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Abstract We consider the minimal energy problem on the unit sphere S
d in the Euclidean

space Rd+1 in the presence of an external field Q, where the energy arises from the Riesz
potential 1/rs (where r is the Euclidean distance and s is the Riesz parameter) or the log-
arithmic potential log(1/r). Characterization theorems of Frostman-type for the associated
extremal measure, previously obtained by the last two authors, are extended to the range
d − 2 ≤ s < d − 1. The proof uses a maximum principle for measures supported on S

d .
When Q is the Riesz s-potential of a signed measure and d − 2 ≤ s < d , our results lead
to explicit point-separation estimates for (Q, s)-Fekete points, which are n-point configu-
rations minimizing the Riesz s-energy on S

d with external field Q. In the hyper-singular
case s > d , the short-range pair-interaction enforces well-separation even in the presence
of more general external fields. As a further application, we determine the extremal and
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signed equilibria when the external field is due to a negative point charge outside a posi-
tively charged isolated sphere. Moreover, we provide a rigorous analysis of the three point
external field problem and numerical results for the four point problem.

Keywords α-subharmonic functions · Balayage · Minimal energy problems with external
fields · Riesz spherical potentials

Mathematics Subject Classifications (2010) 31B05 · 31B15 · 78A30

1 Introduction

Let Sd := {x ∈ Rd+1 : |x| = 1} be the unit sphere in Rd+1, where |·| denotes the Euclidean
norm. Given a compact set E ⊂ S

d , consider the class M(E) of unit positive Borel mea-
sures supported on E. For s > 0 the Riesz s-potential and Riesz s-energy of a measure
μ ∈ M(E) are given, respectively, by

Uμ
s (x) :=

∫
ks(x, y) dμ(y), x ∈ R

d+1, Is(μ) :=
∫ ∫

ks(x, y) dμ(x) dμ(y),

where ks(x, y) := |x−y|−s is the so-called Riesz kernel. The s-capacity of E is then defined
as caps (E) := 1/Ws(E) for s > 0, where Ws(E) := inf{Is(μ) : μ ∈ M(E)} is the s-
energy of the set E. A property is said to hold quasi-everywhere (q.e.), if the exceptional
set has s-capacity zero. When caps (E) > 0, there exists a unique minimizer μE = μs,E ,
called the s-equilibrium measure on E, such that Is(μE) = Ws(E). For more details see
[21, Chapter II].

Whenever s = 0 (we shall use s = log), which occurs, for example, when s = d− 2 and
d = 2, we replace the Riesz kernel ks by the logarithmic kernel

klog(x, y) := log(1/|x − y|).
(In this case we define caplog(E) := exp{−Wlog(E)}.)

We shall refer to a lower semi-continuous function Q : S
d → (−∞,∞] such that

Q(x) < ∞ on a set of positive Lebesgue surface measure, as an external field. We note that
the lower semi-continuity implies the existence of a finite cQ such that Q(x) ≥ cQ for all
x ∈ Sd . The weighted energy associated with Q(x) is then given by

IQ,s(μ) :=Is(μ)+ 2
∫

Q(x) dμ(x), μ ∈ M(E). (1)

(The terminology “weighted energy” is used here to indicate the presence of an external
field, and should not be confused with “weighted energy functionals”, where the Riesz s-
kernel is multiplied by a weight function w(x, y). We leave the study of the external field
problem for such generalized kernels for a future investigation).

IQ,s(μQ,s) = VQ,s := inf
{
IQ,s(μ) : μ ∈ M(Sd)

}

is called an s-extremal (or positive equilibrium) measure on Sd associated with Q.

Definition 1 The Riesz external field problem on the unit sphere Sd for the external field Q

is concerned with minimizing the weighted energy (1) among all Borel probability measures
μ supported on S

d . A measure μQ,s ∈ M(Sd) with
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Riesz External Field Problems on the Hypersphere 649

If we consider only measures supported on some compact subset E ⊂ S
d with positive

s-capacity, then the minimizing measure is referred to as the s-extremal measure on E asso-
ciated with Q and denoted by μE,Q,s . In the particular case when Q ≡ 0 and 0 < s < d ,
the measure μQ,s on S

d is just the normalized unit surface area measure on the sphere for
which we use the symbol σd .

We shall also consider the discrete analogue of the above external field problem which
is defined as follows.

EQ
s (Xn) :=

n∑
j=1

n∑
k=1

k 	=j

[
ks(xj , xk)+Q(xj )+Q(xk)

]
. (2)

Then the discrete external field problem on the sphere S
d concerns the minimization

EQ
s (n) := min

{
EQ
s (Xn) : Xn ⊂ S

d , |Xn| = n
}
, (3)

where |A| denotes the cardinality of the set A. A solution of the discretized minimization
problem (3) is called an n-point (Q, s)-Fekete set.

The existence of (Q, s)-Fekete sets is an easy consequence of the lower semi-continuity
of the energy functional and the compactness of the unit sphere. Further, we remark that a
standard argument establishes the following monotonicity property

EQ
s (n)

n(n− 1)
≤ EQ

s (n+ 1)

(n+ 1)n
for all n ≥ 2.

We remark that the discrete problem has application to image processing, namely the
half-toning of images based on electrostatic repulsion of printed dots in the presence of an
image-driven external field; cf. Schmaltz et al. [30] and Gräf [14, Section 6.5.2].

The outline of the paper is as follows. In Section 2 we provide Frostman-type charac-
terization theorems for the solution to the external field minimal energy problem on the
sphere. This is facilitated by a new restricted maximum principle on the sphere which holds
for the range d − 2 ≤ s < d (see Theorem 5). We also introduce the signed equilibrium
measure and discuss its relation to the positive equilibrium measure. In Section 3 we estab-
lish that for a large class of external fields Q, the sequences of n-point (Q, s)-Fekete sets
are well-separated; that is, have separation distance of order n−1/d (Theorems 14 and 16).
In Section 4, for an external field due to a negative point charge, we provide a detailed
analysis and give explicit representations of the signed equilibrium (Theorem 19) and the
s-extremal measure on S

d (Theorem 20). This extends results in [2]. In Section 5 we rigor-
ously characterize the 3-point (Q, s)-Fekete set for a general class of convex external fields
and provide numerical results for the four point problem with Riesz external fields (Figs. 2
and 4 illustrate the analysis). The proofs of our results are provided in Section 6.

2 Basic Properties and Characterization Theorems

In [10] the second and the third authors formulated the following Frostman-type proposition,
which deals with the existence and uniqueness of the measure μQ,s , as well as a criterion

Definition 2 Let s > 0 or s = log. For a set of n points Xn = {x1, . . . , xn} ⊂ S
d the

discrete weighted energy associated with Q is given by
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650 J.S. Brauchart et al.

that characterizes μQ,s in terms of its potential. The proof of this proposition follows closely
the proof of [28, Theorem I.1.3]. It could also be derived as a particular case from the more
general results in [32] (see especially Theorems 1 and 2, and Proposition 1 of that paper).

Proposition 3 Let 0 < s < d .1 For the minimal energy problem on S
d with external field

Q the following properties hold:

(a) VQ,s is finite.
(b) There exists a unique s-extremal measure μQ,s ∈ M(Sd) associated with Q. More-

over, the support SQ,s := supp(μQ,s) of this measure is contained in the compact set
EM := {x ∈ Sd : Q(x) ≤ M} for some M > 0.

(c) The measure μQ,s satisfies the variational inequalities

U
μQ,s
s (x) + Q(x) ≥ FQ,s q.e. on S

d, (4)

U
μQ,s
s (x) + Q(x) ≤ FQ,s everywhere on SQ,s , (5)

where

FQ,s :=VQ,s −
∫

Q(x) dμQ,s(x). (6)

(d) Inequalities (4) and (5) completely characterize the s-extremal measure μQ in the
sense that if ν ∈ M(Sd) is a measure with finite s-energy such that for some constant
C we have

Uν
s (x) + Q(x) ≥ C q.e. on S

d , (7)

Uν
s (x) + Q(x) ≤ C everywhere on supp(ν), (8)

then ν = μQ,s and C = FQ,s .

Observe that, if the external field Q is continuous on S
d , then the inequality in (7) holds

everywhere on S
d .

Remark 1 Proposition 3 remains true if Sd is replaced with any compact subset K ⊂ S
d

with caps(K) > 0. Notationally, the dependence on K will be indicated by a subscript K
(e.g., μK,Q,s , FK,Q,s , etc.).

In the case when d − 1 ≤ s < d , [10, Theorem 1.3] analyzes further the characterization
property from Proposition 3(d) by studying the supremum and the essential infimum of the
weighted potential Uν

s (x)+Q(x). Our first theorem extends this analysis to the larger range
d − 2 ≤ s < d . To state the theorem we introduce the notation “ inf ”x∈E to denote the
essential infimum of f with respect to a set E ⊂ S

d ; that is,

“ inf ”
x∈E f (x) := sup{c : f (x) ≥ c q.e. on E};

in other words, the infimum is taken quasi-everywhere.

Theorem 4 Let d− 2 ≤ s < d , Q be an external field on S
d , and FQ,s be defined as in (6).

For any measure λ ∈ M(Sd) we have

“ inf ”
x∈SQ,s

[
Uλ
s (x)+Q(x)

] ≤ FQ,s (9)

1A similar result holds for the logarithmic case.
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and
sup

x∈supp(λ)

[
Uλ
s (x)+Q(x)

] ≥ FQ,s . (10)

If equality holds in both inequalities, then λ = μQ,s .

For the restricted range d − 1 ≤ s < d , the proof of this theorem as given in [10]
utilizes the principle of domination for Riesz potentials, which generally is stated for the
parameter range d − 1 ≤ s < d + 1 and measures supported on any subsets of Rd+1. (A
restricted version of the principle of domination for d − 2 < s < d was established in
[10, Lemma 5.1].) Via a different approach that utilizes the following restricted maximum
principle on the sphere, we are able to prove the result for s in the extended range d − 2 ≤
s < d; see Section 6.

Theorem 5 (Sphere Maximum Principle) Let d − 2 ≤ s < d . Suppose μ is a positive
measure with supp(μ) ⊂ Sd such that for some M > 0, the relation U

μ
s (x) ≤ M holds

μ-almost everywhere on S
d . Then U

μ
s (x) ≤ M holds everywhere on S

d .

An essential part of the analysis of external field problems is the determination the s-
extremal (equilibrium) measure on S

d associated with the external field Q and, in particular,
its support. In principle, if the latter is known, the measure μQ,s can be recovered by solv-
ing an integral equation for the weighted s-potential of μQ,s arising from the variational
inequalities (4) and (5). A substantially easier problem is to find a (signed) measure that has
constant weighted s-potential everywhere on Sd . The solution of this problem turns out to
be useful in solving the harder problem. This motivates the study of the signed equilibrium
measure associated with an external field which is defined as follows.

Definition 6 Given a compact subset K ⊂ R
p (p ≥ 3) and an external field Q, we call a

signed measure ηK,Q = ηK,Q,s supported on K and of total charge ηK,Q(K) = 1 a signed
s-equilibrium on K associated with Q if its weighted Riesz s-potential is constant on K;
that is,

U
ηK,Q
s (x)+Q(x) = GK,Q,s for all x ∈ K. (11)

We note that if a signed equilibrium exists, then it is unique (see [2, Lemma 23]).
A remarkable connection exists to the Riesz analog of the Mhaskar-Saff F -functional

from classical logarithmic potential theory in the plane (see [23] and [28, Chapter IV, p.
194]).

Definition 7 The Fs-functional of a compact subset E ⊂ S
d of positive s-capacity is

defined as

Fs(E) :=Ws(E)+
∫

Q(x) dμE(x), (12)

where Ws(E) is the s-energy of E and μE is the s-equilibrium measure (without external
field) on E.

Let d − 2 ≤ s < d with s > 0. If the signed equilibrium on a compact set K ⊂ Sd

associated with Q exists, then integration of (11) with respect to μK shows that

Fs(K) = GK,Q,s . (13)

The essential property of the Fs-functional is the following (cf. [2, Theorem 9]).
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Proposition 8 Let d − 2 ≤ s < d with s > 0 and Q be an external field on a compact
subset K ⊂ Sd with caps(K) > 0. Then the Fs-functional is minimized for the support of
the s-extremal measure μK,Q,s on K associated with Q; that is, for every compact subset
E ⊂ K with caps(E) > 0,

Fs(E) ≥ Fs(supp(μK,Q,s)) = FK,Q,s .

Given a compact subset K ⊂ S
d , the extended support S̃K,Q,s of μK,Q,s is defined by

S̃K,Q,s :=
{

x ∈ K : UμK,Q,s
s (x)+Q(x) ≤ FK,Q,s

}
. (14)

The following theorem, which is the Riesz analog of [9, Theorem 2.6] and [18, Lemma 3],
establishes a relation between the extended support S̃Q,s of μQ,s (by (5) this set contains
the support of μQ,s) and the support of the positive part η+Q of the Jordan decomposition

η+Q − η−Q of the signed equilibrium ηQ = ηSd ,Q,s on S
d associated with Q.

Theorem 9 Let d − 2 ≤ s < d and suppose that Q is an external field such that a signed
s-equilibrium ηρ = η�ρ,Q,s on a spherical cap �ρ = {x ∈ S

d : |x − p| ≥ ρ} exists. Then

μQ,s

∣∣
�ρ

≤ η+ρ
∣∣
SQ,s

and SQ,s ∩�ρ ⊂ supp(η+).

Furthermore, if FQ,s < G�ρ,Q,s , then S̃Q,s ∩�ρ ⊂ supp(η+ρ ).

Remark 2 The theorem remains true if the s-extremal measure on a compact subset
K ⊂ S

d with caps(K) > 0 and signed s-equilibria ηE on compact subsets E ⊂ S
d with

supp
(
η+E
) ⊂ K are considered.

The characterization results for the shape of the support of the s-extremal measure on S
d

associated with a rotational symmetric external field given in [2, Theorem 10] immediately
carry over to the external fields with extended range.

Proposition 10 Let d − 2 ≤ s < d with s > 0 and the external field Q : Sd → (−∞,∞]
be rotationally invariant about the polar axis; that is, Q(z) = f (ξ), where ξ is the altitude

of z =
(√

1 − ξ 2 z, ξ
)

, z ∈ S
d−1. Suppose that f is a convex function on [−1, 1]. Then the

support of the s-extremal measure μQ on Sd is a spherical zone; namely, there are numbers
−1 ≤ t1 ≤ t2 ≤ 1 such that

supp(μQ) = �t1,t2 :=
{(√

1 − u2 x, u
)

: t1 ≤ u ≤ t2, x ∈ S
d−1
}
. (15)

Moreover, if additionally f is increasing, then t1 = −1 and the support of μQ is a spherical
cap centered at the South Pole.

Next we focus on the discretized version of the Riesz external field problem given in
Definition 1. Recall that the normalized counting measure associated with an n-point set
Xn = {x1, x2, . . . , xn} is defined as

μXn :=
1

n

n∑
j=1

δxj ,

where δx is the Dirac-delta measure with unit mass at x. The continuous and discrete external
field minimization problems are related in the following way.
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Proposition 11 Let 0 < s < d or s = log. Then

lim
n→∞

EQ
s (n)

n2
= VQ,s = IQ,s(μQ,s).

Furthermore, if {Xn,Q,s}∞n=2 is any sequence of n-point (Q, s)-Fekete sets on S
d (see Def-

inition 2), then the sequence of the normalized counting measures μXn,Q,s
associated with

Xn,Q,s converges in the weak-star sense to the s-extremal measure μQ,s .

The proof follows from a standard argument and utilizes the uniqueness result stated in
Proposition 3(b).

We are interested in determining sets that contain all the (Q, s)-Fekete sets. For this pur-
pose it is useful to investigate the weighted s-potential of the normalized counting measure
μXn which is defined as

hXn(x) :=U
μXn
s (x)+Q(x) = 1

n

n∑
j=1

1∣∣x − xj
∣∣s +Q(x), x ∈ S

d . (16)

As an application of Theorem 4 we deduce the following result.

Theorem 12 Let d − 2 ≤ s < d . Let Xn ⊂ S
d be a set of n distinct points, and suppose

that, for some constant M , the associated weighted potential satisfies the inequality

hXn(x) ≥ M q.e. on SQ,s = supp(μQ,s). (17)

Then (cf. (6))

U
μXn
s (x) ≥ M + U

μQ,s
s (x)− FQ,s everywhere on S

d . (18)

Furthermore,
hXn(x) ≥ M q.e. on S

d . (19)

We point out that this is an extension of [10, Theorem 1.7], which, as with Theorem 4
above, was originally established for d − 1 ≤ s < d . As in [10, Corollary 1.9], Theorems 4
and 12 yield the following.

Corollary 13 For d − 2 ≤ s < d , every (Q, s)-Fekete set is contained in the extended
support S̃Q,s .

We note that for most of the above theorems, s = d−2 marks the lower end of the stated
range of the Riesz parameter s. It turns out that the case s = d−2 is distinctive because new
phenomena arise in the solution of the signed equilibrium problem, see Section 4. Moreover,
for s in the interval (0, d − 2), the Riesz-s kernel becomes strictly superharmonic when
considered in the stereographic projection space of Sd ; consequently maximum principles
and domination principles do not apply.

3 Application to Point Separation

Good separation of points is generally associated with the stability of an approximation or
interpolation method (e.g., by splines or radial basis functions (RBF)); cf., e.g., [12, 22, 29].
In this section we shall apply results from Section 2 (especially Theorem 9 and Corollary 13)
to obtain explicit point separation estimates for sequences of n-point (Q, s)-Fekete sets
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(cf. Definition 2) associated with a large class of external fields Q and establish that such
sequences are “well-separated” in the following sense. Let

δ(Xn) := min{|xj − xk| : xj , xk ∈ Xn, j 	= k}
denote the minimum distance among the points in Xn. Then a sequence {Xn}n≥2, Xn ⊂ S

d

for all n, is called well-separated if δ(Xn) is of order n−1/d as n → ∞. (It suffices to show
the existence of a constant C such that

δ(Xn) ≥ C n−1/d for sufficiently large n, (20)

since δ(Xn) cannot exceed the best-packing distance which is of order n−1/d ; cf. [4].)
In the potential-theoretical and field-free setting (Q ≡ 0) it has been known since

Dahlberg [5] that Fekete point sets (harmonic case s = d − 1) on a sufficiently smooth
closed bounded d-dimensional surface in Rd+1 that separates Rd+1 into two parts will form
a well-separated sequence (but no explicit constant for the lower bound of δ(Xn) has been
given). Götz [13] studied the discrete external field problem on surfaces in R

d where the
energy functional is defined in terms of the Green function for a domain X ⊂ R

d . His sep-
aration result generalizes Dahlberg’s result. Well-separation of minimal logarithmic energy
configurations on S2 in the field-free setting was first established by Rakhmanov et al. [26,
27], and with an improved constant by Dragnev [8]. For minimal Riesz s-energy configura-
tions on S

d in the field-free case, well-separation was established by Kuijlaars et al. [20] for
s ∈ (d − 1, d) and by Dragnev and Saff [10] for s ∈ (d − 2, d). Damelin and Maymeskul
[6] give a separation result of order n−1/(s+2), 0 < s ≤ d − 2, which is of sharp order in
the boundary case s = d − 2. It is expected but still unproven that minimal logarithmic and
Riesz s-energy (0 < s < d − 2) configurations on S

d , d ≥ 3, are well-separated. The ref-
erences [8, 10, 27] also provide an explicit constant in the lower estimate (20). It should be
noted that [10] uses external fields to derive the desired separation estimates in the field-free
setting. In the hyper-singular case s > d , Kuijlaars and Saff [19] establish well-separation
of minimal Riesz s-energy configurations on S

d .
We now present a generalization of [10, Theorem 1.5] to the case when an external field

is present and given by a potential.

Theorem 14 Let d − 2 ≤ s < d and Q(x) :=Uσ
s (x) for some signed measure σ with σd -

a.e. finite Riesz s-potential on Sd . Assume the support of the negative part σ− in the Jordan
decomposition σ = σ+ − σ− satisfies that

supp(σ−) ⊂
{

x ∈ R
d+1 : |x| ≥ r

}
(21)

for some r > 1 and that

cσ = cσ (r) := 1 + ‖σ+‖ +
(

(r + 1)d−s

Ws(Sd) (r − 1)d
− 1

)
‖σ−‖ ≥ 1

2
. (22)

Then any sequence (Xn,Q,s)
∞
n=2 of (Q, s)-Fekete sets on S

d is well-separated; more
precisely,

δ(Xn,Q,s) ≥ KQ,s

n1/d
for all n > 2cσ − 1, (23)

where

KQ,s :=
(

2d−s

Ws(Sd)

1

cσ

)1/d

. (24)

It is understood that for d = 2 and s = log we replace Ws(S
d) by 1 and s by 0.
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Since the Riesz s-energy of Sd appearing in the separation constant in (24) is given by
the formula

Ws(S
d) = 2d−1−s �((d + 1)/2) �((d − s)/2)√

π �(d − s/2)
, s > 0, (25)

we have in the harmonic case s = d − 1 that

KQ,d−1 = 2−1/d
[

1 + ‖σ+‖ +
(

r + 1

(r − 1)d
− 1

)
‖σ−‖

]−1/d

(26)

and in the limiting case s = d − 2 (and d ≥ 3)

KQ,d−2 =
(

1

d

�((d+1)/2)√
π �(d/2)

)−1/d
[

1+‖σ+‖ +
(

(r + 1)2

Wd−2(Sd) (r − 1)d
− 1

)
‖σ−‖

]−1/d

,

(27)
wheras for s = log and d = 2

KQ,log = 2

[
1 + ‖σ+‖ +

(
(r + 1)2

(r − 1)2
− 1

)
‖σ−‖

]−1/2

. (28)

Remark 3 Note that whenever the support of σ− lies outside of S
d , then both condi-

tions (21) and (22) are satisfied by taking r(>1) sufficiently close to 1. Also observe that as
r approaches 1, the constant KQ,s approaches 0.

In case of σ ≡ 0 and s = d − 2 > 0, the above Theorem 14 yields a known result
for the well-separation of n-point minimal Riesz (d − 2)-energy configurations on Sd ([6]
but without explicit constants). Also with σ ≡ 0, s = log and d = 2 we recover the same
separation result as obtained in [8]. Here we prove them separately (with explicit constants
in the former case), since they will be used to establish the separation bounds when an
external field (σ 	≡ 0) is given.

Proposition 15 For Q ≡ 0 and d ≥ 2 we have

δ(Xn,d−2) ≥ κd

(n− 1)1/d
(29)

for any n(≥ 3)-point Riesz (d − 2)-energy 2 minimizing configuration Xn,d−2 on S
d , where

κd =
(

1

d

�((d + 1)/2)√
π �(d/2)

)−1/d

. (30)

Observe that κd = (4/Wd−2(S
d))1/d when d ≥ 3. The first three values of κd are κ2 = 2,

κ3 = (3π/2)1/3, and κ4 = 2/31/4. Curiously, (κd)d is the ratio of the volume of the unit ball
in R

d divided by the surface area of the unit sphere in R
d+1. (This constant also appears as

the coefficient of the leading term in the asymptotic expansion of the n-point minimal Riesz
d-energy as n → ∞ (cf. [19]).)

Finally, we present a well-separation result for sequences of (Q, s)-Fekete sets in the
hyper-singular case s > d . In this case the (strongly repellent) short-range interactions
between points on the sphere ensure well-separation of minimizing configurations for any

2When d = 2 we mean logarithmic energy.
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continuous external field on S
d . In fact, it is enough that Q be integrable on some small

subset of Sd of positive surface area measure.

Theorem 16 Let s > d . Suppose there is a subset B ⊂ S
d such that σd(B) > 0 and the

fixed external field Q is integrable over B with respect to σd . Then there is a constant C
independent of n such that

δ(Xn,Q,s) ≥ C

n1/d
(31)

for any n-point (Q, s)-Fekete set on Sd .

Remark 4 In case of Q = Qn varies with n, there may be no single fixed subsetB satisfying
the hypotheses in Theorem 16. However, one can still deduce well-separation by requiring
the following: there is a sequence {Bn} of subsets of Sd such that for some ε > 0, σd(Bn) ≥
ε for all n, and for some C ′ > 0 independent of n,

1

σd(Bn)

∫
Bn

|Qn(x)| dσd(x)− min{0,MQn} ≤ C ′ ns/d−1 for all n,

where MQn denotes the minimum of Qn over Sd . These conditions are derived from the
main inequality (82) and the estimate (83).

Remark 5 For large classes of external fields Q (e.g., continuous external fields), inequality
(82) and the estimate (83) can be made explicit which, in turn, yields an explicit constant in
the separation estimate (31), as the following example illustrates.

Example 17 Let s > d . Consider the external field Q(x) = q |x − Rp|−s , q 	= 0, R > 1,
due to a point source above the North Pole p. Clearly, Q is continuous and thus integrable
on B = S

d . Thus Theorem 16 assures well-separation of n-point (Q, s)-Fekete sets on S
d .

An explicit lower bound can be easily derived from (82) to (83). We find∣∣∣∣ 1

σd(B)

∫
D

(Q(x)− min{0,Q(xj )}) dσd(x)
∣∣∣∣ ≤ |q|

∫
Sd

dσd(x)
|x − Rp|s − min

{
0,

q

(R − 1)s

}

and, consequently,

δ(Xn,Q,s) ≥
(

γd

1 − 1
d
γd

)−1/s
g(n)

n1/d
,

where

g(n) :=
{

1

s − d
+ βs,d

2
n−2/d + 2n1−s/d

[
|q|Uσd

s (Rp)− min

{
0,

q

(R − 1)s

}]}−1/s

.

Note that g(n) → (s − d)1/s as n → ∞. The constants γd and βs,d are given in (76) and
(78), respectively, and the representation of Uσd

s appears in (41).

4 Negatively Charged External Fields

In the following we consider external fields Q that are generated by negative sources. The
required lower semi-continuity of Q : Sd → (−∞,∞] implies that no negative singular-
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ities can be on the sphere but it may support a negative “continuous” charge distribution
(with no discrete part relative to S

d ). We give a detailed analysis for the Riesz external field

Qb,s (x) = Uσ
s (x) = q|x − b|−s, x ∈ S

d , b = −Rp (R > 1), q < 0, (32)

where σ = qδ(b), that is due to a negative point source at b below the South Pole and which
also provides the basis for more general axis-supported fields defined by superposition of
point source fields. Our analysis thus extends and complements results in [2] where positive
axis-supported external fields were considered.

Intuitively, a negative point source under the South Pole will “pull” charge towards the
South Pole and if sufficiently strong will cause a negatively charged spherical cap around
the North Pole to appear on a grounded sphere. Grounding of the sphere imposes constant
weighted potential everywhere on Sd . This naturally leads to the signed equilibrium problem
on the whole sphere or on its parts, say, the spherical cap �t := {x ∈ S

d : x ·p ≤ t} centered
at the South Pole. On a positively charged isolated sphere a sufficiently strong negative field
will produce a spherical cap around the North Pole that is free of charge. We are specifically
interested in the charge distribution on the remaining part �tc , that is the s-extremal measure
on S

d associated with the external field Qb,s and its support �tc .
We will use the methods and results of [2]. An essential concept is the s-balayage of a

measure. Recall that given a measure ν and a compact set K (of the sphere Sd ), the balayage
measure ν̂ := Bals(ν,K) preserves the Riesz s-potential of ν onto the set K and diminishes
it elsewhere (on the sphere S

d ). Let ηt denote the signed s-equilibrium on �t associated
with the external field Qb,s . Then it can be expressed as

ηt =
[
�s(t)/Ws(S

d)
]
νt − qεt , (33)

where

εt = εt,s := Bals(δb,�t ), νt = νt,s := Bals(σd, �t ) (34)

are the s-balayage measures onto �t of the positive unit point charge at b and the uniform
measure σd on S

d . The function �s(t), defined by

�s(t) :=Ws(S
d)(1 + q‖εt‖)/‖νt‖, d − 2 < s < d, (35)

in terms of the s-energy of Sd , given in (25) and norms ‖εt‖ = ∫
Sd

dεt and ‖νt‖ = ∫
Sd

dνt ,
plays an important role in what follows. Indeed,

∫
�t

dηt = �s(t)

Ws(Sd)
‖νt‖ − q‖εt‖ = 1

and using that Uνt
s (x) = Ws(S

d) and U
εt
s (x) = |x − a|−s on �t by (34), at every x ∈ �t

Uηt
s (x)+Qb,s(x) = �s(t)

Ws(Sd)
Uνt
s (x)− q Uεt

s (x)+Qb,s(x) = �s(t). (36)

By Definition 6, G�t,Qb,s ,s = �s(t) and (13) relates �s(t) to the Fs-functional by means of
�s(t) = Fs(�t ), whereas Proposition 8 implies that the latter is minimized by the support
of the s-extremal measure on S

d associated with the external field (32) which turns out to
be a spherical cap �tc . We will see that the unique minimum of �s(t) in the interval [−1, 1]
will provide this critical parameter tc (see Theorem 20). Moreover, the remark following
Theorem 19 provides the necessary and sufficient conditions (involving �s(t) and therefore
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Fs(�t )) under which the signed s-equilibrium measure ηt on �t turns into the s-extremal
measure on S

d associated with the external field (32).

Throughout, 2F1

(
a, b

c
; z
)

and 2F̃1

(
a, b

c
; z
)

denote the Gauss hypergeometric func-

tion and its regularized form 3 with series expansions

2F1

(
a, b

c
; z
)

:=
∞∑
n=0

(a)n(b)n

(c)n

zn

n! , 2F̃1

(
a, b

c
; z
)

:=
∞∑
n=0

(a)n(b)n

�(n+ c)

zn

n! , |z| < 1,

(37)
where (a)0 := 1 and (a)n := a(a+ 1) · · · (a+ n− 1) for n ≥ 1 is the Pochhammer symbol.
We also recall that the incomplete Beta function and the Beta function are defined as

B(x;α, β) :=
∫ x

0
vα−1(1 − v)β−1 dv, B(α, β) := B(1;α, β), (38)

whereas the regularized incomplete Beta function is given by

I(x; a, b) := B(x;a, b)/B(a, b). (39)

First, we give the representation of the signed equilibrium on the whole sphere Sd , which
is well-known from elementary physics (cf. [15, p. 61]) in the classical Coulomb case, and
provide a necessary and sufficient condition when it also is the s-extremal measure on S

d .

Proposition 18 Let 0 < s < d and R > 1. The signed s-equilibrium ηb = ηSd ,Qb,s ,s
on S

d

associated with the Riesz external field (32), where in fact q ∈ R \ {0}, is given by

dηb(x) = η′b(x) dσd(x), η′b(x) := 1 + qU
σd
s (b)

Ws(Sd)
− q(R2 − 1)d−s

Ws(Sd)|x − b|2d−s
. (40)

Furthermore,

Uηb
s (z)+Qb,s(z) = Fs(S

d) = �s(1) = Ws(S
d)+ qUσd

s (b), z ∈ S
d ,

where Uσd
s (b) = ∫

Sd
ks(b, y) dσd(y) has the following representation:

Uσd
s (b) = (R + 1)−s

2F1

(
s/2, d/2

d
; 4R/(R + 1)2

)
. (41)

Moreover, if q < 0, then supp
(
μQb,s

) = Sd if and only if

Ws(S
d)

q
≤ (R − 1)d−s

(R + 1)d
− Uσd

s (b). (42)

In such a case μQb,s = ηb.

Proof Indeed, it can be readily verified that ηb given by (40) is the signed equilibrium
measure on the whole sphere on observing that εb := Bals(δb,S

d) with

dεb(x) = dε1(x) = (R2 − 1)d−s

Ws(Sd)|x − b|2d−s
dσd(x), ‖εb‖ = 1

Ws(Sd)
Uσd
s (b),

by using a suitably defined Kelvin transformation; for details see [2, Proof of Theorem 2]
which can be easily extended to hold for the external field (32).

3The regularized form is well-defined even for c a negative integer.
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The unique signed equilibrium ηb on S
d associated with Qb,s coincides with the unique

positive s-equilibrium measure on S
d if and only if ηb is a measure. This is a consequence

of the uniqueness of either measure and variational inequalities (Proposition 3(d)). As the
strictly decreasing density function η′b assumes its minimum value at the North Pole p,

η′b(p) = 1 + qU
σd
s (b)

Ws(Sd)
− q

Ws(Sd)

(R − 1)d−s

(R + 1)d
,

we obtain the necessary and sufficient criterion in (42).

In light of (42) it is natural to ask if there is a critical distance Rq > 1 such that the
support of μQb,s is all of Sd for R ≥ Rq but is a proper subset of Sd for R < Rq . For
external fields with positive charge q such a critical distance always exists; cf. [2, Remark 4
and Example 5] and [3]. However, for negative charge q such a critical distance does not
always exist. We discuss this phenomenon in more detail in [1].

How are the Riesz-s external fields, generated by a positive point charge q+ above the
North Pole (a = R+p) and a negative point charge q− below the South Pole (b = −R−p),
related? Let η′a and η′b be the density functions of the respective signed equilibrium on S

d .
Then it can be readily verified that for same center distances |a| = |b| = R > 1 and total
charge q− + q+ = 0 the densities complement each other; that is,

η′a(x)+ η′b(y) = 2 for all x, y ∈ S
d with p · x + p · y = 0.

On the other hand, when it is assumed that both η′a and η′b attain the same value at the North
Pole, then again by [2, Theorem 2] and Proposition 18,

1+ q−Uσd
s (b)

Ws(Sd)
− q−

(
R2− − 1

)d−s

Ws(Sd) (R− + 1)2d−s
= 1+ q+Uσd

s (a)
Ws(Sd)

− q+
(
R2+ − 1

)d−s

Ws(Sd)(R+ − 1)2d−s
. (43)

Here, in the case |a| = |b| = R > 1 (i.e. R− = R+ = R), Equation (43) is equivalent with

(R2 − 1)s/2Uσd
s (a) =

(
R + 1

R − 1

)d−s/2
q+

q+ − q−
+
(
R − 1

R + 1

)d−s/2 −q−
q+ − q−

(44)

and in the case q− + q+ = 0 (i.e. q+ = −q− = q > 0), Equation (43) becomes

− Uσd
s (b)+ (R− − 1)d−s

(R− + 1)d
= Uσd

s (a)− (R+ + 1)d−s

(R+ − 1)d
. (45)

Observe that the last relation between R− and R+ does not depend on the charge q . Figure 1
illustrates theses cases.

Next, we investigate the signed equilibrium on spherical caps �t . Ultimately, our goal is
to use this signed equilibrium to obtain the s-extremal measure on S

d associated with the
external field in (32) when its support is not all of Sd . We remark that the proofs of the
results and remarks in this section can be obtained by inspecting the proofs of the related
results in [2] (details will be presented in a later paper [1]).

Theorem 19 Let d−2 < s < d . The signed s-equilibrium ηt on the spherical cap �t ⊂ S
d ,

−1 < t < 1, associated with Qb,s in (32) is given by (33). It is absolutely continuous in the
sense that for x = (

√
1 − u2 x, u) ∈ �t ,

dηt (x) = η′t (u)
ωd−1

ωd

(1 − u2)d/2−1 du dσd−1(x), (46)
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Fig. 1 Comparison of density functions of signed equilibria on S
2 associated with Riesz external fields

generated by a positive point charge above the North Pole (Blue curves in colored version, i.e. smaller value
at −1) and a negative point charge below the South Pole (Red curves in colored version, i.e. larger value
at −1) having the same density function value at 1 (North Pole). Left column: fixed center distance R = 1+φ

(φ Golden ratio), q+ = 1 and q− from (44). Right column: total charge q− +q+ = 0 with q+ = −q− = q =
1, R+ = 1 + φ and R− from (45). From top to bottom: s = 1/2, 1, 3/2. (No solution for s = 1/2 in right
column)

where (with R = |b| and r = √
R2 + 2Rt + 1)

η′t (u) = 1

Ws(Sd)

�(d/2)

�(d − s/2)

(
1 − t

1 − u

)d/2 (
t − u

1 − t

)(s−d)/2

×
{
�s(t)2F1

(
1, d/2

1 − (d − s)/2
; t − u

1 − u

)

−q(R − 1)d−s

rd
2F̃1

(
1, d/2

1 − (d − s)/2
; (R + 1)2

r2

t − u

1 − u

)}
. (47)

The density η′t is expressed in terms of regularized Gauss hypergeometric functions.
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Furthermore, if z = (
√

1 − ξ 2 z, ξ ) ∈ S
d , the weighted s-potential is given by

Uηt
s (z) + Qb,s(z) = �s(t), z ∈ �t, (48)

Uηt
s (z) + Qb,s(z) = �s(t)+ q

ρs
I

(
(R − 1)2

r2

ξ − t

1 + ξ
; d − s

2
,
s

2

)

−�s(t) I

(
ξ − t

1 + ξ
; d − s

2
,
s

2

)
, z ∈ S

d \�t , (49)

where ρ = √R2 + 2Rξ + 1 and I(x;a, b) is the regularized incomplete Beta function.

Remark 6 There is a simple relation between the positive and negative point charge problem
with regard to their signed equilibria when these charges are on opposite sides of an axis.
Namely, if Q+(x) := q+/|x − a|s and Q−(y) := q−/|y − b|s are the Riesz external fields
generated by a positive point charge at a above the North Pole and a negative point charge
at b below the South Pole, then the weighted s-potentials of the respective signed equilibria
ηa and ηb on the spherical cap �t satisfy

Uηa
s (x)+Q+(x) = G�t,Q+,s , Uηb

s (y)+Q−(y) = G�t ,Q−,s

everywhere on S
d . Furthermore, if q− + q+ = 0, then the following principle holds:

Uηa
s (x)+ Uηb

s (y) = G�t ,Q+,s +G�t,Q−,s

for all x, y ∈ S
d such that |x − a| = |y − b|.

The next remark, leading up to Theorem 20, emphasizes the special role of �s(t).

Remark 7 It can be shown that the signed equilibrium ηt on �t associated with Qb,s is a
positive measure with support �t if and only if

�s(t) ≥ q
(R − 1)d−s

(R2 + 2Rt + 1)d/2
, (50)

whereas the weighted s-potential of the signed equilibrium ηt on �t associated with Qb,s
exceeds the value �s(t) assumed on �t strictly outside of �t (but on S

d ) if and only if

Ws(S
d)

1 + q‖εt‖
‖νt‖ = �s(t) ≤ q

(R − 1)d−s

(R2 + 2Rt + 1)d/2
. (51)

As the right-hand side above is negative, one also has the weaker restriction ‖εt‖ > −1/q .

For ηt to coincide with the s-extremal measure on S
d associated with Qb,s with support

�t both (51) and (50) have to hold (cf. Proposition 3(d)). The difficult part of the next
statement is to verify that the arising equation has a unique solution, which can be done as
in the proof of [2, Theorem 13].

Theorem 20 Let d−2 < s < d . For the external field (32) the function �s(t) given in (35)
has precisely one global minimum tc ∈ (−1,1]. This minimum is either the unique solution
tc ∈ (−1,1) of the equation

�s(t) = q(R − 1)d−s/(R2 + 2Rt + 1)d/2,
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or tc = 1 when such a solution does not exist. In addition, �s(t) is greater than the right-
hand side above if t ∈ (−1, tc) and is less than if t ∈ (tc, 1). Moreover, tc = max{t : ηt ≥
0}. The extremal measure μQb,s on S

d is given by ηtc (see (46)), and supp(μQb,s ) = �tc .

In the limiting case s = d − 2 with s > 0 it can be shown that the s-balayage measures

εt := εt,d−2 = Bald−2(δb, �t ), νt := νt,d−2 = Bald−2(σ,�t ) (52)

exist and both have a component that is uniformly distributed on the boundary of �t . Each
of these measures is the weak-star limit as s → (d − 2)+ of the respective measure in (34).
An inspection of the proofs in [2] yields that the signed s-equilibrium ηt on the spherical
cap �t associated with Qb,d−2(x) = q |x − b|2−d (q < 0 and b = (0,−R) with R > 1) is
given by

ηt = [�d−2(t)/Wd−2(S
d)]νt − qεt , �d−2(t) :=Wd−2(S

d)(1 + q‖εt‖)/‖νt‖.
More explicitly, it can be decomposed into a continuous and a discrete part by means
of

dηt (x) = η′t (u) dσd
∣∣
�t
(x)+ qt δt (u) dσd−1(x), x =

(√
1 − u2 x, u

)
∈ S

d , (53)

where the density with respect to σd restricted to �t has the form

η′t (u) =
�d−2(t)

Wd−2(Sd)
− q

Wd−2(Sd)

(R2 − 1)2

(R2 + 2Ru+ 1)d/2+1

and the boundary charge uniformly distributed over the boundary of �t is

qt =
1 − t

2
(1 − t2)d/2−1

[
�d−2(t)− q(R − 1)2

(R2 + 2Rt + 1)d/2

]
.

The vanishing of this boundary charge characterizes the critical distance tc for which ηtc
becomes the (d − 2)-extremal measure on S

d associated with Qb,d−2 (details will be pre-
sented in a later paper [1]). A similar result holds for the logarithmic case s = log on
S

2.

5 Examples of External Field Problems for Small N

5.1 The Three Point Problem with a Convex External Field

Let a be a fixed point in R
3 with R = |a| > 1. It will be regarded as the source of an

external field Q(x) = f (|x − a|2), where f is a strictly convex and decreasing function.
Then as we show below the optimal configuration (minimizing (2)) on S2 for every s > 0
is an equilateral triangle perpendicular to the main axis passing through a and the center of
the sphere; cf. Figure 2. The intercept t0 of the plane supporting this unique (up to rotation
about the main axis) triangle with the main axis varies with f . From these facts it is easy to
see that

EQ
s (3) = 6[

3
(
1 − t2

0

)]s/2 + 12f (1 − 2Rt0 + R2),
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where the negative intercept t0 is the unique minimum of EQ
s (3) satisfying the relation

3s(−t0)[
3
(
1 − t2

0

)]s/2+1
= 4R[−f ′(1 − 2Rt0 + R2)].

Remark 8 It is interesting to note that for the case Q(x) = 1
2 |x − p|−s we deduce the well-

known fact that the tetrahedron has minimal Riesz-s energy for four points on S
2 interacting

via the Riesz-s potential; see the first frame of Fig. 2.

We now establish that the aforementioned configuration is indeed optimal. For this pur-
pose let {x1, x2, x3} be an optimal configuration. Without loss of generality, we assume that
the segment connecting x1 and x2 lies in the yz-plane and is parallel to the y-axis, say,

with parameterization x1 =
(

0,
√

1 − h2, h
)

and x2 =
(

0,−√
1 − h2, h

)
, −1 < h < 1.

Furthermore, we can write

x3 =
(√

1 − t2 cosα,
√

1 − t2 sinα, t
)

and a = (R sin θ cosβ,R sin θ sinβ, R cos θ).

Since |x3−x1|2+|x3−x2|2 = 2(2−2ht), the convexity of the function u �→ u−s/2 implies
that

(|x3 − x1|2)−s/2 + (|x3 − x2|2)−s/2 ≥ 2(2 − 2ht)−s/2,

where equality holds only if α = 0 or π . Similarly, since

|a − x1|2 + |a − x2|2 = 2(R2 + 1 − 2hR cos θ),

the convexity of f implies that

Q(x1)+Q(x2) = f (|a − x1|2)+ f (|a − x2|2) ≥ 2f (R2 + 1 − 2hR cos θ),

where equality holds only if β = 0 or π . Moreover, from the fact that f is strictly decreasing
we get

Q(x3) = f (|a − x3|2) = f
(
R2 + 1 − 2R

√
1 − t2 sin θ cos(α − β)+ 2Rt cos θ

)

≥ f
(
R2 + 1 + 2R

√
1 − t2 sin θ + 2Rt cos θ

)
,

and equality holds only if α− β = π or −π . Consequently, the optimal configuration must
satisfy |x3 − x1| = |x3 − x2| and |a − x1| = |a − x2|. Since the choice of x1 and x2 was

Fig. 2 Typical 3-point (Q, s)-Fekete sets for weaker (q = 1/2, left) and stronger (q = 1, right) Riesz exter-
nal fields Q(x) = q|x − Rp|−s in the Coulomb case s = 1 for selected values of center distances R = 1, 2,
and 1 + φ (φ is the Golden ratio); compare with Fig. 4

Author's personal copy



664 J.S. Brauchart et al.

arbitrary, the same is true for any pair, which implies that the configuration is an equilateral
triangle with equidistant points from a. Finally, it is easy to see that there is a unique solution
for the intercept t0 of the equilateral triangle and the axes.

5.2 The Four Point Problem with Riesz External Field

Let four unit charges be restricted to move on the unit sphere S
2 and the fifth point (placed

on the polar axis above the North Pole) act as the source of an external field Qa,s(x) =
qks(x, a), where a = Rp, R ≥ 1, and p the North Pole. A (Qa,s , s)-Fekete set minimizes
the discrete weighted energy associated with Qa,s ,

E
Qa,s
s ({x1, x2, x3, x4}) :=

4∑
j=1

4∑
k=1

j 	=k

[ks(xj , xk)+Qa,s(xj )+Qa,s(xk)],

among all four point configurations {x1, x2, x3, x4} on S
2. This optimization problem is

highly non-linear and currently eludes explicit solution. Heuristic considerations based on
the symmetries of the problem and backed by numerical experiments suggest three basic
types of optimal configurations (see Fig. 4): (A) a triangular pyramid X{1,3} with one point
at the South Pole and three points forming an equilateral triangle parallel to the equator (one
degree of freedom) with discrete weighted energy

E
Qa,s
s (X{1,3}) = f{1,3}(t) := 6

(
2−s/2

(1 + t)s/2
+ 3−s/2

(
1 − t2

)s/2

+q

[
1

(1 + R)s
+ 3(

1 − 2Rt + R2
)s/2

])
,

where t denotes the intercept of the triangle’s plane with the polar axis; (B) the set X{2,2}
consisting of two pairs of opposite points in planes parallel to the equator rotated by 90◦
(two degrees of freedom) with discrete weighted energy

E
Qa,s
s (X{2,2}) = f{2,2}(t, τ) := 21−s

(1 − t2)s/2
+ 21−s

(1 − τ2)s/2
+ 23−s/2

(1 − tτ )−s/2

+12q

(
1

(1 − 2Rt + R2)s/2
+ 1

(1 − 2Rτ + R2)s/2

)
,

where t and τ denote the intercepts of these two planes with the polar axis; and (C) the four
points forming a square X{0,4} parallel to the equator (one degree of freedom) with discrete
weighted energy

E
Qa,s
s (X{0,4}) = f{0,4}(t) := 22−s(1 + 21+s/2)

(1 − t2)s/2
+ 24q

(1 − 2Rt + R2)s/2
,

where t is the intercept of the square’s plane with the polar axis.
Using elementary calculus, one can show that f{0,4}(t) is a strictly convex function on

(−1,1) with f ′
{0,4}(t) → ±∞ as t → ±1 and thus has a unique minimum at a t ∈ (−1,1)

satisfying

22−s(1 + 21+s/2)s t (1 − t2)−s/2−1 + 24qsR(1 − 2Rt + R2)−s/2−1 = 0.
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Similarly, the function f{1,3}(t) is strictly convex on (−1,1) with f ′{1,3}(t) → ±∞ as t →
±1 and thus has a unique minimum at a t ∈ (−1,1) satisfying

6s
(
−2−s/2−1(1 + t)−s/2−1 + 3qR(1 − 2Rt + R2)−s/2−1 + 3−s/2t (1 − t2)−s/2−1

)
= 0.

The set X{0,4} is a special case of X{2,2} when the two planes merge into one.
Figure 3 shows a comparison of the discrete weighted energy for these configurations for
the Coulomb case s = 1 and for q = 1/3 and q = 1 as the distance of the external source
varies. (As we have no explicit formulas, numerics provide the optimal values of the free
parameters, that is, the positions of the planes supporting the points of X{1,3}, X{2,2} and
X{0,4} that yield the smallest respective weighted energy).

In the case when q = 1/3 (weak field), the (numerically) smallest discrete weighted
energy appears to occur for the X{1,3}-configuration for all R ≥ 1, whereas for q = 1
(strong field) the optimal configurations change type from X{1,3} to X{2,2} to X{0,4} as
the distance R decreases and passes certain critical distances; cf. Figure 4 for typical
examples.

Remark 9 Similar to the case of the three point problem, the choice Qp,s(x) = 1
3 |x − p|−s

for the four point problem corresponds to the equilibrium configuration for Riesz-s energy
with no external field for five points on S2. For s = 1 this is illustrated in the first frame
of Fig. 4. Recently, Schwartz [31] gave a computer-assisted proof that the triangular bi-
pyramid X{1,3} ∪ {p} is indeed the minimizing configuration for s = 1 and s = 2. For other
choices of q in Qp,s(x) = q|x − p|−s different configurations, such as the square based
pyramid, may arise; see the second frame of Fig. 4.

6 Proofs

6.1 Proofs for Section 2

The proof of Theorem 4 relies on the restricted version of the maximum principle for mea-
sures supported on Sd (see Theorem 5). The latter can be shown using the principle of
domination and the maximum principle for Riesz potentials. For convenience we state them
here.

1.5 2.0 2.5 3.0 3.5 4.0

0.05

0.10

0.15

0.20

0.25

1.5 2.0 2.5 3.0 3.5 4.0

0.05

0.10

0.15

Fig. 3 Deviation of the minimal discrete weighted energy of X{1,3} (Bullet),X{2,2} (Black Square) and X{0,4}
(Filled Lozenge) from the putative global minimum versus distance from centerR (sampled atRk = 1+k/10)
for q = 1/3 (left) and q = 1 (right) and Coulomb case s = 1
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Fig. 4 Typical putative 4-point (Qa,s , s)-Fekete sets for weaker (q = 1/3, left) and stronger (q = 1, right)
Riesz external fields Qa,s (x) = q|x − a|−s , a = Rp, in the Coulomb case s = 1 for three choices of center
distances R = 1, 2, and 1 + φ (φ is the Golden ratio); compare with Fig. 2

Proposition 21 (Principle of Domination, [21, Theorem 1.29]) Let p−2 ≤ s < p. Suppose
μ is a positive measure in R

p whose potential Uμ
s is finite μ-almost everywhere, and that

f (x) is a (p − s)-superharmonic function. Then if the inequality U
μ
s (x) ≤ f (x) holds

μ-almost everywhere, it holds everywhere in Rp .

Proposition 22 (Maximum Principle, [21, Theorem 1.10]) Let p − 2 ≤ s < p. Suppose μ
is a positive measure in R

p and that Uμ
s (x) ≤ M holds μ-almost everywhere for some real

M . Then this inequality holds throughout all of Rp .

Before we provide the proof of Theorem 5 and then show Theorem 4, we recall some
basic facts about the Kelvin transformation (spherical inversion) of points and measures.
Inversion in a sphere is a basic technique in electrostatics (method of electrical images, cf.
[15]) and, more generally, in potential theory (cf. [17] and [21]). The Kelvin transformation
(of a function) is linear, preserves harmonicity, and preserves positivity. Let us denote by
Ka the Kelvin transformation (stereographic projection) with center a ∈ S

d and radius
√

2;
that is, for any point x ∈ R

d+1 the image x∗ := Ka(x) lies on a ray emanating from a, and
passing through x such that

|x − a| · |x∗ − a| = 2. (54)

The transformation of the distance is given by the formula

|x∗ − y∗| = 2
|x − y|

|x − a||y − a| , x, y ∈ S
d . (55)

The image of Sd under the Kelvin transformation is a hyperspace orthogonal to the radius-
vector a, which we can identify with R

d in a natural way. For A ⊂ S
d , let A∗ denote the

image of A under the Kelvin transformation Ka. Clearly, A∗ is then contained in R
d .

Next, we recall the definition of the Kelvin transform of measures. Given a measure ν

with no point mass at a, its s-Kelvin transformation ν∗ = Ka,s(ν) is a measure defined by

dν∗(x∗) := 2s/2

|x − a|s dν(x). (56)

Clearly, (54) and (56) imply the duality (ν∗)∗ = ν. We also note that

Uν∗
s (x∗) = 2s/2

|x∗ − a|s U
ν
s (x), x ∈ S

d . (57)
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In the particular case when d = 2 and s = log we have

dν∗(x∗) := dν(x), Uν∗
log(x

∗) = Uν
log(x)− Uν

log(a)+ log |x − a| x ∈ S
2. (58)

Proof of Theorem 5 Suppose that d − 2 < s < d or if s = d − 2, then d ≥ 3. Any point a
in the level set

{
x ∈ S

d : Uμ
s (x) ≤ M

}
, which has positive μ-measure, can serve as a center

of inversion for the Kelvin transformation with radius
√

2 given in (54). Select one such
point as center. Define the measure ν := [M/Ws(S

d)]σd . Then Uν
s (x) = M for all x ∈ S

d .
Neither μ nor ν has a point mass at a, hence (57) gives

Uμ∗
s (x∗) = 2s/2

|x∗ − a|s U
μ
s (x) ≤

M2s/2

|x∗ − a|s = Uν∗
s (x∗) μ− a.e. (and hence μ∗ − a.e.).

Since the right-hand side is (d − s)-superharmonic in R
d , by Proposition 21 the inequality

extends to all x∗ ∈ R
d = (Sd)∗. The inverse Kelvin transformation yields Uμ

s (x) ≤ Uν
s (x)

for all x ∈ S
d \{a}. So, Uμ

s (x) ≤ M for all x ∈ S
d \{a}. Using a different center of inversion,

one obtains Uμ
s (a) ≤ M .

Suppose now that d = 2 and s = log. Using (58) we write

U
μ∗
log(x

∗)+ log |x∗ − a| + U
μ
log(a) = Uμlog (x)

≤ M + U
σ2
log(x)−Wlog(S

2)

= U
σ ∗

2
log(x

∗)+ log |x∗ − a| + c2 μ∗ − a.e.

Since μ∗ has finite logarithmic energy, the principle of domination for logarithmic potentials
[28, Theorem II.3.2] implies that this inequality holds everywhere in the complex plane.
The inverse Kelvin transformation then gives the desired inequality on the sphere except at
the center of inversion. This restriction can be removed by moving the inversion center.

Proof of Theorem 4 Suppose to the contrary that there is a measure λ ∈ M(Sd) such that
(9) fails; that is, there is a constant L1 > FQ,s such that

Uλ
s (x)+Q(x) ≥ L1 q.e. on SQ,s .

Applying (5) we obtain that

Uλ
s (x) ≥ U

μQ,s
s (x)+ L1 − FQ,s q.e. on SQ,s . (59)

From Proposition 3 we have that μQ,s has finite s-energy, therefore its support SQ,s will
have positive s-capacity. Hence, the s-extremal measure associated with SQ,s is well-
defined. Thus, we may integrate both sides of inequality (59) with respect to μSQ,s

and,
using Fubini’s theorem, we derive∫

U
μSQ,s
s dλ =

∫
Uλ
s dμSQ,s

≥
∫

U
μQ,s
s dμSQ,s

+ L1 − FQ,s

=
∫

U
μSQ,s
s dμQ,s + L1 − FQ,s. (60)

Recall that the Gauss variational inequalities for the s-extremal measure μSQ,s
state that (see

[21])

U
μSQ,s
s (x) ≤ Ws(SQ,s) on supp(μSQ,s

), U
μSQ,s
s (x) ≥ Ws(SQ,s) q.e. on SQ,s .

By the maximum principle the first inequality can be extended to all of Rd+1 if d−1 ≤ s <

d and still remains true on Sd when d − 2 ≤ s < d − 1 by the sphere maximum principle
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(see Theorem 5). Thus, we get the contradiction

Ws(SQ,s) ≥ Ws(SQ,s)+ L1 − FQ,s > Ws(SQ,s).

This establishes relation (9) for d − 2 ≤ s < d .
We derive (10) similarly, utilizing (4) instead. Assume there is a measure λ ∈ M(Sd)

and a constant L2 < FQ,s , such that

Uλ
s (x)+Q(x) ≤ L2, x ∈ supp(λ).

Integration with respect to λ yields that λ has finite s-energy (recall that FQ,s is finite
and Q(x) ≥ cQ). This implies that caps(supp(λ)) > 0, and that the measure μsupp(λ) is
well-defined. From (4) we get

U
μQ,s
s (x) ≥ Uλ

s (x)+ FQ,s − L2 q.e. on supp(λ).

Now, we integrate both sides of this inequality with respect to the s-extremal measure
μsupp(λ) and using Fubini’s theorem we arrive at∫

U
μsupp(λ)
s dμQ,s =

∫
U

μQ,s
s dμsupp(λ) ≥

∫
Uλ
s dμsupp(λ) + FQ,s − L2

=
∫

U
μsupp(λ)
s dλ+ FQ,s − L2.

Applying again the Gauss variational inequalities now to U
μsupp(λ)
s and using the sphere

maximum principle we obtain a similar contradiction.

Proof of Theorem 9 Let d − 2 ≤ s < d with s > 0. For brevity set η = η�ρ,Q,s and
Gη = G�ρ,Q,s , where �ρ is the spherical cap {x ∈ S

d : |x − p| ≥ ρ}. Then

Uη+
s (x)− Uη−

s (x)+Q(x) = Gη everywhere on �ρ.

Using (4) and (14) we get

U
μQ+η−
s (x) + Gη ≥ Uη+

s (x)+ FQ,s q.e. on S
d ∩ �ρ, (61)

U
μQ+η−
s (x) + Gη ≤ Uη+

s (x)+ FQ,s everywhere on S̃Q,s ∩�ρ. (62)

Now we can rewrite (61) as

U
μQ,s+η−
s (x)+ (Gη − FQ,s) caps(S

d)U
Bals (σd ,�ρ)
s (x) ≥ Uη+

s (x) q.e. on S
d ∩�ρ

which also holds η+-a.e. on Sd ∩ �ρ . Setting ν :=μQ,s + η− + (Gη − FQ,s) caps(S
d)

Bals(σd, �ρ), we obtain that (see also (62))

Uν
s (x) ≥ Uη+

s (x) η+−a.e. on S
d∩�ρ, Uν

s (x) ≤ Uη+
s (x) everywhere on S̃Q,s∩�ρ.

Selecting a center of inversion a ∈ Sd \ supp(η+), the potentials of the Kelvin transforma-
tions ν∗ and (η+)∗ satisfy

Uν∗
s (x∗) ≥ U

(η+)∗
s (x∗) (η+)∗ − a.e. on (Sd ∩ �ρ)

∗,

Uν∗
s (x∗) ≤ U

(η+)∗
s (x∗) everywhere on (S̃Q,s ∩ �ρ)

∗.
Note that by the principle of domination (see Proposition 21) the first inequality holds on
all of Rd . Now, we can apply a de La Vallée Poussin-type theorem (see [11, Section 3],
[16, Theorem 2.5]) to conclude that

ν∗|
(S̃Q,s∩�ρ)

∗ ≤ (η+)∗|
(S̃Q,s∩�ρ)

∗ .
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The inverse Kelvin transformation yields

(μQ,s + η− + (Gη − FQ,s) caps (S
d)Bals(σd, �ρ))

∣∣∣S̃Q,s∩�ρ
≤ η+

∣∣∣
S̃Q,s∩�ρ

.

This implies that

μQ,s

∣∣
�ρ ≤ η+

∣∣
SQ,s

, SQ,s ∩ �ρ ⊂ supp(η+),

and that if FQ,s < Gη, then S̃Q,s ∩ �ρ ⊂ supp(η+). The theorem for the Riesz case
d − 2 ≤ s < d with s > 0 is proved.

When d = 2 and s = log we utilize (58) and modify the argument above using the
regular principle of domination in the complex plane and the original de La Vallée Poussin
theorem [28, Theorem IV.4.5].

Next we establish the proof of Theorem 12, which allows for the important conclusion
that the (Q, s)-Fekete sets Xn,Q,s (that is, the supports of the minimizers of the discrete
weighted s-energy associated with Q) are contained in the extended support S̃Q,s of the
continuous minimizer μQ,s .

Proof of Theorem 12 From Theorem 4 we conclude that M ≤ FQ,s . Using (5), inequality
(17) yields that

U
μXn
s (x)+ FQ,s −M ≥ U

μQ,s
s (x) q.e. on SQ,s .

Let λ be a multiple of the s-equilibrium measure on Sd , so that Uλ
s (x) = FQ,s −M for all

x ∈ S
d . Then the last inequality becomes

U
μXn+λ
s (x) ≥ U

μQ,s
s (x) q.e. on SQ,s . (63)

If SQ,s = S
d , then we can extend this inequality to any z 	∈ Xn by the lower semi-

continuity of U
μQ,s
s and the continuity of U

μXn+λ
s at such z. As U

μXn+λ
s (x) = +∞ and

U
μQ,s
s (x) < ∞ for x ∈ Xn, (18) holds for all x ∈ S

d .
If SQ,s is a proper subset of Sd , then we can find a point a 	∈ Xn ∩ SQ,s . Since μQ,s

has finite s-energy, inequality (63) holds μQ,s -almost everywhere. Using Kelvin transform
centered at a with radius

√
2, we derive that

U
(μXn+λ)∗
s (x∗) ≥ U

μ∗
Q,s

s (x∗) μ∗
Q,s − a.e.

The principle of domination (see Proposition 21) enables us to extend this inequality to all
x∗ ∈ R

d . Inverse Kelvin transformation then implies (18) for all x ∈ S
d except at the center

a and this restriction can be lifted by moving the center of inversion.
Finally, we note that (19) is an immediate consequence of (18) and (4).

Proof of Corollary 13 Definition 2 implies that any point xk ∈ Xn,Q,s is a global minimum
for the weighted potential (cf. (16)) hXn−1(x), x ∈ S

d , where Xn−1 = Xn,Q,s \ {xk}. Hence,

inequality (17) holds with M = hXn−1(xk) = U
μXn−1
s (xk) + Q(xk). Thus (18) holds in

particular for x = xk which reduces to U
μQ,s
s (xk) +Q(xk) ≤ FQ,s . Therefore, xk ∈ S̃Q,s .

6.2 Proofs for Section 3

Here we prove our separation results. The proof of Theorem 14 has three parts. The first
considers the case d − 2 < s < d . The second establishes explicit bounds in the limiting
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case s = d − 2 in the field-free setting and thus shows Proposition 15. The third considers
the limiting case s = d − 2 > 0 in the presence of an external field.

Proof of Theorem 14, Part 1 Let d − 2 < s < d . We shall modify the approach from [10].
Let Xn,Q,s = {x1, . . . , xn} be an n-point (Q, s)-Fekete set on S

d . Each point in Xn,Q,s

defines an external field by means of

Q̃k(x) :=Q(x)+ 1

(n− 2)|x − xk|s , x ∈ S
d, k = 1, . . . , n.

Observe that Xn,Q,s \{xk} is an (n−1)-point (Q̃k, s)-Fekete set on Sd . Since all the m-point
(Q̃k, s)-Fekete sets Xm,Q̃k,s

are contained in the extended support S̃Q̃k,s
of the s-extremal

measure μQ̃k,s
on S

d associated with Q̃k by Corollary 13, we will be done if we show that

there is a spherical cap with radius KQ,s/n
1/d such that when centered at xk its intersection

with S̃Q̃k ,s
is empty. Note that the constant KQ,s should only depend on Q and s.

We shall use the fact that whenever the compact subset K ⊂ S
d contains the support

SQ̃k,s
of the s-extremal measure μQ̃k,s

on Sd , then S̃Q̃k ,s
⊂ S̃K,Q̃k,s

⊂ supp
(
η+
K,Q̃k ,s

)
(cf.

Theorem 9 and remark following it). From Proposition 3(b) it follows that SQ̃k,s
is contained

in a set where Q̃k(x) ≤ Mk for some constant Mk > 0. This implies that there is a spherical
cap �rk :=�rk (xk) := {x ∈ S

d : |x − xk| ≥ rk}, rk > 0, such that SQ̃k,s
⊂ �rk . Hence it

suffices to consider the continuous Riesz external field problem on �rk (instead of Sd ) and
study signed s-equilibria η�ρ,Q̃k,s

on spherical caps �ρ satisfying SQ̃k,s
⊂ �ρ .

The signed s-equilibrium η�ρ,Q̃k,s
on a spherical cap �ρ exists for any 2 > ρ > 0.

Indeed,

η�ρ,Q̃k,s
= ck Bals(σd, �ρ)− Bals(σ,�ρ)− 1/(n− 2) Bals(δxk , �ρ), (64)

where δxk is the Dirac-delta measure with unit charge placed at xk and ck is a normalizing
constant such that ‖η�ρ,Q̃k,s

‖ = 1. Using similar analysis as in [10, Proof of Theorem 1.5]
we shall derive that this signed measure will be negative on a band containing the rim of
the spherical cap �ρ for any 0 < ρ < KQ,s/n

1/d , and in particular for ρ = rk . Hence, for
any such ρ the support of the positive part η+

�ρ,Q̃k,s
is contained in a smaller spherical cap

�ρ̃ with ρ < ρ̃. Since S̃Q̃k ,s
is contained in any such supp

(
η+
�ρ,Q̃k,s

)
, we conclude that

S̃Q̃k,s
⊂ �KQ,s/n

1/d , i.e.

dist
(

xk, S̃Q̃k ,s

)
≥ KQ,s/n

1/d .

To finish the proof we have to show the negativity of the signed equilibrium mea-
sures η�ρ,Q̃k,s

near the rim for all such 0 < ρ < KQ,s/n
1/d . The middle term in (64),

Bals(σ,�ρ), can be written as

Bals(σ,�ρ) = Bals(σ
+, �ρ)− Bals(σ

−, �ρ)=: σ+
ρ − σ−

ρ .

With the notations νρ := Bals(σd ,�ρ) and ερ := Bals(δxk , �ρ) we rewrite (64) as follows:

η�ρ,Q̃k,s
= 1 + ∥∥σ+

ρ

∥∥− ∥∥σ−
ρ

∥∥+ ‖ερ‖/(n− 2)

‖νρ‖ νρ − σ+
ρ + σ−

ρ − 1/(n− 2) ερ

≤ 1 + ∥∥σ+
ρ

∥∥− ∥∥σ−
ρ

∥∥+ ‖ερ‖/(n− 2)

‖νρ‖ νρ + σ−
ρ − 1/(n− 2) ερ. (65)
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Note that inequality between two signed measures may be understood in terms of their
densities or that the difference of the two signed measures is a positive measure.

Since balayage may be done in steps, we have

σ−
ρ = Bals

(
σ−

0 ,�ρ

)
, where σ−

0 := Bals(σ−, Sd).

The superposition representation of the balayage measure yields

dσ−
0 (x) =

(∫
ε′y(x) dσ−(y)

)
dσd(x), where εy = Bals(δy, S

d), y ∈ R
d+1with|y| > 1.

The formula for the point mass balayage on the unit sphere (see [2, Theorem 2]) yields
∫

ε′y(x) dσ−(y) =
∫

(|y|2 − 1)d−s

Ws(Sd)|y − x|2d−s
dσ−(y)

≤
∫

(|y|2 − 1)d−s

Ws(Sd)||y| − 1|2d−s
dσ−(y) ≤ (r + 1)d−s

Ws(Sd)(r − 1)d
‖σ−‖,

where r > 1 is such that supp(σ−) ⊂ {x ∈ R
d+1 : |x| ≥ r}. As balayage preserves

positivity and is linear, application of balayage to the inequality

σ−
0 (x) ≤ (r + 1)d−s

Ws(Sd)(r − 1)d
‖σ−‖σd(x)

yields

σ−
ρ ≤ Bals

(
(r + 1)d−s

Ws(Sd)(r − 1)d
‖σ−‖σd (x),�ρ

)
= (r + 1)d−s‖σ−‖

Ws(Sd)(r − 1)d
νρ. (66)

Combining (65) and (66), and using that ‖νρ‖ ≤ 1, we arrive at

η�ρ,Q̃k,s
≤

1 + ‖σ+
ρ ‖ +

(
(r + 1)d−s

Ws(Sd)(r − 1)d
− 1

)
‖σ−

ρ ‖ + ‖ερ‖/(n− 2)

‖νρ‖ νρ −1/(n−2) ερ.

As balayage reduces the norm of a measure (i.e., ‖σ+
ρ ‖ ≤ ‖σ+‖ and ‖σ−

ρ ‖ ≤ ‖σ−‖), we
obtain

η�ρ,Q̃k,s
≤

1 + ‖σ+‖ +
(

(r + 1)d−s

Ws(Sd)(r − 1)d
− 1

)
‖σ−‖ + ‖ερ‖/(n− 2)

‖νρ‖ νρ −1/(n−2) ερ.

The dominating signed measure at the right-hand side above has total charge

cσ := 1 + ‖σ+‖ +
(

(r + 1)d−s

Ws(Sd)(r − 1)d
− 1

)
‖σ−‖

(which does not depend on k and ρ) and can be rewritten as

cσ

(
1 + ‖ερ‖/[cσ (n− 2)]

‖νρ‖ νρ − 1

cσ (n− 2)
ερ

)
, (67)

where the parenthetical expression is the signed s-equilibrium on �ρ associated with the
Riesz-s external field generated by a point charge of size q := 1/[cσ (n − 2)] at xk . (There
is no other dependence on k than that xk determines the axis of symmetry of �ρ ). It follows
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from [2, Theorem 13 with R = 1] (also cf. analysis in [10, Theorem 1.5]) that this signed
measure has a negative part for each 0 < ρ < ρ0, where the critical ρ0 solves the equation4

q
2d−s

ρd
= �s(ρ) with �s(ρ) :=Ws(S

d)
1 + q ‖ερ‖

‖νρ‖ ,

and ρ0 is also the unique minimizer of �s . Hence

q
2d−s

ρd
0

= �s(ρ0) ≤ �s(0) = Ws(S
d)(1 + q)

and it follows that [
q

q + 1

2d−s

Ws(Sd)

]1/d

≤ ρ0,

where (substituting for q)

q

q + 1
= 1

cσ (n− 2)+ 1
≥ 1

cσ n

(
1 − 2cσ − 1

n

)−1

>
1

cσ n
.

The last inequality holds for all n ≥ 2 such that 0 ≤ 2cσ − 1 < n and the constant KQ,s

takes the form given in (24) which reduces to the constant given in [2, Theorem 1.5] in the
field-free setting. Specialization for s = d − 1 gives (26). This completes the proof of the
theorem for d − 2 < s < d .

Next, we derive explicit separation estimates for the limiting case s = d − 2 in the
field-free setting.

Proof of Proposition 15 Let d ≥ 3 and s = d − 2. We proceed similar as in the first part of
the proof of Theorem 14. Let Xn,d−2 = {x1, . . . , xn} be a Riesz (d − 2)-energy minimizing
n-point configuration on S

d . Each point in Xn,d−2 in turn can be identified with the North
Pole p and thus defines a Riesz external field

Q(x) := q

|x − p|d−2
, x ∈ S

d , (68)

where q = 1/(n − 2), so that Xn,d−2 \ {p} is an (n − 1)-point (Q, d − 2)-Fekete set
on S

d . Every m-point (Q, d−2)-Fekete set on S
d is contained in the (rotational symmetric)

extended support S̃Q,d−2 of the (d − 2)-extremal measure μQ,d−2 on S
d by Corollary 13.

It suffices to show that S̃Q,d−2 ⊂ {x ∈ S
d : |x − p| ≥ Kd/n

1/d } for some constant Kd

independent of n.
Observe, that the set S̃Q,d−2 is contained in the extended support of the (d− 2)-extremal

measure on a compact subset E ⊂ Sd whenever E contains the support SQ,d−2 of μQ,d−2.
Hence, by Theorem 9 and following remark, the set S̃Q,d−2 is a subset of the support of the
positive part of the signed (d − 2)-equilibrium measure on E associated with Q whenever
SQ,d−2 ⊂ E. In fact, Proposition 3(b) yields that SQ,d−2 ⊂ EM := {x ∈ S

d : Q(x) ≤ Mn}
for some positive Mn depending on n. (Note that SQ,d−2 is a spherical cap by Proposi-
tion 10). We deduce that S̃Q,s ⊂ supp(η+ρ ) of the positive part η+ρ of the signed equilibrium
measure ηρ on the spherical cap �ρ = {x ∈ S

d : |x − p| ≥ ρ} for each ρ ∈ (0, ρc), where
ηρc coincides with μQ,s . The radius ρc and its estimate in terms of n gives the desired lower
bound for the separation of points in Xn,d−2.

4Note that here the parameter is the distance of the source (on the sphere) to the boundary of �ρ . In [2] the
“altitude” of the boundary is used.
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It can be shown that the (d − 2)-balayage measures onto the spherical cap �ρ of the
uniform measure σd and a unit point charge at p,

νρ := νρ,d−2 = Bald−2(σd ,�ρ), ερ := ερ,d−2 = Bald−2(δp,�ρ), (69)

exist and both have a component that is uniformly distributed on the boundary of �ρ . From
[2, Theorem 15], and letting R → 1+, we obtain that

ηρ = �d−2(ρ)

Wd−2(Sd)
νρ − q ερ,d−2

with

dηρ(x) =
�d−2(ρ)

Wd−2(Sd)
dσd

∣∣
�ρ

(x)+
(

1 − ρ2

4

)d/2−1 (
�d−2(ρ)

4
ρd − q

)
dδ1−ρ2/2(u) dσd−1(x),

where

�d−2(ρ) :=Wd−2(S
d)

1 + q ‖ερ‖
‖νρ‖ .

Using the formulas in [2] it is easy to show that �d−2(ρ) has a unique minimum in (0, 2) at
the critical radius ρc (cf. [2, Theorem 15]). This ρc is the solution of the equation

�d−2(ρ)

4
ρd − q = 0.

Therefore,

q
4

ρd
c

= �d−2(ρc) ≤ �d−2(0) = Wd−2(S
d)(1 + q)

and the relations (29) and (30) follow after substitution of q = 1/(n− 2).
Let d = 2 and s = log. In the logarithmic case the external field in (68) is replaced with

Q(x) := q log
1

|x − p| , x ∈ S
d ,

where q = 1/(n − 2). Again, Xn,log \ {p} is an (n − 1)-point (Q, log)-Fekete set on S2.
Similarly as before we are led to the investigation of the signed logarithmic equilibrium
problem on spherical caps �ρ . Theorem 17 in [2] gives (as R → 1+) that

dηρ,log(x) = (1+q) dσ2
∣∣
�ρ

(x)+
[
(1 + q)

ρ2

4
− q

]
dδ1−ρ2/2(u) dσd−1(x),

(√
1 − u2 x, u

)
∈ S

d .

Clearly, the signed logarithmic equilibrium ηρ,log has a negative boundary charge (uni-
formly distributed over the boundary of �ρ ) for every ρ ∈ (0, ρc), where at the critical
distance ρ = ρc this boundary charge vanishes; that is,

ρ2
c = 4q

q + 1
= 4

n− 1
.

The relation for the separation follows.

In the third and last part of the proof of Theorem 14 we establish separation bounds for
the limiting case s = d − 2 and d ≥ 3 given an external field.

Proof of Theorem 14, Part 3 Let s = d − 2 and d ≥ 3. We proceed as in the first part of the
proof of Theorem 14. Let Xn,Q,d−2 = {x1, . . . , xn} be an n-point (Q, d − 2)-Fekete set on
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S
d . Each point in Xn,Q,d−2 defines an external field by means of

Q̃k(x) :=Q(x)+ 1

(n− 2)|x − xk |d−2
, x ∈ S

d , k = 1, . . . , n.

Again Corollary 13 and Proposition 3 guarantee that there is a spherical cap �rk such that
Xm,Q̃k,d−2 ⊂ S̃Q̃k,s

⊂ �rk for every m-point (Q̃k, d − 2)-Fekete set on S
d . Hence, we

may study the continuous Riesz (d − 2)-external field problem on �rk and use signed (d −
2)-equilibria on spherical caps �ρ in our analysis.

The signed (d−2)-equilibrium η�ρ,Q̃k,d−2 on a spherical cap �ρ exists for any 2 > ρ >

0, since
(
with the notations νρ := Bald−2(σd, �ρ) and ερ := Bald−2

(
δxk , �ρ

))
η�ρ,Q̃k,d−2 = ckνρ − Bald−2(σ,�ρ)− 1/(n− 2) ερ, (70)

where ck is a normalizing constant such that ‖η�ρ,Q̃k,d−2‖ = 1. In the limiting case s =
d − 2, balayage introduces a boundary charge uniformly distributed over the boundary of
�ρ . Indeed, from [2, Lemmas 33 and 36], and letting R → 1+, we have5

dνρ(x) = dσd
∣∣
�ρ

(x)+ Wd−2(S
d)

4
ρd

(
1 − ρ2

4

)d/2−1

dδ1−ρ2/2(u) dσd−1(x), (71)

dερ(x) =
(

1 − ρ2

4

)d/2−1

dδ1−ρ2/2(u) dσd−1(x). (72)

Furthermore,

Bald−2(σ,�ρ) = σ+
ρ − σ−

ρ , where σ+
ρ := Bald−2(σ

+, �ρ) and σ−
ρ := Bald−2(σ

−, �ρ).

Note that σ+
ρ (since it is subtracted in (70)) can only have a non-positive contribution to the

boundary charge on �ρ . This leaves σ−
ρ . Iterating balayage, we have

σ−
ρ = Bald−2(σ

−
0 ,Sd),

where σ−
0 := Bald−2(σ

−,Sd). From (66) we get

σ−
ρ ≤ Bald−2

(
(r + 1)2

Wd−2(Sd)(r − 1)d
‖σ−‖σd(x),�ρ

)
= (r + 1)2‖σ−‖

Wd−2(Sd)(r − 1)d
νρ. (73)

Hence, using that the (d − 2)-balayage also does not increase the norm (i.e., ‖σ+
ρ ‖ ≤ ‖σ+‖

and ‖σ−
ρ ‖ ≤ ‖σ−‖), we arrive at

η�ρ,Q̃k,d−2 ≤
1 + ‖σ+‖ +

(
(r + 1)2

Wd−2(Sd)(r − 1)d
− 1

)
‖σ−‖ + ‖ερ‖/(n − 2)

‖νρ‖ νρ − 1/(n− 2) ερ .

The right-hand side has total charge

cσ := 1 + ‖σ+‖ +
(

(r + 1)2

Wd−2(Sd)(r − 1)d
− 1

)
‖σ−‖

and can be rewritten as cσ ηρ,0, where ηρ,0 is the signed (d − 2)-equilibrium on �ρ for the
Riesz-(d − 2) external field due to a point charge of size q = 1/[cσ (n − 2)] placed at xk .

5We use the correspondence ρ2 = 2(1 − t) in [2, Lemmas 33 and 36].
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Now we may proceed as in the last part of the Proof of Proposition 15 to conclude that the
critical distance ρc satisfies

q
4

ρd
c

≤ Wd−2(S
d)(1 + q);

that is

ρc ≥
[

q

q + 1

4

Wd−2(Sd)

]1/d

,
q

q + 1
= 1

cσ (n− 2)+ 1
≥ 1

cσ n
.

The result for s = d − 2 and d ≥ 3 follows. In the logarithmic case s = log and d = 2 we
follow the same argument utilizing [2, Lemmas 39 and 41]. Note that the separation estimate
in the logarithmic case is the limit as s → 0 of the separation results for 0 < s < 2.

In the proof of Theorem 16 we will use the following facts about spherical caps

C(x, r) := {y ∈ S
d : |y − x| ≤ r} = {y ∈ S

d : y · x ≥ 1 − r2/2}
centered at x ∈ S

d with radius r ∈ (0, 2) provided in [19]; namely

σd(C(x, r)) = ωd−1

ωd

∫ 1

1−r2/2

(
1 − t2

)d/2−1
dt = 1

d

ωd−1

ωd

rd + o(rd+2) as r → 0

(74)
and the estimate (d ≥ 2)

σd(C(x, r)) ≤ 1

d

ωd−1

ωd

rd . (75)

Here, ωd denotes the surface area of Sd and

γd := ωd−1

ωd

= �((d + 1)/2)√
π �(d/2)

. (76)

Reference [19] also gives
∫
Sd\C(x,r)

1

|x − y|s dσd(y) =
γd

s − d
rd−s +Rs,d (r), (77)

where Rs,d (r) = o(rd−s) as r → 0. A finer analysis of the integral on the left-hand side
gives the following explicit estimates.

Lemma 23 The remainder term in (77) satisfies Rs,d (r) ≤ γd

2 βs,d r
2+d−s , where

βs,d =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for d < s ≤ 2d,
s/2 − d

(s − d)(s − d − 2)
for 2d < s ≤ 2d + 2,

s/2 − d

d(d + 2)
for s > 2d + 2.

(78)

Proof The Funk-Hecke formula (cf. [24]) gives

∫
Sd\C(x,r)

1

|x − y|s dσd(y) =
ωd−1

ωd

2−s/2
∫ 1−r2/2

−1
(1 − t)−s/2(1 − t2)d/2−1 dt.
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The standard substitution 1 + t = 2
(

1 − r2

4

)
v and [7, Eq. 15.6.1] enables us to obtain an

expression in terms of a Gauss hypergeometric function by means of

∫
Sd\C(x,r)

1

|x − y|s dσd(y) = γd2d−s−1

(
1 − r2

4

)d/2 ∫ 1

0

vd/2−1(1 − v)1−1

(
1 −

(
1 − r2

4

)
v
)1+(s−d)/2

dv

= γd

d
2d−s−1

(
1 − r2

4

)d/2

−2F1

(
1 + s−d

2 , d
2

1 + d
2

; 1 − r2

4

)

= γd

d
rd−s

(
1 − r2

4

)d/2

−2F1

(
d − s

2 , 1
1 + d

2
; 1 − r2

4

)
, (79)

where the last relation follows from the last linear transformation in [7, Eq. 15.8.1]. Using

that
(

1 − r2

4

)d/2 ≤ 1, we obtain the estimate

∫
Sd\C(x,r)

1

|x − y|s dσd(y) ≤
γd

d
rd−s−2F1

(
d − s

2 , 1
1 + d

2
; 1

)
+ R̃s,d (r),

where

R̃s,d (r) = γd

d
rd−s

(
−2F1

(
d − s

2 , 1
1 + d

2
; 1 − r2

4

)
−−2F1

(
d − s

2 , 1
1 + d

2
; 1

))
.

Note that the hypergeometric function at argument 1 evaluates as d/(s − d) by

[7, Eq. 15.4.20]. Setting f (x) = −2F1

(
d − s/2,1
1 + d/2

; 1 − x

)
, the mean-value theorem and

the differentiation formula [7, Eq. 15.5.1] gives

f (r2/4)− f (0)

r2/4 − 0
= f ′(ξ ) = −d − s

2

1 + d
2

−2F1

(
1 + d − s

2 , 2
2 + d

2
; 1 − ξ

)

= −d − s
2

1 + d
2

�(2 + d/2)

�(2) �(d/2)

∫ 1

0

t (1 − t)d/2−1

(1 − (1 − ξ)t)1+d−s/2
dt

for some ξ ∈ (0, r2/4). (The last step follows again from [7, Eq. 15.6.1]). The result follows
by considering the integral (which reduced to a Beta function integral) for the three given
cases d < s ≤ 2d , 2d < s < 2d + 2 and s > 2d + 2 and the observation that Rs,d (r) ≤
R̃s,d (r).

Proof of Theorem 16 We follow the argument in [19, Corollary 4]. Let Xn = {x1, . . . , xn}
be a (Q, s)-Fekete set on S

d . Set Dk :=B \ C(xk, ρn) for k = 1, . . . , n, where B ⊂ S
d is

such that σd(B) > 0 and
∫
B
|Q(x)| dσd(x) < ∞, and where ρn := (σd(B)/n)1/d . Setting

D := ∩n
k=1 Dk , we have from (75) that

σd(D) ≥ σd(B)− nσd(C(·, ρn)) ≥ σd(B)

(
1 − 1

d
γd

)
> 0. (80)

Consider, for a given index j , the function

Hj(x) :=
n∑

k=1
k 	=j

1

|x − xk |s + 2(n− 1)Q(x), x ∈ S
d .
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As Xn,Q,s minimizes the discrete weighted s-energy (2) associated with Q, we have

σd(D)Hj(xj ) ≤
∫
D

Hj (x) dσd(x)

=
n∑

k=1
k 	=j

∫
D

1

|x − xk |s dσd(x)+ 2(n− 1)
∫
D

Q(x) dσd(x). (81)

Using the inclusions D ⊂ Dk = B \ C(xk, ρn) ⊂ Sd \ C(xk, ρn) and (77), we have∫
D

1

|x − xk|s dσd(x) ≤
∫
Sd\C(xk,ρn)

1

|x − xk|s dσd(x) =
1

s − d
γd (ρn)

d−s +Rs,d (ρn),

where Rs,d (ρn) = o((ρn)
d−s) as ρn → 0; in fact, by Lemma 23,

n

σd(D)
Rs,d (ρn) ≤ γd

2
βs,d

σd(B)

σd(D)
(ρn)

2−s .

Dividing through by σd(D) in (81), subtracting off the constant Q(xj ) (if it is negative)
from both sides of the new inequality and substituting the estimates above, we arrive at

Hj(xj )− 2(n− 1)min{0,Q(xj )} ≤ γd

s − d

σd(B)

σd(D)
(ρn)

−s + γd

2
βs,d

σd (B)

σd(D)
(ρn)

2−s

+2(n− 1)

σd(D)

∫
D

(Q(x)− min{0,Q(xj )}) dσd(x).

Note that min{0,Q(xj )} is well-defined and finite by the lower semi-continuity of Q and

minimality of Xn,Q,s . Since
∣∣xj − xk

∣∣−s (k = 1, . . . , n, k 	= j ) is a lower bound for the
left-hand side, we have

|xj − xk|−s ≤ σd(B)

σd(D)
(ρn)

−s

{
γd

s − d
+ γd

2
βs,d (ρn)

2

+2(n− 1)(ρn)s
1

σd(B)

∫
D

(Q(x)− min{0,Q(xj )}) dσd(x)
}
. (82)

Integrability (with respect to σd ) of Q over B ⊃ D and min{0,Q(xj )} ≥ min{0,MQ},
where MQ is the minimum of Q over Sd , yield∣∣∣ 1

σd(B)

∫
D

(
Q(x)− min{0,Q(xj )}

)
dσd(x)

∣∣∣
≤ 1

σd(B)

∫
B
|Q(x)| dσd(x)− min{0,MQ} < ∞. (83)

Hence, the result follows from (82), (80) and the definition of ρn.
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