INVERSE BERNSTEIN INEQUALITIES AND MIN-MAX-MIN PROBLEMS ON THE UNIT CIRCLE

TAMÁS ERDÉLYI, DOUGLAS P. HARDIN*, AND EDWARD B. SAFF*

Abstract

We give a short and elementary proof of an inverse Bernsteintype inequality found by S. Khrushchev for the derivative of a polynomial having all its zeros on the unit circle. The inequality is used to show that equally-spaced points solve a min-max-min problem for the logarithmic potential of such polynomials. Using techniques recently developed for polarization (Chebyshev-type) problems, we show that this optimality also holds for a large class of potentials, including the Riesz potentials $1 / r^{s}$ with $s>0$.

1. Inverse Bernstein-type inequality

Inequalities involving the derivatives of polynomials often occur in approximation theory (see, e.g. [4], [6]). One of the most familiar of these inequalities is due to Bernstein which provides an upper bound for the derivative of a polynomial on the unit circle \mathbb{T} of the complex plane. In [9], S. Khrushchev derived a rather striking inverse Bernstein-type inequality, a slight improvement of which may be stated as follows.

Theorem 1.1. If

$$
z_{j}=e^{i t_{j}}, \quad 0 \leq t_{1}<t_{2}<\cdots<t_{n}<2 \pi, \quad t_{n+1}:=t_{1}+2 \pi
$$

$$
P(z)=\prod_{j=1}^{n}\left(z-z_{j}\right), \quad z_{j} \in \mathbb{T}
$$

$$
\begin{equation*}
m:=\min _{1 \leq j \leq n}\left(\max _{t \in\left[t_{j}, t_{j+1}\right]}\left|P\left(e^{i t}\right)\right|\right) \tag{1.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|P^{\prime}(z)\right|^{2} \geq\left(\frac{n}{2}\right)^{2}\left(|P(z)|^{2}+\left(m^{2}-|P(z)|^{2}\right)_{+}\right) \geq\left(\frac{n m}{2}\right)^{2}, \quad z \in \mathbb{T} \tag{1.2}
\end{equation*}
$$

where $(x)_{+}:=\max \{x, 0\}$.

Date: July 15, 2013.
2000 Mathematics Subject Classification. 11C08, 41A17, 30C15, 52A40.
Key words and phrases. Chebyshev constants, polarization inequalities, Riesz energy, potentials.

Khrushchev used a potential theoretic method to prove his inequality. Here we offer a simple and short proof based on an elementary zero counting argument.

Proof. Write

$$
P\left(e^{i t}\right)=R(t) e^{i \varphi(t)}, \quad R(t):=\left|P\left(e^{i t}\right)\right|,
$$

where R and φ are differentiable functions on

$$
[0,2 \pi) \backslash\left\{t_{1}, t_{2}, \ldots, t_{n}\right\} .
$$

Since $P^{\prime}\left(e^{i t}\right)$ is a continuous function of $t \in \mathbb{R}$, in the rest of the proof we may assume that

$$
t \in[0,2 \pi) \backslash\left\{t_{1}, t_{2}, \ldots, t_{n}\right\} .
$$

We have

$$
P^{\prime}\left(e^{i t}\right) e^{i t} i=R^{\prime}(t) e^{i \varphi(t)}+i R(t) e^{i \varphi(t)} \varphi^{\prime}(t),
$$

and it follows that

$$
\begin{equation*}
\left|P^{\prime}\left(e^{i t}\right)\right|^{2}=\left(R^{\prime}(t)\right)^{2}+R(t)^{2}\left(\varphi^{\prime}(t)\right)^{2} . \tag{1.3}
\end{equation*}
$$

Using the fact that $w=z /\left(z-z_{j}\right)$ maps \mathbb{T} onto the vertical line $\operatorname{Re} w=1 / 2$, we have
$\varphi^{\prime}(t)=\operatorname{Re}\left(\varphi^{\prime}(t)-\frac{R^{\prime}(t)}{R(t)} i\right)=\operatorname{Re}\left(\frac{P^{\prime}\left(e^{i t}\right) e^{i t}}{P\left(e^{i t}\right)}\right)=\operatorname{Re}\left(\sum_{j=1}^{n} \frac{e^{i t}}{e^{i t}-e^{i t_{j}}}\right)=\frac{n}{2}$.
Thus from (1.3) we get

$$
\begin{equation*}
\left|P^{\prime}\left(e^{i t}\right)\right|^{2}=\left(R^{\prime}(t)\right)^{2}+\left(\frac{n}{2}\right)^{2} R(t)^{2} \tag{1.4}
\end{equation*}
$$

and so, if $R(t) \geq m$, then (1.2) follows immediately.
Assume now that $R(t)<m$. Observe that Q defined by $Q(t):=R(t)^{2}=$ $\left|P\left(e^{i t}\right)\right|^{2}$ is a real trigonometric polynomial of degree n; that is, $Q \in \mathcal{T}_{n}$. Now let

$$
t_{0} \in[0,2 \pi) \backslash\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}
$$

be fixed, and let $T \in \mathcal{T}_{n}$ be defined by

$$
T(t):=m^{2} \cos ^{2}(n(t-\alpha) / 2)=\frac{m^{2}}{2}(1+\cos (n(t-\alpha)),
$$

where $\alpha \in \mathbb{R}$ is chosen so that

$$
\begin{equation*}
T\left(t_{0}\right)=Q\left(t_{0}\right) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{sign}\left(T^{\prime}\left(t_{0}\right)\right)=\operatorname{sign}\left(Q^{\prime}\left(t_{0}\right)\right) . \tag{1.6}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\left|Q^{\prime}\left(t_{0}\right)\right| \geq\left|T^{\prime}\left(t_{0}\right)\right| . \tag{1.7}
\end{equation*}
$$

Indeed, $\left|Q^{\prime}\left(t_{0}\right)\right|<T^{\prime}\left(t_{0}\right) \mid$ together with (1.5) and (1.6) would imply that the not identically zero trigonometric polynomial $T-Q \in \mathcal{T}_{n}$ had at least
$2 n+2$ zeros in the period $[0,2 \pi$) (at least two zeros on each of the intervals $\left[t_{1}, t_{2}\right),\left[t_{2}, t_{3}\right), \ldots,\left[t_{n}, t_{n+1}\right)$, and at least four zeros on the interval $\left(t_{j}, t_{j+1}\right)$ containing t_{0}) by counting multiplicities, a contradiction. Thus (1.7) holds and implies that

$$
\left|Q^{\prime}\left(t_{0}\right)\right| \geq\left|m^{2} n \cos \left(n\left(t_{0}-\alpha\right) / 2\right) \sin \left(n\left(t_{0}-\alpha\right) / 2\right)\right|
$$

which, together with (1.5), yields

$$
\begin{aligned}
\left|Q^{\prime}\left(t_{0}\right)\right|^{2} & \geq n^{2}\left(m^{2} \cos ^{2}\left(n\left(t_{0}-\alpha\right) / 2\right)\right)\left(m^{2} \sin ^{2}\left(n\left(t_{0}-\alpha\right) / 2\right)\right) \\
& =n^{2}\left(\left|Q\left(t_{0}\right)\right|\left(m^{2}-\left|Q\left(t_{0}\right)\right|\right)\right.
\end{aligned}
$$

Substituting $Q\left(t_{0}\right)=R\left(t_{0}\right)^{2}$ and $Q^{\prime}\left(t_{0}\right)=2 R\left(t_{0}\right) R^{\prime}\left(t_{0}\right)$ in the above inequality, we conclude that

$$
\left(R^{\prime}\left(t_{0}\right)\right)^{2} \geq \frac{n^{2}}{4}\left(m^{2}-R\left(t_{0}\right)^{2}\right)
$$

Finally, combining this last inequality with (1.4) and recalling that $R\left(t_{0}\right)=$ $\left|P\left(e^{i t_{0}}\right)\right|$ yields (1.2).

A natural question that arises is finding the maximal value $m^{*}(n)$ of the quantity m given in (1.1) or, equivalently (using the notation of Theorem 1.1), determining

$$
\begin{equation*}
m^{*}(n):=\max _{\omega_{n} \in \Omega_{n}} \min _{1 \leq j \leq n} \max _{t \in\left[t_{j}, t_{j+1}\right]}\left|\prod_{k=1}^{n}\left(e^{i t}-z_{k}\right)\right|, \quad z_{k}=e^{i t_{k}} \tag{1.8}
\end{equation*}
$$

where Ω_{n} is the collection of all n-tuples $\omega_{n} \in[0,2 \pi)^{n}$ of the form

$$
\omega_{n}=\left(t_{1}, \ldots, t_{n}\right), \quad 0 \leq t_{1} \leq \ldots \leq t_{n}<2 \pi .
$$

In Corollary 6.9 of [9], Khrushchev proved that $m^{*}(n)=2$, the value of m corresponding to $P(z)=z^{n}-1$ for which equality holds throughout in (1.2).
Here we deduce this fact as a simple consequence of Theorem 1.1.
Corollary 1.2. Let $m^{*}(n)$ be as in (1.8). Then $m^{*}(n)=2$ and this maximum is attained only for n distinct equally spaced points $\left\{z_{1}, \ldots, z_{n}\right\}$ on the unit circle.

In other words, for any monic polynomial of degree n all of whose zeros lie on the unit circle, there must be some sub-arc formed from consecutive zeros on which the modulus of the polynomial is at most 2 .

Proof of Corollary 1.2. Assume $m^{*}(n)>2$. According to Theorem 1.1, $\left|P_{o}^{\prime}(z)\right|>n$ for all z on \mathbb{T}, where P_{o} is a monic polynomial of degree n for which the maximum value $m^{*}(n)$ is attained. By the Gauss-Lucas theorem, P_{o}^{\prime} has all its zeros in the open unit disk (clearly it can't have any on \mathbb{T}). So now consider the $f(z):=P_{o}^{\prime}(z) / z^{n-1}$, which is analytic on and outside \mathbb{T}, even at infinity where it equals n. Since f does not vanish outside or on \mathbb{T}, its modulus must attain its minimum on \mathbb{T}. But $|f(z)|>n$ on \mathbb{T}, while $f(\infty)=n$, which gives the desired contradiction. Thus $m^{*}(n)=2$
and the argument above also shows that if this maximum is attained by a polynomial P_{o}, then $|f(z)|=2$ for all z on or outside \mathbb{T}, which implies that f is constant and so P_{o} has equally spaced zeros on \mathbb{T}.

Observe that the determination of $m^{*}(n)$ can alternatively be viewed as a min-max-min problem on the unit circle for the logarithmic potential $\log (1 / r)$ with r denoting Euclidean distance between points on \mathbb{T}. In the next section we consider such problems for a general class of potentials.

2. Min-max-min problems on \mathbb{T}

Let g be a positive, extended real-valued, even function defined on \mathbb{R} that is periodic with period 2π and satisfies $g(0)=\lim _{t \rightarrow 0} g(t)$. Further suppose that g is non-increasing and strictly convex on $(0, \pi]$. For $\omega_{n}=\left(t_{1}, \ldots, t_{n}\right) \in$ Ω_{n}, we set

$$
\begin{equation*}
P_{\omega_{n}}(t):=\sum_{j=1}^{n} g\left(t-t_{j}\right) . \tag{2.1}
\end{equation*}
$$

Here and in the following we assume that t_{j} is extended so that

$$
t_{j+n}=t_{j}+2 \pi, \quad(j \in \mathbb{Z}) ;
$$

in particular, we have $t_{0}=t_{n}-2 \pi$ and $t_{n+1}=t_{1}+2 \pi$. For $\omega_{n}=\left(t_{1}, \ldots, t_{n}\right) \in$ Ω_{n} and $\gamma \in[0,2 \pi)$, let $\omega_{n}+\gamma$ denote the element in Ω_{n} corresponding to the set $\left\{e^{i\left(t_{k}+\gamma\right)}\right\}_{k=1}^{n}$. Then $P_{\omega_{n}+\gamma}(t)=P_{\omega_{n}}(t-\gamma)$. We further let $\widetilde{\omega}_{n}:=$ $\left(\widetilde{t_{1}}, \ldots, \widetilde{t}_{n}\right)$ denote the equally-spaced configuration given by

$$
\widetilde{t}_{j}:=2(j-1) \pi / n, \quad j=1,2, \ldots, n
$$

By the convexity of g, it follows that

$$
\min _{t \in[0,2 \pi)} P_{\widetilde{\omega}_{n}}(t)=P_{\widetilde{\omega}_{n}}(\pi / n) .
$$

Motivated by recent articles on polarization of discrete potentials on the unit circle (cf. [1], [2], [7], [8]) we shall prove the following generalization of Corollary 1.2 .

Theorem 2.1. Let g be a positive, extended real-valued, even function defined on \mathbb{R} that is periodic with period 2π and satisfies $g(0)=\lim _{t \rightarrow 0} g(t)$. Suppose further that g is non-increasing and strictly convex on $(0, \pi]$. Then we have

$$
\begin{equation*}
\min _{\omega_{n} \in \Omega_{n}}\left\{\max _{1 \leq j \leq n}\left\{\min _{t \in\left[t_{j}, t_{j+1}\right]} P_{\omega_{n}}(t)\right\}\right\}=P_{\widetilde{\omega}_{n}}(\pi / n) \tag{2.2}
\end{equation*}
$$

that is, the solution to the min-max-min problem on \mathbb{T} is given by n distinct equally-spaced points on \mathbb{T} and, moreover, these are the only solutions.
2.1. Logarithmic and Riesz kernels. It is straightforward to verify that $g(t)=g_{\log }(t):=\log \left(1 /\left|e^{i t}-1\right|\right)=-\log (2 \sin |t / 2|)$ satisfies the hypotheses of Theorem 2.1 providing an alternate proof of Corollary 1.2 . Furthermore, for the case (relating to Euclidean distance),

$$
\begin{equation*}
g(t)=g_{s}(t):=\left|e^{i t}-1\right|^{-s}=(2 \sin |t / 2|)^{-s}, s>0 \tag{2.3}
\end{equation*}
$$

we obtain the Riesz s-potential and it is again easily verified that g_{s} satisfies the hypotheses of Theorem 2.1. Consequently, with $z_{k}=e^{i t_{k}}$,

$$
\begin{equation*}
\min _{\omega_{n} \in \Omega_{n}} \max _{1 \leq j \leq n} \min _{t \in\left[t_{j}, t_{j+1}\right]} \sum_{k=1}^{n}\left|e^{i t}-z_{k}\right|^{-s}=\sum_{k=1}^{n}\left|e^{i \pi / n}-e^{2 k \pi i / n}\right|^{-s}=M_{n}^{s}(\mathbb{T}) \tag{2.4}
\end{equation*}
$$

where $M_{n}^{s}(\mathbb{T})$ is the Riesz s-polarization constant for n points on the unit circle (cf. [8]). We remark that for s an even integer, say $s=2 m$, the precise value of $M_{n}^{s}(\mathbb{T})$ can be expressed as a polynomial in n; namely, as a consequence of the formulas derived in [5],

$$
\begin{equation*}
M_{n}^{2 m}(\mathbb{T})=\frac{2}{(2 \pi)^{2 m}} \sum_{k=1}^{m} n^{2 k} \zeta(2 k) \alpha_{m-k}(2 m)\left(2^{2 k}-1\right), \quad m \in \mathbb{N}, \tag{2.5}
\end{equation*}
$$

where $\zeta(s)$ is the classical Riemann zeta function and $\alpha_{j}(s)$ is defined via the power series for $\operatorname{sinc} z=(\sin \pi z) /(\pi z)$:

$$
(\operatorname{sinc} z)^{-s}=\sum_{j=0}^{\infty} \alpha_{j}(s) z^{2 j} ; \quad \alpha_{0}(s)=1,
$$

see Corollary 3 from [8]. In particular,

$$
M_{n}^{2}(\mathbb{T})=\frac{n^{2}}{4}, \quad M_{n}^{4}(\mathbb{T})=\frac{n^{2}}{24}+\frac{n^{4}}{48}, \quad M_{n}^{6}(\mathbb{T})=\frac{n^{2}}{120}+\frac{n^{4}}{192}+\frac{n^{6}}{480}
$$

2.2. Proof of Theorem 2.1. Theorem 2.1 is a consequence of the following lemma which is the basis of the proof of the polarization theorem established by Hardin, Kendall and Saff in [8]. (In Section 3 we state a slightly stronger version of this polarization result as Theorem 3.1 and present some related results.)

Lemma 2.2. Let g be as in Theorem 2.1 and suppose $\omega_{n}=\left(t_{1}, \ldots, t_{n}\right)$ and $\omega_{n}^{\prime}=\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)$ are in Ω_{n}. Then there is some $\ell \in\{0,1, \ldots, n\}$ and some $\gamma \in[0,2 \pi)$ (where ℓ and γ depend on ω_{n} and ω_{n}^{\prime} but not on g) such that

$$
\begin{equation*}
P_{\omega_{n}^{\prime}}(t-\gamma) \leq P_{\omega_{n}}(t), \quad t \in\left[t_{\ell}, t_{\ell+1}\right], \tag{2.6}
\end{equation*}
$$

and $\left[t_{\ell}, t_{\ell+1}\right] \subset\left[t_{\ell}^{\prime}+\gamma, t_{\ell+1}^{\prime}+\gamma\right]$.
The inequality is strict for $t \in\left(t_{\ell}, t_{\ell+1}\right)$ unless $t_{j+1}-t_{j}=t_{j+1}^{\prime}-t_{j}^{\prime}$ for all $j=1, \ldots, n$.

Sketch of proof. This lemma follows from techniques developed in [8], specifically from Lemmas 5 and 6 in that paper. For the convenience of the reader, we provide here an outline of its proof. First, the convexity of g implies that, for $n=2$, the inequality

$$
\begin{equation*}
P_{\left(t_{1}-\Delta, t_{2}+\Delta\right)}(t)<P_{\left(t_{1}, t_{2}\right)}(t), \quad t \in\left(t_{1}, t_{2}\right), \tag{2.7}
\end{equation*}
$$

holds for sufficiently small $\Delta>0$ (this observation was also used in [2]). That is, the potential due to two points decreases on an interval when the points are moved symmetrically away from the interval. For simplicity, we consider the case that

$$
\operatorname{sep}\left(\omega_{n}\right):=\min _{j}\left(t_{j+1}-t_{j}\right)>0
$$

(see [8] for the case of coincident points where $\operatorname{sep}\left(\omega_{n}\right)=0$).
Next, using elementary linear algebra, we find a vector $\boldsymbol{\Delta}=\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ such that (a) $\Delta_{k} \geq 0$ for all k, (b) $\Delta_{\ell}=0$ for some ℓ and (c) $\boldsymbol{\Delta}$ solves the equations

$$
\begin{equation*}
\left(t_{j+1}^{\prime}-t_{j}^{\prime}\right)=\left(t_{j+1}-t_{j}\right)-\Delta_{j+1}+2 \Delta_{j}-\Delta_{j-1}, \quad(j=1, \ldots, n) \tag{2.8}
\end{equation*}
$$

where we take $\Delta_{0}:=\Delta_{n}$ and $\Delta_{n+1}:=\Delta_{1}$. For $j=1, \ldots, n$, consider the transformation

$$
\tau_{j, \Delta}\left(\omega_{n}\right):=\left(t_{1}, \ldots, t_{j-2}, t_{j-1}-\Delta, t_{j}+\Delta, t_{j+1}, \ldots, t_{n}\right) .
$$

Then (2.8) implies that $\omega_{n}^{\prime \prime}:=\tau_{1, \Delta_{1}} \circ \tau_{2, \Delta_{2}} \circ \cdots \circ \tau_{n, \Delta_{n}}\left(\omega_{n}\right)$ equals $\omega_{n}^{\prime}+\gamma$ for some $\gamma \in[0,2 \pi)$. If $\max _{j} \Delta_{j} \leq(1 / 2) \operatorname{sep}\left(\omega_{n}\right)$ then, since $\Delta_{\ell}=0$ and $\Delta_{k} \geq 0$, we may apply the inequality (2.7) n times to obtain (2.6). Moreover, unless $\Delta_{k}=0$ for all k, inequality (2.8) is strict. If $\max _{j} \Delta_{j}>(1 / 2) \operatorname{sep}\left(\omega_{n}\right)$, then we may choose m such that $(1 / m) \max _{j} \Delta_{j}<(1 / 2) \operatorname{sep}\left(\omega_{n}\right)$ and then recursively applying $\tau_{(1 / m) \Delta}$ to ω_{n} the number m times, we again obtain (2.6).

Finally, since $\Delta_{\ell}=0$ and $\Delta_{\ell-1}, \Delta_{\ell+1} \geq 0$, we have $\left[t_{\ell}, t_{\ell+1}\right] \subset\left[t_{\ell}^{\prime \prime}, t_{\ell+1}^{\prime \prime}\right]=$ $\left[t_{\ell}^{\prime}+\gamma, t_{\ell+1}^{\prime}+\gamma\right]$.

Proof of Theorem 2.1. Let $\omega_{n} \in \Omega_{n}$ be fixed but arbitrary and recall that $\widetilde{\omega}_{n}$ denotes an equally spaced configuration. By Lemma 2.2 , there is some $\ell \in\{0,1, \ldots, n\}$ and some $\gamma \in[0,2 \pi)$ such that

$$
P_{\widetilde{\omega}_{n}}(t-\gamma) \leq P_{\omega_{n}}(t), \quad t \in\left[t_{\ell}, t_{\ell+1}\right] .
$$

Hence,

$$
\begin{aligned}
P_{\widetilde{\omega}_{n}}(\pi / n) & =\min _{t \in[0,2 \pi)} P_{\widetilde{\omega}_{n}}(t) \leq \min _{t \in\left[t_{e}, t_{\ell+1}\right]} P_{\widetilde{\omega}_{n}}(t-\gamma) \\
& \leq \min _{t \in\left[t_{\ell}, t_{\ell+1}\right]} P_{\omega_{n}}(t) \leq \max _{j} \min _{t \in\left[t_{j}, t_{j+1}\right]} P_{\omega_{n}}(t) .
\end{aligned}
$$

2.3. Derivatives of logarithmic potentials. We next consider a class of kernels g derived from $g_{\log }$ that were considered in [7]. For an even positive integer m, we define the kernel:

$$
g_{m}(t):=g_{\log }^{(m)}(t)=\frac{d^{m}}{d t^{m}} g_{\log }(t)
$$

Then, for $t \in[0,2 \pi)$,

$$
g_{2}(t)=\frac{d}{d t}\left(-\frac{1}{2} \cot \left(\frac{t}{2}\right)\right)=\frac{1}{4} \csc ^{2}\left(\frac{t}{2}\right)
$$

and hence

$$
g_{m}(t)=\frac{1}{4} f^{(m-2)}(t),
$$

where $f(t):=\csc ^{2}(t / 2)$. Following [7], we next verify that g_{m} satisfies the hypotheses of Theorem 2.1. It is well known and elementary to check that

$$
\tan t=\sum_{j=1}^{\infty} a_{j} t^{j}, \quad t \in(-\pi / 2, \pi / 2)
$$

with each $a_{j} \geq 0, j=1,2, \ldots$. Hence, if $h(t):=\tan (t / 2)$, then

$$
h^{(k)}(t)>0, \quad t \in(0, \pi), \quad k=0,1, \ldots
$$

Now observe that

$$
f(t)=\csc ^{2}\left(\frac{t}{2}\right)=\sec ^{2} \frac{\pi-t}{2}=2 h^{\prime}(\pi-t),
$$

and hence,

$$
(-1)^{k} f^{(k)}(t)=2 h^{(k+1)}(\pi-t)>0, \quad t \in(0, \pi)
$$

This implies that if m is even, then $g_{m}(t)=\frac{1}{4} f^{(m-2)}(t)$ is a positive, decreasing, strictly convex function on $(0, \pi)$. It is also clear that if m is even, then g_{m} is even since f is even. Thus, $g=g_{m}$ satisfies the hypotheses of Theorem 2.1.

We remark that, for an even positive integer m, an induction argument implies that

$$
g_{m}(t)=p_{m}\left(r^{-2}\right), \quad r=2 \sin (t / 2),
$$

for some polynomial p_{m} of degree $m / 2$. The induction follows from the recursive relation

$$
\begin{equation*}
p_{m+2}(x)=\left(6 x^{2}-x\right) p_{m}^{\prime}(x)+\left(4 x^{3}-x^{2}\right) p_{m}^{\prime \prime}(x), \tag{2.9}
\end{equation*}
$$

which is easily derived using $\left(r^{\prime}\right)^{2}=1-(r / 2)^{2}$ and $r^{\prime \prime}=-r / 4$. Thus, g_{m} can be expressed as a linear combination of Riesz s-potentials with $s=$ $2,4, \ldots, m$ with coefficients corresponding to the polynomial p_{m}. Table 1 displays p_{m} for $m=2,4,6$, and 8 .

For $\omega_{n} \in \Omega_{n}$, we let

$$
Q_{\omega_{n}}(t):=\prod_{j=1}^{n} \sin \left|\frac{t-t_{j}}{2}\right|
$$

and set

$$
T_{n}(t):=Q_{\widetilde{\omega}_{n}}(t)=2^{1-n} \sin \left|\frac{n t}{2}\right| .
$$

Our next two results are consequences of Lemma 2.2 and Theorem 2.1, respectively.

Theorem 2.3. Let m be a positive even integer and $\omega_{n} \in \Omega_{n}$. Then there is some $\gamma \in[0,2 \pi$) and some $j \in\{1,2, \ldots, n\}$ (with γ and j depending on ω_{n}) such that

$$
-\left(\log \left|Q_{\omega_{n}}\right|\right)^{(m)}(t) \geq-\left(\log \left|T_{n}\right|\right)^{(m)}(t-\gamma), \quad t \in\left(t_{j}, t_{j+1}\right) .
$$

Proof. This is an immediate consequence of Lemma 2.2 with $g=g_{m}$ and $\omega_{n}^{\prime}=\widetilde{\omega}_{n}$, and so $P_{\omega_{n}}(t)=-\left(\log \left|Q_{\omega_{n}}\right|\right)^{(m)}(t)$ and $\left.P_{\widetilde{\omega}_{n}}(t)=-\left(\log \left|T_{n}\right|\right)^{(m)}(t)\right)$.

Since g_{m} satisfies the hypotheses of Theorem 2.1, we obtain the following theorem.

Theorem 2.4. We have

$$
\min _{\omega_{n} \in \Omega_{n}}\left\{\max _{1 \leq j \leq n}\left\{\min _{t \in\left[t_{j}, t_{j+1}\right]}-\left(\log \left|Q_{\omega_{n}}\right|\right)^{(m)}(t)\right\}\right\}=-\left(\log \left|T_{n}\right|\right)^{(m)}(\pi / n)
$$

for every even positive integer m.
From (2.9), one can show that the leading coefficient of p_{m} is $(m-1)$!. A somewhat more detailed computation using (2.5) and (2.9) yields

$$
\begin{equation*}
-\left(\log \left|T_{n}\right|\right)^{(m)}(\pi / n)=\frac{2}{(2 \pi)^{m}} \zeta(m)(m-1)!\left(2^{m}-1\right) \tag{2.10}
\end{equation*}
$$

Table 1 gives the values $-\left(\log \left|T_{n}\right|\right)^{(m)}(\pi / n)$ for $m=2,4,6,8$, and for $n \in \mathbb{N}$.

m	$p_{m}(x)$	$-\left(\log \left\|T_{n}\right\|\right)^{(m)}(\pi / n)$
2	x	$n^{2} / 4$
4	$6 x^{2}-x$	$n^{4} / 8$
6	$120 x^{3}-30 x^{2}+x$	$n^{6} / 4$
8	$5040 x^{4}-1680 x^{3}+126 x^{2}-x$	$17 n^{8} / 16$

Table 1. The polynomials $p_{m}(x)$ and the values $-\left(\log \left|T_{n}\right|\right)^{(m)}(\pi / n)$ from (2.10) (see Theorem 2.4 and Corollary 3.3) for $m=2,4,6,8$, and for $n \in \mathbb{N}$.

3. Comments on polarization

The main part of the following 'polarization' theorem was proved in [8]. As observed in [7], for each $\omega_{n} \in \Omega_{n}$, we may restrict the set over which we search for a minimum to

$$
E\left(\omega_{n}\right):=[0,2 \pi) \backslash \bigcup_{j=1}^{n}\left(t_{j}-\pi / n, t_{j}+\pi / n\right) \quad(\bmod 2 \pi) .
$$

Theorem 3.1. Let g be as in Theorem 2.1. Then

$$
\begin{equation*}
\max _{\omega_{n} \in \Omega_{n}}\left\{\min _{t \in[0,2 \pi)} P_{\omega_{n}}(t)\right\}=\max _{\omega_{n} \in \Omega_{n}}\left\{\min _{t \in E\left(\omega_{n}\right)} P_{\omega_{n}}(t)\right\}=P_{\widetilde{\omega}_{n}}(\pi / n) . \tag{3.1}
\end{equation*}
$$

Proof. Let $\omega_{n} \in \Omega_{n}$ be arbitrary. The proof follows from Lemma 2.2 and is similar to the proof of Theorem 2.1, except that the roles of $\widetilde{\omega}_{n}$ and ω_{n} are switched. By Lemma 2.2, there is some $\ell \in\{0,1, \ldots, n\}$ and some $\gamma \in[0,2 \pi)$ such that

$$
P_{\omega_{n}}(t-\gamma) \leq P_{\widetilde{\omega}_{n}}(t), \quad t \in\left[\widetilde{t}_{\ell}, \widetilde{t}_{\ell+1}\right],
$$

and $\left[\widetilde{t}_{\ell}, \widetilde{t}_{\ell+1}\right] \subset\left[t_{\ell}+\gamma, t_{\ell+1}+\gamma\right]$. Then

$$
t_{\ell}+\pi / n \leq \pi(2 \ell-1) / n-\gamma \leq t_{\ell+1}-\pi / n
$$

and so $\pi(2 \ell+1) / n-\gamma \in E\left(\omega_{n}\right)$. We then obtain

$$
\begin{aligned}
\min _{t \in[0,2 \pi)} P_{\omega_{n}}(t) & \leq \min _{t \in E\left(\omega_{n}\right)} P_{\omega_{n}}(t) \leq P_{\omega_{n}}(\pi(2 \ell+1) / n-\gamma) \\
& \leq P_{\widetilde{\omega}_{n}}(\pi(2 \ell+1) / n)=P_{\widetilde{\omega}_{n}}(\pi / n),
\end{aligned}
$$

which completes the proof.
Theorem 3.2. Let $\omega_{n} \in \Omega_{n}$. Then there is a number $\theta \in[0,2 \pi)$ (depending on ω_{n}) such that

$$
-\left(\log \left|Q_{\omega_{n}}\right|\right)^{(m)}(t) \leq-\left(\log \left|T_{n}\right|\right)^{(m)}(t-\theta), \quad t \in(\theta, \theta+2 \pi / n),
$$

for every nonnegative even integer m.
Proof. Let m be a nonnegative even integer. We apply Lemma 2.2 with $g=g_{m}, \omega_{n}^{\prime}=\omega_{n}$ and $\omega_{n}=\widetilde{\omega}_{n}$ (in which case, $P_{\omega_{n}}(t)=-\left(\log \left|Q_{\omega_{n}}\right|\right)^{(m)}(t)$ and $\left.P_{\widetilde{\omega}_{n}}(t)=-\left(\log \left|T_{n}\right|\right)^{(m)}(t)\right)$ to deduce that there is an $\ell \in\{1,2, \ldots, n\}$ and a number $\gamma \in[0,2 \pi)$ (depending on ω_{n}) such that

$$
-\left(\log \left|Q_{\omega_{n}}\right|\right)^{(m)}(t-\gamma) \leq-\left(\log \left|T_{n}\right|\right)^{(m)}(t), \quad t \in\left[\widetilde{t}_{\ell}, \tilde{t}_{\ell+1}\right),
$$

which can be rewritten using $\theta:=\widetilde{t}_{\ell}-\gamma, u:=t-\gamma$, and the fact that T_{n} is $2 \pi / n$ periodic as

$$
-\left(\log \left|Q_{\omega_{n}}\right|\right)^{(m)}(u) \leq-\left(\log \left|T_{n}\right|\right)^{(m)}(u-\theta), \quad u \in[\theta, \theta+2 \pi / n) .
$$

Corollary 3.3. We have

$$
\begin{aligned}
\max _{\omega_{n} \in \Omega_{n}}\left\{\min _{t \in[0,2 \pi)}-\left(\log \left|Q_{\omega_{n}}\right|\right)^{(m)}(t)\right\} & =\max _{\omega_{n} \in \Omega_{n}}\left\{\min _{t \in E\left(\omega_{n}\right)}-\left(\log \left|Q_{\omega_{n}}\right|\right)^{(m)}(t)\right\} \\
& =-\left(\log \left|T_{n}\right|\right)^{(m)}(\pi / n)
\end{aligned}
$$

for every even integer m.
Proof. This is an immediate corollary of Theorem 3.1.

References

[1] G. Ambrus, Analytic and Probabilistic Problems in Discrete Geometry, Ph.D. Thesis, University College London, 2009
[2] G. Ambrus, K. Ball, and T. Erdélyi, Chebyshev constants for the unit circle, Bull. London Math. Soc., 45(2) (2013), 236-248.
[3] S.N. Bernstein,, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle, Gauthier-Villars, Paris (1926).
[4] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer-Verlag, New York, N.Y. (1995).
[5] J. S. Brauchart, D. P. Hardin, and E. B. Saff, The Riesz energy of the Nth roots of unity: an asymptotic expansion for large N, Bull. London Math. Soc. 41(4) (2009), 621-633.
[6] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, Heidelberg (1993).
[7] T. Erdélyi and E. B. Saff, Riesz polarization in higher dimensions, J. Approx. Theory, 171 (2013), 128-147.
[8] D. P. Hardin, A. P. Kendall and E. B. Saff, Polarization optimality of equally spaced points on the circle for discrete potentials, (to appear) Discrete Comput. Geom.
[9] S. Khrushchev, Rational compacts and exposed quadratic irrationalities, J. Approx. Theory 159 (2) (2009), 243-289.

Department of Mathematics, Texas A\&M University, College Station, Texas 77843, USA

E-mail address: terdelyi@math.tamu.edu
Center for Constructive Approximation, Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA

E-mail address: doug.hardin@vanderbilt.edu
E-mail address: edward.b.saff@vanderbilt.edu

