for the possibility that
s ≤ d. For simplicity, we will denote the periodic Riesz s-energy by Ep

s and the corresponding kernel
and minimal energy by Kp

s and Ep
s, respectively. The kernel that arises from formula (7) takes the fol -

lowing form:

Theorem 3.1. The kernel for the periodic Riesz s-energy associated with the latticeV is given by

Kp
s(x, y) = ζV(s; x − y) + 2πd/2

Γ( s2 )(d − s) , s > 0. (23)

Furthermore, for 0 < s < d, 
Ω


Ω

Kp
s(x, y)dxdy =

2πd/2

Γ( s2 )(d − s) . (24)

Remark. An immediate consequence of (24) is
Ω

ζV(s; x)dx = 0, 0 < s < d. (25)

Proof. We begin by recalling

y−s/2 =
1

Γ(s/2)
 ∞

0
ts/2−1e−t ydt, y > 0, s > 0, (26)

which shows (with y = |q|2) that the Riesz potential is a G-type potential for any s > 0. Furthermore,
an application of Fubini’s Theorem and Morera’s Theorem to (7) shows that each term in both sums
defining the kernel Kp

s is an entire function of s. The uniform convergence of the sums (which follows
from the calculations in the proof of Theorem 1.1(a)) shows that for any fixed distinct x, y ∈ Ω, the
function Kp

s(x, y) is an entire function of s.
When s > d, we may invoke Theorem 4.1 to write

Kp
s(x, y) = lim

a→0+
*
,


v∈V

|x − y + v |−se−|a(x−y+v)|2 − 1
Γ(s/2)

 1

0

πd/2ts/2−1

(t + a2)d/2 dt+
-
.

If we apply dominated convergence, then we arrive at the following formula:

Kp
s(x, y) = ζV(s; x − y) − 2πd/2

Γ( s2 )(s − d) , s > d. (27)

We conclude that Kp
s(x, y) provides an analytic continuation of the right-hand side of (27) to the whole

complex plane (see also (28) below). Since both sides of (27) are entire functions of s and they are equal
on (d,∞), we must have equality for all s > 0 as desired.
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Finally, by (12) and (26), we have
Ω


Ω

Kp
s(x, y)dxdy =

πd/2

Γ( s2 )
 ∞

1
t
s−d

2 −1dt =
2πd/2

Γ( s2 )(d − s) .
�

Remark. It is worth noting that the fact that the right-hand side of (27) is an entire function of s also
implies that ζV(s,q) − ζV(s) is an entire function of s (see p. 59 in Ref. 34).

Recall the incomplete gamma function, Γ(σ, x), given by

Γ(σ, x) B
 ∞

x

tσ−1e−tdt .

Evaluating the integrals in formula (7) yields

Kp
s(x, y) = π

d/2

Γ( s2 )


w∈V∗\{0}
e2πiw ·(x−y)(π |w |)s−dΓ

(
d − s

2
, |πw |2

)
+

1
Γ
�
s
2

�

v∈V

1
|x − y + v |s Γ

( s
2
, |x − y + v |2

) (28)

(formula (28) was previously known when d ≤ 3; see Eq. (30) in Ref. 29).
This formula enables us to write an explicit expression for the meromorphic continuation of

ζV (s; x − y) to all of C (see also Sec. 10 in Ref. 13). Furthermore, consider the Coulomb case in
three dimensions, which corresponds to s = 1 and d = 3. This case is of particular interest because it
describes the electrostatic interaction of ions in a three-dimensional crystal. If we use the identities

Γ(1, x) = e−x,
Γ
� 1

2 , x
2�

√
π
= erfc(x),

then the right-hand side of (28) becomes


w∈V∗\{0}

e2πiw ·(x−y) e−π
2|w |2

π |w |2 +

v∈V

erfc(|x − y + v |)
|x − y + v | , (29)

which is Ewald’s formula for the periodic Coulomb potential on a lattice (up to a choice of constants;
see Eq. (4) in Ref. 28). Thus, we see that Definition 2 enables us to recover this classical result.

In the non-periodic Riesz energy situation, it is known that if B ⊂ Rd is a closed t-rectifiable set
(i.e.,B is the image of a compact set inRt under a Lipschitz mapping, see Ref. 3) and s > t, then there
is a constant Cs, t that is independent ofB such that

lim
N→∞

Es(B,N)
N1+s/t = Cs, tHt(B)−s/t, s > t, (30)

(see Refs. 3, 20, and 21). When t = 1, it is known that Cs,1 = ζZ(s) (see Ref. 27), however, the exact
value of Cs, t is not known for any values of s or t when t ≥ 2. It is conjectured that when t = 2, the
constant Cs, t is equal to the Epstein Zeta function of the equilateral triangular lattice inR2 (see Ref. 23).
Similar conjectures exist in dimensions 8 and 24, where certain canonical lattices are conjectured to
resemble the minimal energy configurations for any value of s > t (see Conjecture 2 in Ref. 9). Indeed,
it is these conjectures that motivate the special interest in the Riesz potential. Our first result establishes
a connection between the periodic and non-periodic Riesz energy problems.

Theorem 3.2. Suppose B ⊆ Ω is a compact and t-rectifiable set and s ≥ t, where if s = t, we
further assume thatB is a subset of a t-dimensional C1-manifold. If 0 < Ht(B) < ∞ andHt(B ∩ (Ω \
Ω)) = 0, then

lim
N→∞

Ep
s(B,N)
Es(B,N) = 1. (31)
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In particular, it holds that

lim
N→∞

Ep
s(B,N)
N1+s/t =

Cs, t

Ht(B)s/t , s > t, (32)

lim
N→∞

Ep
t (B,N)

N2 log(N) =
2πt/2

t Γ
�
t
2

�
Ht(B) . (33)

Remark. One potential use of this result is that it provides an additional path for deducing the value
of the constant Cs, t mentioned above by studying the minimal energy problem in the periodic setting
whenB = Ω. See Subsection III B for further details. In Sec. V, we use our calculations to again verify
that Cs,1 = ζZ(s).

Remark. If s < t, then the leading order behavior of Ep
s(B,N) is given by Theorem 2.2 (see Corol-

lary 3.5 below).
Remark. The assumptionHt(B ∩ (Ω \Ω)) = 0 is not a severe one and we will discuss its implica-

tions following the proof of Theorem 3.2.

Proof of Theorem 3.2. The results of Refs. 3, 20, and 21 imply that (32) and (33) hold with Ep
s

replaced by Es, so those conclusions will follow immediately once we establish (31). Also, the proof
of Theorem 1.1(a) shows that the sum

w∈V∗\{0}
e2πiw ·x

 1

0

πd/2

td/2 e−π
2|w |2/tdµ f (t)

is bounded by a constant that is independent of x ∈ Rd. Therefore, when we sum over all pairs (k, j)
with k , j, the contribution to the energy from this sum is at most a constant multiple of N(N − 1),
which is negligible for large N compared to N2 log(N). Therefore, it suffices to consider only the sum
overV in (7).

To this end, we resort to Eq. (28). It is trivial to see that the entire sum overV is greater than the
single term corresponding to v = 0. Therefore, by (28) we have

k, j


v∈V

 ∞

1
e|xk j+v |2tdµ f (t) > 1

Γ(s/2)

k, j

Γ(s/2; |xk j |2)
|xk j |s .

If we define a kernel K∗ onB by

K∗(x, y) B Γ(s/2; |x − y |2)
Γ(s/2)|x − y |s , (34)

then Theorems 2 and 3 in Ref. 3 tell us that the corresponding minimal energy is asymptotically the
same as Es(B,N) to leading order as N→ ∞. Therefore,

lim inf
N→∞

Ep
s(B,N)
Es(B,N) ≥ 1, s ≥ t.

To bound the lim sup, we choose δ ∈ (0,1) and define

δB B B
 


x =

d
j=1

a jv j : a j ∈ [0, δ], j = 1, . . . ,d


.

Let us also assume that δ is large enough so thatHt(δB) > 0. Supposeω♯
N ∈ (δB)N is a non-periodic

energy minimizing configuration. Then

Ep
s(B,N) ≤ Ep

s(ω♯
N) ≤


x, y∈ω♯

N
x,y

|x − y |−s +


x, y∈ω♯
N

x,y


v∈V\{0}

Γ(s/2; |x − y + v |2)
Γ(s/2)|x − y + v |s

= Es(δB,N) +


x, y∈ω♯
N

x,y


v∈V\{0}

Γ(s/2; |x − y + v |2)
Γ(s/2)|x − y + v |s .
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Since δ < 1, this last infinite sum is uniformly bounded in x, y ∈ δB, so we can bound the above
expression by Es(δB,N) + O(N2). SinceHt(δB) > 0, we know that Es(δB,N) grows at least as fast
as N2 log(N) as N→ ∞. Therefore,

Ep
s(B,N)
Es(δB,N) ≤ 1 + o(1),

as N→ ∞. To complete the proof, we invoke Theorems A and B in Ref. 3 to see that

lim
N→∞

Es(δB,N)
Es(B,N) =

(
Ht(B)
Ht(δB)

) s/t
, s ≥ t .

Since δ ∈ (0,1) can be taken arbitrarily close to 1 and we are assumingHt(B ∩ (Ω \Ω)) = 0, this is
the desired result. �

The assumptionHt(B ∩ (Ω \Ω)) = 0 in Theorem 3.2 prevents the double counting of portions
of Ω that differ by an element of V . Indeed, if V is the square lattice in R2 and B = ∂Ω, then it is
straightforward to check that Ep

s(B,N) = Ep
s(∂Ω ∩Ω,N) and hence

lim
N→∞

Ep
s(B,N)

Es(∂Ω ∩Ω,N) = 1,

which shows that Theorem 3.2 fails without the assumptionHt(B ∩ (Ω \Ω)) = 0. In some sense, we
wantB ⊆ Ω, yet we also wantB to be compact. It is not possible to insist on both of these requirements,
especially sinceB = Ω is a meaningful example. Our assumption implies that “most” ofB is contained
inΩ in an appropriate sense.

If we combine Theorem 3.2 with Theorems 2 and 3 in Ref. 3, we deduce the following corollary:

Corollary 3.3. SupposeB is as in Theorem 3.2 and let {ωN}N ≥2 be a sequence of configurations
so thatωN ∈ BN and Ep

s(ωN) = Ep
s(B,N). If s ≥ t, then in the weak-∗ topology, it holds that

lim
n→∞

1
N


x∈ωN

δx =
Ht(· ∩ B)
Ht(B) .

Proof. Let E∗s be the energy functional associated to the kernel (34) and let E∗s denote the cor-
responding minimal energy. The proof of Theorem 3.2 shows that Ep

s(ωN) > E∗s(ωN) + N(N − 1)αs

for some s-dependent constant αs. Theorem 3.2 and Theorems 2 and 3 in Ref. 3 imply that E∗s(ωN) =
E∗s(B,N)(1 + o(1)) as N→ ∞. The desired conclusion now follows from Ref. 3, Theorems 2 and 3. �

We can also state a result related to Theorem 3.2 that requires fewer geometric assumptions on the
setB, but assumes a certain separation between translates ofB by elements of the lattice.

Theorem 3.4. Let B ⊆ Ω be infinite and compact inRd and suppose s > 0 satisfies

lim
N→∞

Es(B,N)
N2 = ∞.

Then (31) is true.

Proof. The compactness assumption onB assures us thatB = δB for some δ < 1. Let K∗be given
by (34) and let E∗s be the corresponding minimal energy. The proof of Theorem 3.2 shows that

E∗s(B,N) + O(N2) ≤ Ep
s(B,N) ≤ Es(B,N) + O(N2).

Therefore, we need to show that

lim inf
N→∞

E∗s(B,N)
Es(B,N) ≥ 1.

Consider an N-tuple ωN = (x j)Nj=1 of distinct points in B, fix some i ∈ {1, . . . ,N}, and choose any
δ > 0. We can write

1≤ j≤N
j,i

K∗(xi, x j) =


{ j :0< |x j−xi |<δ}
K∗(xi, x j) +


{ j :|x j−xi |≥δ}

K∗(xi, x j).
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The second of these sums is O(N), where the implied constant depends on δ. Suppose ϵ > 0 is given.
The continuity of the incomplete gamma function in the second argument implies that if δ is small
enough, then 

{ j :0< |x j−xi |<δ}
K∗(xi, x j) >


{ j :0< |x j−xi |<δ}

1 − ϵ
|xi − x j |s .

Therefore, 
1≤ j≤N

j,i

K∗(xi, x j) >


{ j :0< |x j−xi |<δ}

1 − ϵ
|xi − x j |s + O(N) =


j,i

1 − ϵ
|xi − x j |s + O(N).

If we now sum this relation over i, we get
1≤i, j≤n

i, j

K∗(xi, x j) > (1 − ϵ)


1≤i, j≤n
i, j

|xi − x j |−s + O(N2).

Taking the infimum of the left hand side over allωN ∈ BN shows

(1 − ϵ)Es(B,N) < E∗s(B,N) + O(N2).
Dividing through by Es(B,N), taking N→ ∞, and then taking ϵ → 0 completes the proof. �

If 0 < s < d, the form of the kernel given in Eq. (28) shows it is integrable with respect to Lebesgue
measure on the setΩ, so using the last assertion of Theorem 2.1 together with Theorems 2.2 and 3.1,
we deduce the leading order term in Ep

s(Ω,N) as N→ ∞.

Corollary 3.5. If 0 < s < d, then

lim
N→∞

Ep
s(Ω,N)

N2 =


Ω


Ω

Kp
s(x, y) dx dy =

2πd/2

Γ( s2 )(d − s) . (35)

B. Conjectures for optimal periodic Riesz s-energy

Regarding the constant Cs, t for s > t appearing in (30) and (32), it is known (cf. Ref. 9) that

Cs, t ≤ ζV(s), (36)

for any t-dimensional latticeV of co-volume 1. For dimensions t = 2, 4, 8, and 24, it has been con-
jectured (cf. Ref. 9 and references therein) that equality, respectively, holds in (36) for the equilateral
triangular (hexagonal) lattice, the D4 lattice, the E8 lattice, and the Leech lattice. These conjectures, in
turn, lead to the conjectured numerical values for the asymptotic energy expressions in (32).

Denoting theabove latticesbyV2,V4,V8, andV24,we furtherconjecture that, for all s > 0,optimal
configurations ω∗N for the periodic Riesz s-energy when B equals the fundamental domain Ω = Ωt

forVt and N = mt, m = 2,3,4, . . ., are given by scaled versions of the lattices restricted toΩ; that is,
ω∗N B (1/m)Vt ∩Ω. Note that verification of the optimality of these configurations would confirm the
formulas conjectured above for Cs, t for s > t and t = 2, 4, 8, 24. For 0 < s < t, such optimality would
further imply that the following asymptotic formula holds:

Ep
s(Ωt,N) = Lp

sN2 + ζVt(s)N1+s/t + o(N1+s/t), (N → ∞), (37)

where Lp
s denotes the constant on the right-hand side of (35). (Compare with Conjecture 2 of

Ref. 23 and Conjecture 3 of Ref. 9 for the non-periodic case of the sphere.)

C. The periodic log-Riesz energy

The log-Riesz s-potential is given by f (x) B |x |−s log(|x |−2) for some s > 0. The formula (see p.
26 in Ref. 32)

− log(y)
y s/2 =

1
Γ(s/2)

 ∞

0
ts/2−1(log(t) − ψ(s/2))e−y tdt, s, y > 0,
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(where ψ is the digamma function) shows that the log-Riesz s-potential is indeed a G-type potential
(with y = |q|2). One can verify—as in the proof of Theorem 3.1—that the corresponding periodic
kernel Kp

log-Riesz,s(x, y) is analytic as a function of s ∈ {z : Re[z] > 0} for any fixed x and y satisfying
x − y < V .

In the non-periodic setting, the log-Riesz kernel is the derivative of the Riesz kernel with respect
to the parameter s and we can extend this notion to the periodic situation. Indeed, if s > d, then we may
invoke Theorem 4.1 as in the proof of Theorem 3.1 to write (where the prime denotes the derivative
with respect to the variable s)

Kp
log−Riesz,s(x, y) =


v∈V

−2 log(|x − y + v |)
|x − y + v |s − 1

Γ( s2 )
 1

0

πd/2(log(t) − ψ( s2 ))
td/2−s/2+1 dt

= 2ζ ′V(s; x − y) − 1
Γ( s2 )

 1

0

πd/2(log(t) − ψ( s2 ))
td/2−s/2+1 dt,

= 2ζ ′V(s; x − y) + 2ψ(s/2)πd/2

Γ(s/2)(s − d) +
4πd/2

Γ(s/2)(s − d)2
= 2

d
ds

Kp
s(x, y) s > d.

Since both sides of this equality are analytic functions on the domain {z : Re[z] > 0}, we have proven
the following result:

Theorem 3.6. The kernel for the periodic log-Riesz s-energy is given by

Kp
log−Riesz,s(x, y) = 2

d
ds

Kp
s(x, y) s > 0. (38)

D. The periodic logarithmic energy

The logarithmic potential is given by f (x) = log |x |−2. This potential is especially important when
d = 2, where it represents the Coulomb interaction. Previous attempts have been made to define the
logarithmic energy in two dimension (see Ref. 19), but our result is more general and arises from the
same methods used for G-type potentials. In the non-periodic setting, the logarithmic interaction can be
realized as a limiting case of the log-Riesz interaction as the parameter s tends to zero. We will extend
this notion to the periodic setting.

Recall that the logarithmic potential is a weak G-type potential (see (5) above). Therefore, equa-
tion (7) implies that the corresponding kernel is

Kp
log(x, y) =


v∈V

 ∞

1

e−t |x−y+v |2

t
dt +


w∈V∗\{0}

e2πiw ·(x−y)
 1

0

πd/2

t1+d/2 e−π
2|w |2/tdt

= lim
s→ 0+
Γ

( s
2

) *.
,


v∈V

 ∞

1

e−t |x−y+v |2

Γ( s2 )t1−s/2 dt +


w∈V∗\{0}
e2πiw ·(x−y)

 1

0

πd/2e−π
2|w |2/t

Γ( s2 )t1+d/2−s/2 dt+/
-

= lim
s→ 0+
Γ

( s
2

)
Kp

s(x, y)
= 2

(
d
ds

Kp
s(x, y)

) ����s=0

= lim
s→ 0+

Kp
log−Riesz,s(x, y),

where we used the fact that Kp
0(x, y) is identically 0 by (28). We formally state this conclusion in the

following theorem.

Theorem 3.7. The kernel for the periodic logarithmic energy is given by

Kp
log(x, y) = lim

s→0+
Kp

log−Riesz,s(x, y). (39)
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One can similarly define the periodic energy for many other potentials by considering the Laplace
transform formulas in pp. 24-26 in Ref. 32. We will investigate the minimal periodic energy associated
to the Riesz, log-Riesz, and logarithmic kernels in one dimension in Sec. V.

IV. CONVERGENCE FACTORS AND RENORMALIZATION

In this section, we will revisit and generalize the computational methods used to derive expression
(7). While never explicitly stated, the formula in Definition 2 is related to other formulas used to sum
divergent and conditionally convergent series (see Refs. 26, 29, and 31). The method that we will use
to derive formula (7) is that of a convergence factor (as in Refs. 25, 26, 29, and 31), which is a family
of functions {ga}a>0 parametrized by the positive real numbers.

If a convergence factor {ga}a>0 is given, then for any particular ga let us define

Ẽp
f
((x j)Nj=1; ga) B


k, j

*
,


v∈V

f (xk − x j + v)ga(xk − x j + v)+
-
. (40)

We will assume that our convergence factors are such that sum (40) converges absolutely for all a > 0.
We will also assume that lima→0+ ga(w) = 1 for all w ∈ Rd \ {0} and realize our energy functional as
a renormalized limit of expressions of the form (40) as a → 0+.

Our requirement that lima→0+ ga(w) = 1 for all w ∈ Rd \ {0} implies that if (3) is infinite, then
as a → 0+, sum (40) may tend to infinity. We will see that in many cases—indeed in all the cases we
consider—sum (40) can be rewritten as A1(a) + A2(a; (x j)Nj=1), where A2(a; (x j)Nj=1) approaches a finite
limit as a → 0+ for any (non-degenerate) configuration (x j)Nj=1 and A1(a) is independent of the configu-
ration. By writing sum (40) in this way, we see that the configurations that minimize Ẽp

f
(·; ga) are really

minimizing A2(a; ·). Since we are interested in minimal energy configurations and A2(a; ·) approaches
a limit as a → 0+ (call it A2(0; ·)), we will define our energy as A2(0; ·). We will use the Laplace trans-
form and Poisson summation to identify the quantity A1(a) that we must subtract off from sum (40) in
order to renormalize it to get a finite limit as a → 0+. This kind of renormalization procedure has been
used previously by applied scientists; indeed the process of renormalizing the Coulomb interaction by
subtracting off the quantity A1(a) is described in Ref. 22 as neutralizing each cell in the lattice with a
uniform “background charge.” See also Ref. 30.

The procedure just outlined begs the question of the dependence of A2(0; ·) on the convergence
factor {ga}a>0. We will show that if the convergence factor satisfies some very reasonable smoothness
and decay conditions, then the limit A2(0; ·) does not depend on the convergence factor used and is
given by formula (7). More precisely, we will derive (7) using convergence factors that are Laplace
transforms of positive measures. This generalizes the methods of Refs. 29 and 31, where only Gaussian
convergence factors and G-type potentials are considered.

We will divide our calculations into two parts. The first will consider the case in which f is a G-type
potential. In fact, we will consider potential functions f and convergence factors {ga}a>0 that satisfy
the following conditions:

(CF1) f is a G-type potential,
(CF2) for each a > 0, ga(z) is finite for all z ∈ Rd \ {0} and can be expressed as

ga(z) B
 ∞

0
e−|z |

2tdµga(t),
for some positive measure µga on (0,∞),

(CF3) if

f ±(z) B
 ∞

0
e−|z |

2tdµ±f (t),
then for every a > 0, the series


v∈V f ±(q + v)ga(q + v) both converge absolutely for all

q < V ,
(CF4) lima→0+ ga(x) = 1 for all x ∈ Rd \ {0}.
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For a lattice V generated by V satisfying det(V ) = 1 and a potential-convergence factor pair
( f ,{ga}a>0) satisfying (CF1-CF4) above, let us define

Ep
f ,1((x j)Nj=1; {ga}a>0) B lim sup

a→0+


k, j

*
,


v∈V

f (xk j + v)ga(xk j + v) −
 1

0

πd/2

td/2 d(µ f ∗ µga)(t)+
-
.

(41)

To make sure this is well-defined, we must show that the last integral in (41) is finite for every a > 0.
For this, it suffices to consider the case in which µ f is positive; the general case follows by considering
the positive and negative parts of µ f separately. It is easy to see that

f (z)ga(z) =
 ∞

0
e−|z |

2tdµa, f (t),

where µa, f B µ f ∗ µga, so the condition (CF3) implies that if x < V , then
v∈V

 1

0
e−|x+v |

2tdµa, f (t) < ∞.

Since the integrand is positive, we may bring the sum inside the integral and apply Poisson summation
to get  1

0

πd/2

td/2


w∈V∗\{0}

e−π
2|w |2/te2πiw ·xdµa, f (t) +

 1

0

πd/2

td/2 dµa, f (t).

The proof of Theorem 1.1(a) shows that the infinite sum converges to an integrable function, so the
second integral must also be finite, which is what we wanted to show.

Our main result for G-type potentials is the following theorem, which shows that this method
produces an energy functional that coincides with (6):

Theorem 4.1. If f and {ga}a>0 satisfy conditions (CF1-CF4) stated above and (x j)Nj=1 is a non-
degenerate configuration, then the lim sup in (41) is a limit and

Ep
f ,1

((x j)Nj=1; {ga}a>0)
)
=


k, j

Kp
f
(xk, x j).

The proof will require the following lemma:

Lemma 4.2. Let {ga}a>0 satisfy conditions (CF2) and (CF4) in the above list. For any 0 < ϵ <
M < ∞, the following conclusions hold:

(I) lima→0+ µga([ϵ,M]) = 0.
(II) lima→0+ µga((0, ϵ)) = 1.

Proof. Define

Ga(x) B
 ∞

0
e−xtdµga(t), x > 0.

To prove part (I), we calculate (for 0 < s < r):

0 = lim
a→0+

(Ga(s) − Ga(r)) = lim
a→0+

 ∞

0
(e−st − e−r t)dµga(t)

≥ lim sup
a→0+

 M+ϵ

ϵ

(e−st − e−r t)dµga(t) ≥


min
τ∈[ϵ,M+ϵ]

(e−sτ − e−rτ)
 

lim sup
a→0+

µga([ϵ,M + ϵ))

,

which proves the claim.
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To prove part (II), we choose some P > 0 very large and keep the notation that 0 < s < r and notice

1 = lim
a→0+

 ∞

0
e−r tdµga(t)

= lim
a→0+

( ϵ

0
e−r tdµga(t) +

 P

ϵ

e−r tdµga(t) +
 ∞

P

e−ste(s−r )tdµga(t)
)

≤ lim inf
a→0+

(
µga((0, ϵ)) + e−ϵrµga([ϵ,P]) + e(s−r )P

 ∞

P

e−stdµga(t)
)
.

By part (I), the second term converges to 0 as a → 0+, and by choosing P large, we can make the last
term as small as we want (using the fact that Ga(s) converges to 1 as a → 0+). This shows

lim inf
a→0+

µga((0, ϵ)) ≥ 1.

To bound the lim sup, we calculate

1 = lim
a→0+

 ∞

0
e−r tdµga(t) ≥ lim sup

a→0+
e−ϵrµga((0, ϵ)),

which means

lim sup
a→0+

µga((0, ϵ)) ≤ eϵr ,

for any r > 0. Letting r tend to zero proves the result. �

Now we are ready to prove our result for G-type potentials. The main idea is to establish conver-
gence as a → 0+ of the measures µga to δ0 in an appropriate weak sense.

Proof of Theorem 4.1. We will split the proof into two cases.
Case 1: µ−f = 0.
We write

v∈V
f (xk j + v)ga(xk j + v) −

 1

0

πd/2

td/2 dµa, f (t) =

v∈V

 ∞

0
e−|xk j+v |2tdµa, f (t) −

 1

0

πd/2

td/2 dµa, f (t).

To evaluate the integrals in the infinite sum, we split them into two integrals, one ranging from 0 to 1
and the other from 1 to infinity. It follows immediately from the definition of convolution (see p. 270
in Ref. 16) that ∞

1
e−|xk j+v |2tdµa, f (t) =

 ∞

0

 ∞

0
χ{z+y≥1}(z + y)e−|xk j+v |2(z+y)dµ f (z)dµga(y)

=

 ∞

0

( ∞

(1−y)+
e−|xk j+v |2zdµ f (z)

)
e−|xk j+v |2ydµga(y)

=

 ϵ

0

( ∞

(1−y)+
e−|xk j+v |2zdµ f (z)

)
e−|xk j+v |2ydµga(y) (42)

+

 ∞

ϵ

( ∞

(1−y)+
e−|xk j+v |2zdµ f (z)

)
e−|xk j+v |2ydµga(y), (43)

where ϵ is some small positive number and (1 − y)+ = max{1 − y,0}. The integral (42) is easy to
understand as a → 0+. Indeed, Lemma 4.2 implies that the restriction of µga to [0, ϵ] converges weakly
to δ0 as a → 0+ and the y-integrand in (42) is right-continuous at 0, so as a → 0+, the integral converges
to  ∞

1
e−|xk j+v |2zdµ f (z).

The integral (43) can be bounded above in absolute value by( ∞

0
e−|xk j+v |2zdµ f (z)

) ( ∞

ϵ

e−|xk j+v |2ydµga(y)
)
. (44)
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The second factor in (44) can be rewritten as

ga(xk j + v) −
 ϵ

0
e−|xk j+v |2ydµga(y).

Lemma 4.2 implies the restriction of µga converges weakly to δ0 as a → 0+, so condition (CF4) implies
this expression converges to 0 as a → 0+. Therefore, the limit of (44) as a → 0+ is zero, which implies

lim
a→0+

 ∞

1
e−|xk j+v |2tdµa, f (t) =

 ∞

1
e−|xk j+v |2tdµ f (t), v ∈ V .

We may apply dominated convergence (using calculations from the proof of Theorem 1.1(a)) to
conclude that

lim
a→0+


v∈V

 ∞

1
e−|xk j+v |2tdµa, f (t) =


v∈V

 ∞

1
e−|xk j+v |2tdµ f (t). (45)

It remains to evaluate

lim
a→0+

*
,


v∈V

 1

0
e−|xk j+v |2tdµa, f (t) −

 1

0

πd/2

td/2 dµa, f (t)+
-
. (46)

We apply Poisson summation
v∈V

e−t |xk j+v |2 =
πd/2

td/2


w∈V∗

e−π
2|w |2/te2πiw ·xk j,

to rewrite (46) as

lim
a→0+

*.
,


w∈V∗\{0}

e2πiw ·xk j

 1

0

πd/2

td/2 e−π
2|w |2/tdµa, f (t)+/

-
.

For each term in this sum, we rewrite the integral as ϵ

0

 1−y

0

πd/2

(z + y)d/2 e−π
2|w |2/(z+y)dµ f (z)dµga(y) (47)

+

 1

ϵ

 1−y

0

πd/2

(z + y)d/2 e−π
2|w |2/(z+y)dµ f (z)dµga(y).

The second term in (47) is easily bounded above by a constant multiple of µga([ϵ,1]), which tends to
zero as a → 0+ by Lemma 4.2(I). To calculate the limit as a → 0+ of the first term, we again notice
that the y-integrand is right continuous at 0 and Lemma 4.2 implies that the restriction of µga to [0, ϵ]
converges weakly to δ0 as a → 0+, so the first integral in (47) converges as a → 0+ to 1

0

(
π

z

)d/2
e−π

2|w |2/zdµ f (z).
It follows that for each w ∈ V∗ \ {0} it holds that

lim
a→0+

e2πi xk j ·w
 1

0

πd/2

td/2 e−π
2|w |2/tdµa, f (t) = e2πi xk j ·w

 1

0

πd/2

td/2 e−π
2|w |2/tdµ f (t),

and dominated convergence again allows us to make the same conclusion for the sum over all w ∈
V∗ \ {0}.

Case 2: µ f = µ
+
f − µ

−
f with µ−f finite.

Case 1 implies that if we replace f by f ± and µ f by µ±f in (41), then the conclusion of the theorem
is valid. Therefore, the same must be true if we replace f by f + − f − and µ f by µ+f − µ

−
f (condition

(CF3) allows us to rearrange the sums). This is the desired conclusion. We see that Case 2 is the separate
application of Case 1 to the potentials f + and f −. �

Now we will apply Theorem 4.1 to derive (7) for weak G-type potentials. We will require the
convergence factor {ga}a>0 to satisfy conditions (CF2) and (CF4) above and we replace condition
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(CF3) with the stronger requirement that
v∈V

ga(u + v) < ∞, u ∈ Rd \ V , a > 0. (CF5)

Recall that {v j}dj=1 are the columns of the matrix V that determine the latticeV and set u∗ B 1
2 (v1 +

· · · + vd). If f is a weak G-type potential, then we define µ f ,α to be the restriction of µ f to the interval
[α,∞) and

fα(z) B
 ∞

0
e−|z |

2tdµ f ,α(t),

Kp
f ,2(x, y) B lim sup

α→0+
lim sup
a→0+

(
v∈V

( fα(x − y + v) + f ∗(α))ga(x − y + v) (48)

− f ∗(α)

v∈V

ga(u∗ + v) −
 1

0

πd/2

td/2 d(µ f ,α ∗ µga)(t)
)
,

and

Ep
f ,2((x j)Nj=1; {ga}a>0) B


k, j

Kp
f ,2(xk, x j).

Our result for weak G-type potentials takes the following form:

Theorem 4.3. If f is a weak G-type potential with measure µ f ; {ga}a>0 satisfies (CF2), (CF4),
and (CF5); and (x j)Nj=1 is a non-degenerate configuration, then the lim sup’s in (48) are both limits and

Ep
f ,2

((x j)Nj=1; {ga}a>0

)
=


k, j

Kp
f
(xk, x j).

As in the case of G-type potentials, the proof will require a technical lemma.

Lemma 4.4. Suppose {ga}a>0 is a convergence factor satisfying (CF2), (CF4), and (CF5). Then

lim
a→0+


v∈V

(ga(u + v) − ga(u∗ + v)) = 0, u ∈ Rd \ V .

Proof. We write
v∈V

(ga(u + v) − ga(u∗ + v)) =

v∈V

 ∞

0
e−|u+v |

2t − e−|u
∗+v |2tdµga(t).

We split the integral at 1 and notice that the integral from 1 to infinity converges to 0 as a → 0+ by the
samereasoningthatshowedthatexpression(44)converges to0as a → 0+.Tocalculate the integral from
0 to 1, we bring the sum inside the integral (which is justified by (CF5)) and apply Poisson summation
to rewrite the integral as  1

0


w∈V∗

(e2πiw ·u − e2πiw ·u∗)π
d/2

td/2 e−π
2|w |2/tdµga(t).

The w = 0 term contributes 0 to this sum, while the remaining sum converges for all t ∈ [0,1] to a
continuous function that is 0 at 0 (as in the proof of Theorem 1.1(a)). Lemma 4.2 implies µga restricted
to [0,1] converges to δ0 as a → 0+, so this integral converges to 0 as a → 0+ as desired. �

Proof of Theorem 4.3. We write
v∈V

( fα(xk j + v) + f ∗(α))ga(xk j + v) − f ∗(α)

v∈V

ga(u∗ + v) −
 1

0

πd/2

td/2 d(µ f ,α ∗ µga)(t)

=

v∈V

fα(xk j + v)ga(xk j + v) −
 1

0

πd/2

td/2 d(µ f ,α ∗ µga)(t)

− f ∗(α)

v∈V

�
ga(u∗ + v) − ga(xk j + v)� .
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Lemma 4.4 implies that the last term in this expression tends to 0 as a → 0+, while Theorem 4.1 implies
the rest converges to Kp

fα
(xk, x j) as a → 0+. This kernel has the form (7) but with µ f replaced by µ f ,α.

If we then take α → 0+, we recover the desired result. �

It will be beneficial to have some concrete examples to consider to help us understand the above
calculations.
Example: Riesz convergence factors. This example highlights the fact that for G-type potentials, we
do not need the convergence factor to be absolutely summable on its own (as in (CF5)), but only require
that the weaker condition (CF3) be satisfied. Consider the Riesz potential f (x) = |x |−s for s ≥ d and
the Riesz convergence factor ga(x) = |x |−a. In this case,

dµga(t) = 1
Γ(a/2) ta/2−1dt.

Since f and ga are both positive, the condition (CF3) reduces to
v∈V

f (q + v)ga(q + v) < ∞, q < V ,

which is true in this case because s ≥ d. We have already seen that the Riesz potential is a G-type
potential when s ≥ d, and so this potential and convergence factor satisfy conditions (CF1-CF4) listed
above. Therefore, Theorem 4.1 tells us that we will recover (7) as our energy by this method.
Example: Gaussian convergence factors. Consider the logarithmic potential f (x) = − log |x |2 and
the Gaussian convergence factor ga(x) = e−|ax |2, which was utilized in Ref. 29. In this case,

dµga(t) = δa2,

so it is clear that this choice of convergence factor satisfies the conditions of Lemma 4.4. We have
already seen that the logarithmic potential is a weak G-type potential, so Theorem 4.3 tells us that we
will recover (7) as our energy by using this convergence factor.

We have shown that formula (7) appears naturally as a definition of the periodic energy for a variety
of potentials and results from the natural process of using a convergence factor with the appropriate
renormalization. It may be possible to work out an exact set of hypotheses on the pair ( f ,{ga}a>0) for
the resulting energy to coincide with (6), but that is not our purpose here. The generality of our current
result combined with the nice properties of the energy given by (6) are sufficient to justify our use of
(6) as a definition of a periodic energy functional.

Proof of Theorem 1.1(c). Theorem 4.1 shows that

Kp
f
(x, y) = lim

a→0+
*
,


v∈V

f (x − y + v)e−|a(x−y+v)|2 −
 1

0

πd/2

(t + a2)d/2 dµ f (t)+
-
.

However, since (3) is absolutely convergent we can bring the limit inside the sum overV . Therefore,

Ep
f
((x j)Nj=1) =


k, j

*
,


v∈V

f (xk j + v)+
-
− N(N − 1) lim

a→0+

 1

0

πd/2

(t + a2)d/2 dµ f (t).

Since this last limit—which must be finite in this case—does not depend on the configuration, we have
proven the result. �

We will conclude this section with an application of our results to the Laplace transform. Suppose
that f is a G-type potential, and {ga}a>0 is the Gaussian convergence factor ga(x) = e−|ax |2. The proof
of Theorem 1.1(c) shows that if the sum (3) is absolutely convergent, then the following exists and is
finite:

lim
a→0+

 1

0

1
(t + a2)d/2 dµ f (t).

In other words, if the potential has sufficiently fast decay at infinity, then its inverse Laplace transform
must have a certain minimum amount of decay at 0. We will state this conclusion as the following
proposition:
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Proposition 4.5. Suppose F(r) : (0,∞) → R is given by

F(r) B
 ∞

0
e−r tdµ(t)

for some signed measure µwith µ− finite. Suppose further that


v∈V F
�|q + v |2� converges absolutely

for some q ∈ Rd \ V . Then the following exists and is finite:

lim
a→0+

 1

0

1
(t + a2)d/2 dµ(t).

V. THE d = 1 CASE

In this section, we consider the minimal energy of the unit intervalΩ = [0,1) for the periodic Riesz
kernel for all positive values of s, the log-Riesz kernel for all positive s, and the logarithmic kernel.
Of fundamental importance to our calculations is the following result, which follows from a standard
“winding number argument” of Fejes Tóth (see Proposition 1 in Ref. 8).

Proposition 5.1. Suppose K is a kernel on [0,1) × [0,1) of the form K(x, y) = φ(|x − y |) for some
lower semicontinuous function φ : [0,1) → R ∪ {+∞} that is (a) strictly convex on (0,1) and (b) sat-
isfiesφ(x) = φ(1 − x) for x ∈ (0,1). Thenanorderedconfigurationof N points0 ≤ x∗1 ≤ · · · ≤ x∗N < 1
minimizes the N-point K-energy given by 

1≤i, j≤N
i, j

K(xi, x j),

over all N point configurations in [0,1) if and only if there is some 0 ≤ α < 1/N such that x j = α +
j−1
N

for all j = 1, . . . ,N.

In all of our examples, we will verify that the kernels satisfy the hypotheses of Proposition 5.1
and so deduce the minimal energy configurations. This will allow us to compute exact formulas for the
minimal energy.

A. The Riesz kernel

Since we always assume that det(V ) = 1, we must haveΩ = [0,1). Next, let us recall the Hurwitz
Zeta function

ζ(s; q) =
∞
n=0

(q + n)−s, q > 0, s > 1.

Recall the form of the periodic Riesz kernel

Kp
s(x, y) B ζZ(s; x − y) − 2

√
π

Γ(s/2)(s − 1) . (49)

Notice that the Epstein Zeta function for the integer lattice is just twice the Riemann Zeta function ζ(s).
Therefore, we can use (49) to write the energy functional in this setting as

Ep
s((x j)Nj=1) =

N
k, j=1
k, j

(
ζ(s; |xk j |) + ζ(s; 1 − |xk j |) − 2

√
π

Γ(s/2)(s − 1)
)
, s , 1. (50)

The case s = 1 will require special attention, but we have already seen that the Riesz kernel is an entire
function of s, so we will be able to make sense of the periodic Riesz 1-energy.

Define the function Js(q) = ζ(s; q) + ζ(s,1 − q) − 2
√
π

Γ(s/2)(s−1) . Notice that Js(q) = Js(1 − q) and
since

∂

∂q
ζ(s; q) = −sζ(s + 1; q),
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we have

J ′′s (q) = ∂2

∂q2 (ζ(s; q) + ζ(s; 1 − q)) = s(s + 1) (ζ(s + 2; q) + ζ(s + 2; 1 − q)) > 0, q ∈ (0,1).
This shows that the function Js is convex on (0,1) and so Proposition 5.1 implies that the energy mini-
mizing configuration is N equally spaced points in the unit interval. This fact and a simple calculation
allow us to write

Ep
s([0,1),N) = 2N

N−1
j=1

ζ

(
s;

j
N

)
− N(N − 1) 2

√
π

Γ(s/2)(s − 1) . (51)

We need the following formula, the proof of which can be deduced from p. 249 in Ref. 1

Lemma 5.2. For any n ∈ N, it holds that
n
j=1

ζ

(
s;

j
n

)
= nsζ(s).

By invoking the lemma, we arrive at the following:

Ep
s([0,1),N) = 2N1+sζ(s) − 2Nζ(s) − N(N − 1) 2

√
π

Γ(s/2)(s − 1) , s , 1. (52)

However, we have already seen that the energy minimizing configurations are independent of s and
that the energy of a fixed configuration is an analytic (and hence continuous) function of s. Therefore,
the formula (52) is also valid when s = 1. We have therefore proven the following:

Theorem 5.3. If s ∈ (0,∞), then the minimal periodic Riesz s-energy of the unit interval is given
by

Ep
s([0,1),N) =




2N1+sζ(s) − 2Nζ(s) − N(N − 1) 2
√
π

Γ(s/2)(s − 1) , s , 1

2N2 log(N) + 2N(N − 1)γ s = 1,
(53)

where γ is the Euler-Mascheroni constant.

Notice that in the expression (53), there are no limits or error terms; we have an exact formula.

B. The Log-Riesz kernel and the logarithmic kernel

As mentioned in Sec. III C, the log-Riesz kernel is given by the derivative of the Riesz kernel with
respect to the parameter s. Consider the kernel given by

Rs(x) = 2
∂

∂s
*
,
ζ(s; x) + ζ(s; 1 − x) − 2

√
π

Γ
�
s
2

� (s − 1)
+
-
, s ∈ (0,∞) \ {1}.

For simplicity, we will presently only consider the case s , 1; we will obtain our results for s = 1 by
continuity as in Sec. V, part A. Our first step is to verify that the minimal energy configuration is equally
spaced points in the interval. We again proceed by a derivative calculation. Indeed, we have (where ′

indicates a derivative with respect to s)

∂2

∂q2

Rs(q)
2

= s(s + 1)(ζ ′(s + 2; q) + ζ ′(s + 2; 1 − q)) + (2s + 1)(ζ(s + 2; q) + ζ(s + 2; 1 − q)).
It is clear that ζ(s + 2; q) + ζ(s + 2; 1 − q) is positive, so let us turn our attention to the terms

involving derivatives. Let us write

ζ(s + 2; q) + ζ(s + 2; 1 − q) = 1
qs+2 +

1
(1 − q)s+2 +

∞
n=1

(
1

(q + n)s+2 +
1

(1 − q + n)s+2

)
.
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Differentiating either of the first two terms with respect to s will yield a positive result, while differen-
tiating the infinite sum will yield a negative result. More precisely, we have

∂

∂s

(
1

qs+2 +
1

(1 − q)s+2

)
=

log(1/q)
qs+2 +

log(1/(1 − q))
(1 − q)s+2 . (54)

A straightforward calculation reveals that

∂2

∂q2

(
log(1/q)

qs+2 +
log(1/(1 − q))
(1 − q)s+2

)
=

=
5 + 2s − (s2 + 5s + 6) log(q)

qs+4 +
5 + 2s − (s2 + 5s + 6) log(1 − q)

(1 − q)s+4 > 0.

Therefore, the symmetry of the expression (54) implies that the absolute minimum of (54) is obtained
when q = 1/2, where it takes the value 2s+3 log(2) > 8 log(2) ≈ 5.542. Therefore, the positive contri-
bution to the derivative of ζ(s + 2; q) + ζ(s + 2; 1 − q) is at least this large.

The negative contribution to the derivative can be bounded above in absolute value by
∞
n=1

(
log(q + n)
(q + n)s+2 +

log(1 − q + n)
(1 − q + n)s+2

)
≤ 2

∞
n=1

log(n + 1)
ns+2 ≤ 2

∞
n=1

log(n + 1)
n2 .

This last sum is easily evaluated numerically, and it is in fact less than 4.
If we combine the positive and negative contributions to the derivative of ζ(s + 2; q) + ζ(s + 2;

1 − q), then we see that ζ ′(s + 2; q) + ζ ′(s + 2; 1 − q) is positive for all q ∈ (0,1). It follows that the
second derivative of Rs is positive for all q ∈ (0,1). Therefore, we invoke Proposition 5.1 to conclude
that the minimal energy configuration is given by equally spaced points in the interval.

Since (53) is an exact formula, we can obtain an exact formula for the minimal energy correspond-
ing to the log-Riesz kernel on [0,1) by differentiating both sides of (53) with respect to s. Theorem 3.6
implies the log-Riesz kernel is continuous as a function of s, so we get the desired result for s = 1 also.

Theorem 5.4. If s > 0, then the minimal periodic log-Riesz s-energy of the unit interval is given
by

Ep
log−Riesz,s([0,1),N) (55)

=




4

N1+s log(N)ζ(s) + ζ ′(s)N(N s − 1) + √πN(N − 1)Γ

′ � s
2

�
s−1

2 + Γ
�
s
2

�

Γ
�
s
2

�2(s − 1)2

, s , 1

2(N log(N))2 + 4γN2 log(N) − N(N − 1)(4γ1 +
1
2 (ψ( 1

2 )2 − ψ ′( 1
2 ))), s = 1,

where ψ(z) is the digamma function, γ is the Euler-Mascheroni constant, and

γ1 = lim
m→∞

*
,
− log(m)2

2
+

m
k=1

log(k)
k

+
-

is the negative of the coefficient of (s − 1) in the Laurent expansion of ζ(s) around 1.

Sinceequallyspacedpointsminimize theperiodic log-Riesz s-energyforall s > 0, it followseasily
from Theorem 3.7 that the same is true of the periodic logarithmic energy. If we combine this with
Theorem 5.4, we get the following:

Theorem 5.5. The minimal periodic logarithmic energy of the unit interval satisfies

Ep
log([0,1),N) = 2N

�√
π(N − 1) − log(N)� .
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APPENDIX: POISSON SUMMATION ON BRAVAIS LATTICES

Here, we will state and prove some of the necessary formulas for Poisson summation. The methods
and ideas here are not new, but in the literature there is widespread inconsistency concerning notation
and proper normalization, so some calculation is required for clarity. For a function f : Rd → R that
is in L1(Rn), we define its Fourier transform by

f̂ (y) =

Rd

f (t)e−2πiy ·tdt.

The Poisson summation formula states that if f and f̂ have sufficient decay at infinity, then
k ∈Zd

f (k) =

m∈Zd

f̂ (m) (A1)

(see p. 254 in Ref. 16).
Given a latticeV determined by a matrix V as in our above results, let us fix some x ∈ Rd and

ω ∈ (0,∞) and define

f (z) = e−ω |x+Vz |2.

This function f has sufficient decay at infinity to apply the Poisson summation formula, so we have
v∈V

e−ω |x+v |2 =

k ∈Zd

f (k) =

m∈Zd

f̂ (m).

Therefore, we need to calculate the Fourier transform of f . We have

f̂ (y) =

Rd

e−ω |V (V−1x+t)|2e−2πiy ·tdt

= e2πiy ·V−1x


Rd

e−ω |Vu |2e−2πiy ·udu

=
e2πiy ·V−1x

det(V )

Rd

e−ω |u |2e−2πiy ·V−1udu,

where we used Theorem 2.44 in Ref. 16. If we denote the adjoint of a matrix A by A∗, then we can
rewrite this as

e2πi(V ∗)−1y ·x

det(V )

Rd

e−ω |u |2e−2πi(V ∗)−1y ·udu.

This integral is now just the Fourier transform of a standard Gaussian inRd. The result is

f̂ (y) = e2πi(V ∗)−1y ·xπd/2

det(V )ωd/2 e−π
2|(V ∗)−1y |2/ω (A2)

(see Proposition 8.24 in Ref. 16). We can now state our desired conclusion.

Theorem A. For anyω ∈ (0,∞) and x ∈ Rd, it holds that
v∈V

e−ω |x+v |2 =
πd/2

det(V )ωd/2


s∈V∗

e2πis ·xe−π
2|s |2/ω.

1 T. Apostol, Introduction to Analytic Number Theory (Springer-Verlag, 1976).
2 C. L. Berman and L. Greengard, “A renormalization method for the evaluation of lattice sums,” J. Math. Phys. 35(11),

6036–6048 (1994).
3 J. Borodachov, D. P. Hardin, and E. B. Saff, “Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable

sets,” Trans. Am. Math. Soc. 360, 1559–1580 (2008).
4 J. Borodachov, D. P. Hardin, and E. B. Saff, “Low complexity methods for discretizing manifolds via Riesz energy mini-

mization,” Found. Comput. Math. 14(6), 1173–1208 (2014).
5 D. Borwein, J. M. Borwein, and C. Pinner, “Convergence of Madelung-like lattice sums,” Trans. Am. Math. Soc. 350(8),

3131–3167 (1998).
6 D. Borwein, J. M. Borwein, and R. Shail, “Analysis of certain lattice sums,” J. Math. Anal. Appl. 143(1), 126–137 (1989).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  174.49.45.25 On: Fri, 26 Dec 2014 15:57:57

http://dx.doi.org/10.1063/1.530726
http://dx.doi.org/10.1090/S0002-9947-07-04416-9
http://dx.doi.org/10.1007/s10208-014-9202-3
http://dx.doi.org/10.1090/S0002-9947-98-01983-7
http://dx.doi.org/10.1016/0022-247X(89)90032-2


123509-27 Hardin, Saff, and Simanek J. Math. Phys. 55, 123509 (2014)

7 D. Borwein, J. M. Borwein, and K. Taylor, “Convergence of lattice sums and Madelung’s constant,” J. Math. Phys. 26,
2999–3009 (1985).

8 J. S. Brauchart, D. P. Hardin, and E. B. Saff, “Discrete energy asymptotics on a Riemannian circle,” Unif. Distrib. Theory
7(2), 77–108 (2012).

9 J. S. Brauchart, D. P. Hardin, and E. B. Saff, “The next order term for minimal Riesz and logarithmic energy asymptotics
on the sphere,” Contemp. Math. 578, 31–61 (2012).

10 M. Chaudhry and S. Zubair, On a Class of Incomplete Gamma Functions with Applications (Chapman & Hall CRC, Boca
Raton, FL, 2002).

11 H. Cohn and A. Kumar, “Universally optimal distribution of points on spheres,” J. Am. Math. Soc. 20(1), 99–148 (2007).
12 R. Coulangeon and A. Schürmann, “Energy minimization, periodic sets, and spherical designs,” Int. Math. Res. Not. (4),

829–848 (2012).
13 R. Crandall, Unified Algorithms For Polylogarithm, L-series, And Zeta Variants (PSI Press, 2012).
14 P. Ewald, “Die Berechnung optischer und elektrostatischer Gitterpotentiale,” Ann. Phys. 369, 253–287 (1921).
15 H. Fehske, R. Schneider, and A. Weisse, Computational Many-Particle Physics, Lecture Notes in Physics (Springer, 2008).
16 G. Folland, Real Analysis (John Wiley & Sons, 1999).
17 D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed. (Academic Press,

2001).
18 L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” J. Comput. Phys. 135, 280–292 (1997).
19 N. Gronbech-Jensen, “Summation of logarithmic interactions in nonrectangular periodic media,” Comput. Phys. Commun.

119, 115–121 (1999).
20 D. P. Hardin and E. B. Saff, “Discretizing manifolds via minimal energy points,” Notices Amer. Math. Soc. 51(10),

1186–1194 (2004).
21 D. P. Hardin and E. B. Saff, “Minimal Riesz energy point configurations for rectifiable d-dimensional manifolds,” Adv.

Math. 193(1), 174–204 (2005).
22 D. M. Heyes, “Electrostatic potentials and fields in infinite point charge lattices,” J. Chem. Phys. 74, 1924–1929 (1981).
23 A. Kuijlaars and E. B. Saff, “Asymptotics for minimal discrete energy on the sphere,” Trans. Amer. Math. Soc. 350(2),

523–538 (1998).
24 N. S. Landkof, Foundations of Modern Potential Theory (Springer-Verlag, New York, 1972).
25 S. W. de Leeuw, J. W. Perram, and E. R. Smith, “Simulation of electrostatic systems in periodic boundary conditions I:

Lattice sums and dielectric constants,” Proc. R. Soc. London, Ser. A 373(1752), 27–56 (1980).
26 G. Makov and M. C. Payne, “Periodic boundary conditions in ab initio calculations,” Phys. Rev. B: Condens. Matter Mater.

Phys. 51(7), 4014–4022 (1995).
27 A. Martínez-Finkelshtein, V. Maymeskul, E. A. Rakhmanov, and E. B. Saff, “Asymptotics for minimal discrete Riesz energy

on curves in Rd,” Can. J. Math. 56(3), 529–552 (2004).
28 V. Natoli and D. M. Ceperley, “An optimized method for treating long-range potentials,” J. Comput. Phys. 117, 171–178

(1995).
29 O. N. Osychenko, G. E. Astrakharchik, and J. Boronot, “Ewald method for polytropic potentials in arbitrary dimensionality,”

Mol. Phys. 110(4), 227–247 (2012).
30 S. Paycha, Regularized Integrals, Sums and Traces, University Lecture Series Vol. 59 (American Mathematical Society,

Providence, RI, 2012).
31 J. W. Perram, H. G. Petersen, and S. W. de Leeuw, “An algorithm for the simulation of condensed matter which grows as

the 3/2 power of the number of particles,” Mol. Phys. 65(4), 875–893 (1988).
32 G. Roberts and H. Kaufman, Table of Laplace Transforms (W. B. Saunders Company, Philadelphia, 1966).
33 E. Sandier and S. Serfaty, “2D Coulomb gases and renormalized energy,” preprint arXiv:1210.5098 (2012).
34 A. Terras, Harmonic Analysis on Symmetric Spaces and Applications I (Springer-Verlag, 1988).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  174.49.45.25 On: Fri, 26 Dec 2014 15:57:57

http://dx.doi.org/10.1063/1.526675
http://dx.doi.org/10.1090/conm/578
http://dx.doi.org/10.1090/S0894-0347-06-00546-7
http://dx.doi.org/10.1093/imrn/rnr048
http://dx.doi.org/10.1002/andp.19213690304
http://dx.doi.org/10.1006/jcph.1997.5706
http://dx.doi.org/10.1016/S0010-4655(99)00200-3
http://dx.doi.org/10.1016/j.aim.2004.05.006
http://dx.doi.org/10.1016/j.aim.2004.05.006
http://dx.doi.org/10.1063/1.441285
http://dx.doi.org/10.1090/S0002-9947-98-02119-9
http://dx.doi.org/10.1098/rspa.1980.0135
http://dx.doi.org/10.1103/PhysRevB.51.4014
http://dx.doi.org/10.1103/PhysRevB.51.4014
http://dx.doi.org/10.4153/CJM-2004-024-1
http://dx.doi.org/10.1006/jcph.1995.1054
http://dx.doi.org/10.1080/00268976.2011.640291
http://dx.doi.org/10.1080/00268978800101471
http://arxiv.org/abs/1210.5098
http://arxiv.org/abs/1210.5098
http://arxiv.org/abs/1210.5098
http://arxiv.org/abs/1210.5098
http://arxiv.org/abs/1210.5098
http://arxiv.org/abs/1210.5098
http://arxiv.org/abs/1210.5098
http://arxiv.org/abs/1210.5098
http://arxiv.org/abs/1210.5098
http://arxiv.org/abs/1210.5098
http://arxiv.org/abs/1210.5098
http://arxiv.org/abs/1210.5098
http://arxiv.org/abs/1210.5098
http://arxiv.org/abs/1210.5098
http://arxiv.org/abs/1210.5098

