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Angular Qverconvergence for Rational Functions Converging
Geometrically on {0, + «)

E. B. Saffl and R. S. Varga2

Dedicated to the memory of our teacher Prof. J. L. Walsh

§1. Introduction.

Thé classical results of Bernstein, Walsh, Gonfar,
and others concerning the overconvergence of rational
functions are roughly of the following type (cf. [19]):
It is assumed that

(i) f(z) is defined (finite) on some compact set E in the
complex plane €;

©
(i1) {rn(z)}n=l is a sequence of rational functions of
respective degrees n which converge geometrically to

f on E, i.e.,

Tintfe-x_|| /n g

>«

.
3

i
L ()’

and
(iii) the set of poles of the sequence {rn(z)}:=l has no

accumulation points on E.
It is then concluded that
(iv) the sequence {rn(z)}:=l converges geometrically to

an analytic extension of f on some openr set in the
plane containing E.

The aim of the present paper is to investigate the
phenomenon of overconvergence in the case where E is a
closed line segment [a,b] and the hypothesis (iii) above
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ANGULAR OVERCONVERGENCE

is weakened to allow accumulation points of poles at the
endpoints of E, i.e., assumption (iii) is replaced by

(i1ii)' the set of poles of the sequence {rn(z)}:=1 has no

accumulation points on the open subinterval (a,b)
of E = [a,b].

Of course with the hypotheses (i), (ii), and (iii)', we
must modify conclusion (iv) to read

(iv)' the sequence {rn(z)}:;l converges geometrically to

'an'analytic extension of f on some open set in the
plane containing (a,b). '

For the precise statements of such results on
"angular overconvergence' it is sufficient to take
E = [0, +®), because any interval [a,b] can be mapped onto
{0, +=) by means of a bilinear transformation, and such
bilinear transformations preserve rational functions of
degree n. For example, one of the results which we prove
asserts that if rational functions rn(z) of respective

degrees n converge geometrically on E ={0, +®), and the
poles of the rn(z) lie outside an infinite sector of the

form
{z€cC: |arg z| <¢1}, 0<¢1 <,

then the rn(z) converge geometrically on some smaller

infinite sector
{zec: Iarg z| <¢2}, 0<¢,<g,.

It is important to note that a number of results have
appeared in the literature ({87, [10], [11]) which give
classes of functions f and examples of approximating
rational functions rn(z) for which condition (ii) above is

satisfied on E={0, +®). Furthermore, for some special
sequences of approximating rational functions, the existence
of pole-free open sets (in the plane) containing (0, + )
follows from the results in [18], {127, [13], among others.
Hence the main results of this paper, which we state in
Section 2, have immediate applications. These applications
will be discussed primarily in Section 3.
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§2. Statements of Main Results.

We now introduce the necessary notation and state our
main results. Their proofs will be given in [14].

For an arbitrary set A in the complex plane €, we
denote by “”A the sup norm on A, i.e.,

Nell, = sup {{£G)]:z€a).

We use the symbol s to denote the set of all complex

polynomials in the variable z having degree at most n, and

let ™ denote the set of all complex rational functions
2
r (z) of the form
n
p, (2) 4
T, (z) = c_{;(_z)—’ where pnérrn, qHEnn, 4, 0.

The first three results which we state concern pole-free
regions whose boundaries are tangent to the ray E=[0, +=)
at x=+®, It is convenient in this regard to introduce
the set H which consists of all real nonnegative continuous
functions h on [0, +=) such that for x large, h(x) >0, and
h'(x) exists, is nonnegative, and satisfies

@.1) lim h'(x) = 0.

K=+ + @
Corresponding to each h€ ¥ we define generically the set
Eg (h), 0<s<1, in the complex plane by

2.2) Es(h):= {z=x+1iy:x=0and lylSsh(x)}.

Notice that, by condition (2.1), the boundary of each set
Es (h) defined in (2.2) makes an angle of zero with the

positive real axis at x=+w,

Our first result is the following:

Theorem 2.1. Assume that for a function f, defined and

finite on (0, +®), there exists a sequence of rational

o
) , N
functions {rn}n=1, with r € Ton for all n>1, and a real

number g >1 such that
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2.3) Tim {||£-x [lgo +m)]1/n

N—®

<Lleg,
q

Assume further that for some function h€ ¥ the interior of

the region E; (h) (defined in (2.2)) contains no poles of
the r, (z) for all n sufficiently large. Then for every d

satisfying the inequality

@2.4) 0<a<llo g

AJfat+l
there exists a bounded subset Ky of Ed(h) and an analytic
function F(z) on E ¢t) - Kd with F(x) = £(x) for all real x

in this set, such that {r (z)}:::l converges geometrically

to F(z) on Ed(h) - d’ Moreover

1/n 1, 1+ 2
} q(l d)

(2.5) E{HF-rn”Ed(h)-Kd <1.

n— <

The next result shows that in certain cases the
conclusion of Theorem 2.1 can hold on the whole set Ed(h),

rather than on Ed(h) - Kd'

Corollary 2.2. Assume that for a continuous function

g(#0) on [0, +«) there exists a sequence of polynomials

{p }n 12 with p_ éﬂ for all n=1, and a real number g>1

such that
(2.6) 11m{}]— —”[o er)}1/n< =<1,
nN—»®

Then, as is known [7, Theorem 3], there exists an entire

function G(z) of finite order with G(x) = g(x) for all x=0.

Next assume that for some function h€H, with h(x)>0,for all

x>0, the interior of the region El(h) (defined in (2.2))

contains no zeros of pn(z) for all n large. If d satisfies

(2.4) and if G is nonzero on the vertical segment

{z=1y : |y|=dh(0)}, then

2ul
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@.7) Tm i3 —4!E )T e <

n-

As a concrete application of Corollary 2.2, we first
recall from Meinardus and Varga [8] that

n—®

, -x 1 1/n_1
(2.8) 1lim{le -E;E;)-”EO,+=°)} =5

n
where sn(z) 2 zk/k! denotes the familiar n-th partial

k=0
sum of e”. It is further known from Saff and Varga [12]

that for
2.9) b= 264)M2, x>0,

the region

(2.10) E () = {z=x+iy: x20, ly] <2 +1)2?)

contains no zeros of the sn(zi) for all n. Note that ﬁEH,
and that with G(z) =ez (so that G is nonzero at every
finite point z), with P, Es for all n=1, and with q=2,
the hypotheses of Corollary 2.2 are all fulfilled. Thus
for any d satisfying 0<d< (/2 - l)/(ﬂ+ 1), we have from
(2.7) that

-z 1/n l l+d 2
<
(2.11) Il;n;{lle ——(z—)HE @ G <1,
which is effectively the result of [11, Theorem 4.1]. We
remark that for any d >0 the set

1/2

(2.12) Ed(ﬁ)={z=x+iy; x>0, |y|=2a@&+1)"" "3

is an unbounded parabolic region truncated at the origin.
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ANGULAR OVERCONVERGENCE

As a consequence of Corollary 2.2 and of the results
in [12], similar overconvergence results in unbounded
parabolic regions also hold for each column of the Padé
table for e_z, i.e., for the Padé approximants
{Rv’n(z)}:=l where the degree, V, of the numerator is fixed.

Applications of Corollary 2.2 can in fact be made to
a certain class of entire funcfibns ﬁhich contains the
above example, and this will be described in the next
section.

From Corollary 2.2 it is possible to deduce the
following result which concerns geometric convergence on
related unbounded sets whose widths grow more slowly at

infinity.

Corollary 2.3. With the hypotheses of Corollary 2.2,

assume that c(x) is a nonnegative continuous function on

[0, +®) with c¢(x) <h(x) for all x>0, such that

X e(x) _
(2.13) 1lim b 0,

X—+®

and let

(2.14) €:= {z=x+iy: x20, |y|<c(x)}.

If G is nonzero on the segment {z=1iy: |y|<c(0)}, then

- 1 1 1
(2.15) lim {”E‘pi“tg} /n 1im {||g—§1—“[0,+m)}1/n-
n n

N+ © .n— ®©
The remaining results concern overconvergence on
regions having a positive angle at infinity. In stating
them it is convenient to introduce the sets S(g,u) and

S(6) defined by
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THEORY OF APPROXIMATION

(2.16) s(g,n):= {z:]|arg z| <q, |z| >u},
(2.17) S(g):= {z:|arg z| <g}.

Theorem 2.4. Assume that for a function £, defined and

finite on [0, +=), there exists a sequence of rational

functions {r }w_ , with r €m for all n=1, and a real
~—— ""n’n=1’ /™ "n "~ n,n — — —_——

number q >1 such that

(2.18) Tlim {Hf-rn“[O, +co)}1/n <%<1.

n— <

Assume further that for some ‘eo and “o’ with 0<eoS T,

uo>0, the region S(eo,uo) (defined in (2.16)) contains no
poles of the r (z) for all n large. Then for every

satisfying the inequality

- "8
(2.19) 0<@g<4 tan_l {G/_%_—]l)-tan(fo)},
. J/at+l

there exists a u=u(8)>0 and an analytic function F(z)

on the closure g(e,u) with F(x) = £(x) for all real x in

this set, such that {rn,(z)}:___l converges geometrically to

F(z) on E(e,u). Moreover

il
1/n_1 . sinlz-(8 +0)] 2

(2.20)  lim{||F-x | 1.
@

- ”s(e,u)} q sin[%(eo-e)] J
It is interesting to note that while Theorem 2.1
cannot be deduced from Theorem 2.4, the former result can
Be considered as a limiting case of the latter. Indeed,
for ‘the situation of Theorem 2.1, we regard 86 and € as

functions of x which tend to zero as x-+®; specifically,

244
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ANGULAR OVERCONVERGENCE

we define 60 and 0 by the equations

tan90=h—§:-{l, tan9=-clhx£l'

Then, on writing (2.19) in the equivalent form
tan(®/4)  _ Ja-1 |

tan (80/4) '\/c_l-+ 1
and taking the limit as x-+®, we derive the condition
| . tan(@/4) . _ 4. tan g fq-1
lim tante 76y lim ——=d <% =
X+ tan(eo ) x4 CAT B, Ja+1

which is the same as inequality (2.4) of Theorem 2.1.
Using Theorem 2.4 we can deduce the following analogs

of Corollaries 2.2 and 2.3:

Corollary 2.5. Let the functions g,l G, and the sequence

[+e] . .
of polynomials {Pn}n=1 be as in Corollary 2.2 (so that, in
particular, inequality (2.6) holds). Assume further that

no zeros of P, lie in the infinite sector S(eo) (defined

in (2.17)), O<eoS'rr, for all n sufficiently large, and
that g(0)#0. If o satisfies (2.19), then on the closure

@, in(7(6_+9) ]
— 1l 1y 1/n_18058,%8) ko
(2.21) Tim {”G-Elﬂs(e)} sa———-——————} <1.

n-»<
Corollary 2.6. Let the functions g, G, and the sequence
—_—L D T T —
of polynomials {pn}n=1 be as in Corollary 2.2 (so that,
in particular, inequality (2.6) holds). Assume that no
zeros of P lie in S(eo)’ 0<90Sn, for all n sufficiently
large, and that g(0)#0. Then for any nonnegative

continuous function c(x) on [0, +®) such that c(x) =o(x)

sin(z(e,-0)]

as x-+o and such that (i) c¢(0)=0 if 8°=TT/2, (ii)

c(x)<x tan(eo) for x>0 if 0<eo <7/2, we have




THEORY OF APPROXIMATION

(2.22) Tim {]I—-—H(g} = 1m{|| —H[O +m)}1/n

n— * nN— ®©

where the region @ is defined as in (2.14).

1£, in Corollary 2.5, we weaken the hypothesis by

replacing the rec:.procals of polynomlals l/pn,

arbitrary rational functions rnén‘n n whose poles omit a
3

full sector, then we obtain the following less specific

conclusion:

g Theorem 2.7. Assume that for a function £, defined and

finite on [0 +=), there exists a sequence of rational

functions {r } _q» with r €mn - for all n>1, and a real

2
number q >1 such that inequality (2.18) holds. Suppose
further that the infinite sector S(eo) (defined in (2.17)),

0<eo.<_TT, contains no poles of the rn(z) for all n large.

R ey

TR 9 DRETIROBN= 17 . N
AT N e ety .

Then there exists a @, O<e<eo, and a function F(z)

analytic on the sector S(8), continuous on S(g), with

F(x) = f(x) for all x=0, such that {rn(z)}:;l converges

st

geometrically to F(z) ggg(e).

Theorem 2.7 has an important application to the

problem (raised at the International Conference on

Approximation Theory, Maryland, 1970) of finding a sequence
of rational functions which converges geometrically to o ?

i1 in an infinite sector It is well-known that the sequence

N AR AL A Aabain™

/s (2), s (2) = E z /k' does not have this property

because no infinite sector is devoid of zeros of sn(z) for

all n large (cf. [3] or [15]). However, it is shown by

L g

the authors in [117] and {137, that certain sequences of

Pade approximants of e converge geometrically on {0, +=)

2486
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-X . .
to e 7, and furthermore have all their poles outside some
infinite sector {z: Iarg z[‘<eo}. Hence, by Theorem 2.7,
, -z
such a sequence must converge geometrically to e = on some
infinite sector {z: |arg z| <@}, 0<g<g,- The precise

details of this application shall be reserved for a later

occasion.

The last result of this section concerns rational
functions which converge faster than geometrically on

[0, +), i.e.,

(2.23) lim {Hf-rn]]{:o, +m)}l/n 0.

n-— <
Corollary 2.8. If in Theorem 2.7, the assumption of
inequality (2.18) is replaced by (2.23), then the sequence

{rn(z)}:=1 converges faster than geometrically on every

closed sector S(8), 0<9<90, i.e.,
. _ 2 1/n
(2.24) i_l.n; UF-r llg " = 0
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§3. Some Applications.

In order to apply results such as Corollaries 2.2 and
2.3 we first need conditions on the entire function G|z)
which insure that there exists a sequepcg of polynomials P
with pnéﬂn for all n=1, such that.
o0 T g0 1
Second, we need a specific result, like that of (2.9},
which asserts that for an appropriate function h€H, Xhe
interior of the region El(h) defined in (2.2) is frez of
zeros of the polynomials P in (3.1) for all n large.
Results of both these types are already known for the case
where the p, are the n-th partial sums of the Maclauwin
expansion for G. In order to state these results we —omind
the reader of some standard terminology.

If g(z) = 2 akzk is an entire function, we let
k=0

Mg(r):= max{]g(z)‘:]zl= r} denote its maximum modulus
function, and let p=p denote the order of g (for ncn-

constant g), i.e., (cf. {2, p. 8], [16, p. 347)

— nlnM_(r))
(3.2) p = lim ——-%Er—— .
Yo+ ®

Furthermore, an entire function g{z) of order p, 0< <=,

is said to be of perfectly regular growth (cf. (16, =. 447)

if there exists a real B>0 such that

n M _(r)
(3.3) 0<B = lim ——Ba—.
r—+® I'p

We remark that if a non-constant entire function g sazisfies

a linear differential equation with rational functiom
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coefficients, then g is necessarily of perfectly regular
growth (cf. (16, p. 108]).
We now state a result which gives sufficient conditions

for geometric convergence on [0, +=).

o
Theorem 3.1 (Meinardus and Varga [8]). Let g(z)= 2 akzk

k=0

be an entire function of perfectly regular growth (p,B)

with real nonnegative coefficients a - Then

g

n— <«

' 1 1 1/n 1
(3.4) lim{]|=- =] 17 = = <,
s, [0, +) 21/p

n
where sn(z) = 2 akzk denctes the n-th partial sum of the

Maclaurin expa%ggon for g.

Concerning zero-~free regions for the partial sums s,
we state a previously unpublished result from one of the

authors' theses [18]. For related published results see
17].

Theorem 3.2. Let § denote the set of all entire functions
=]

g(z) = 2 akzk for which

k=0
(i) ao>0andak20 for all k= 1;
.. . = = > .
(ii) if a 0, then am+2j 0 for every j = 1;
(iii) if K:= {k: ak>aO and ak+2>0} is pnon-empty, then
(3.5) inf { k 1 > 0.

X €K (k+1) kt2) a0

Then, for g € S, there exists a nondecreasing continuous

function h, defined on [0, +=) with hg(O):>O, such that
g(z) and all its partial sums sn(z) = Zq)akzk, n = 1, have
k=0

no zeros in

(3.6) {z=x+iy: x>0 and bIShg&)L

249
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Moreover, for each g € 3, the orxder pg of g satisfies
0<p =1.
pg

We remark that the set § of Theorem 3.2 contains many

familiar elements. For example, u(z) = ez,

v(z) = cosh Q/;) = zk/ (2k)!, the modified Bessel functions
0 o

Jn (iz)/ (iz)™ for any n = 0, and the hypergeometric function
1Fl {(c;d;z) with ¢>0, d>0, are easily seen to be elements
of 8.

If‘%’g denotes the nonempty (from Theorem 3.2)
collection of all positive nondecreasing continuous
functicns hg on [0, +») for which g(z) and all its partial

sums s (z), n=1, have no zeros in the region defined by

(3.6), then we define the (maximal) width function Hg(x) by

|

. . >
3.7 Hg(x). sup{hg(x). hgékfg}, for each x=0.

The function Hg (x) so defined is clearly nondecreasing on
[0,+«), and g(z) and all its partial sums sn(z) have no

zeros in the interior of the region defined by

(3.8) {z=x+y: x=0 and (y[sng(x)}.

More precisely, it is easily seen that either Hg(x) =+
for all x sufficiently large, or that Hg is a step function,
i.e., there exists a denumerable set of points {zj=x.+iyj }jzl’

J

i <x. < <y.< i
with O_xj X, and O_yj "yj+l for all j, such that

i+l
Hx)=y,.; H X)=y, for x, <x<x,,.; j=1.
g( J) Yy g( ) V41 3 415 3

Here, each zj is a zero of g or one of its partial sums 5,

Moreover, if g is of order pg>0, then a result of

250




ANGULAR OVERCONVERGENCE

Carlson [3] states that no proper sector, with vertex at’
the origin, can.be devoid of zeros of the partial sums S,
for all n large. Consequently, when pg>0, Hg(x) is not

only finite for all finite x=20, but also lim y./xj=0.
e

The next corollary provides lower bounds for Hg (x) for

particular elements in 3.

- :
Corollary 3.3. Let g(z) = Z akzk be an entire function

such that ak>0 for all k agd such that
a,

(3.9) inf {H—— k15 o.
k=1 k a1

Then g€ g and its associated width function Hg of (3.7)

satisfies, for some constant c>0,

(3.10) ® @)= cx/?, for all x=0.

Proof. It is trivial to verify that g(z) = E a, z ES

Furthermore, it follows from the hypotheses oabove that
the entire function f defined by £(z):= E akz is also
in §. Thus, from Theorem 3.2, we can assoc1ate with f a
continuous nondecreasing function hf defined on [O, + ),
with hf(O) >0, such that f and all its partial sums Sn(z)

have no zeros in
= {z=xtiy: x=0 and IylShf(x)}.

But lf s, (z) denotes the n-th partial sum of g(z), then
s (z ) = 2n(z) for all n=1,2,-+-, which allows us to
relate the corresponding zeros of the partial sums of g

with those of £. Thus, defining

G:= [22:263},

251
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then g and all its partial sums s, have no zeros in G.
Now, since hf(O) >0 and hf is nondecreasing on [0, +=),

then evidently
2
G o {z tz=x+ly, x=20 and lyIShf(O)}.

Thus, if Hg is the associated width function for .g, the

above inclusion implies that

B (£)22h(0) (t+h§ (0))1/222hf(0)t1/2

, for all t=0,

which is the desired result of (3.10). L]
As previously noted, u(z) = ez, of order pu=1, and
v(z) = cosh Q/;), of order pv=l/2, are elements of the set

S, and furthermore each is of perfectly regular growth.

Moreover, for u(z) =ez, the authors' result of (2.9) implies

that

H () = 2t1)M 2, for all x > 0.

Also, applying Corollary 3.3 to v(z) = cosh Q/;) gives

Hv(x)Zcxl/z, for all x=0.

However, we believe that this last inequality can be
improved. 1In fact, we conjecture more generally that, for
any element g€ 8 of perfectly regular growth, its

associated width function satisfies
(2-p )/2
Hg x)=cx & , for all x=0.

As a consequence of Theorems 3.1 and 3.2, which apply to

both ez and cosh Q/;), we have the following application of

Corollary 2.2.

Corollary 3.4. For any g€ S of order p>0 which is of

perfectly regular growth, let Hg be its associated non-

252
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decreasing width function of (3.7), and let h€ ¥ be any

positive function for which h(x)SHg(x) for all x=0.

Then for

o<a< @M/2P 1y 2t/ 2Py,

we have
1+d2

(3.11) Tim {H ——HE 01)1 l/p GP <L

n-

where the region Ed(h) is defined as in (2.2), and sn(z)
denotes the n-th partial sum of g(z).

Proof. Because g€ g implies that the Maclaurin coefficients

of g are all nonnegative, and because g is assumed to be of
perfectly regular growth, then the conclusion (3.4) of
Theorem 3.1 is valid. Next, by definition of H (x) and the
fact that h(x)<:H (x) for all x=0, it follows that g and
all its partial sums Sy have no zeros in the interior of
the region ?p(h) Consequently, applying Corollary 2.2,

with q = 2 s, gives the desired result of (3.11). »

We remark that the existence of a function h€H
satisfying the conditions of Corollary 3.4 is obvious. As
a simple example, take hg of Theorem 3.2 and set h(x)EEhg(Q.

Concerning rational approximation to entire functions
of order p = 0, it is shownin [7, Thm. 7] and in (4, Thm. Z]
that if g is an entire function of order zero and satisfies

certain growth and coefficient restrictions, then

(3.12) lim {inf H —ﬂ[o +¢,)}l/n
. n—-® Peﬂ'n

As an illustration of how cur techniques apply to such

situations, we present
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0 2
Proposition 3.5. Let g(z) = z zk/ak , where a=2, and
k=0
2

k Then, on every closed sector E(e)

let sn(z) = g zk/a
k=0
(defined in (2.17)) with 0<g<m, we have

i
= : : , 2 i
. 1 1 1/n 1 3|
(3.13) 1lim {H-g'--;ﬂg(e)} /e - )
n—® n N
Of course, for the functions of Proposition 3.5, we

see that the conclusion of (3.13) is far stronger, and

implies the result of (3.12) as a special case. %

The proof of Proposition 3.5 will be given in [14].
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