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Abstract

We derive bounds and asymptotics for the maximum Riesz polarization quantity

M p
n (A) := max

x1,x2,...,xn∈A
min
x∈A

n
j=1

1
| x − x j |p

(which is n times the Chebyshev constant) for quite general sets A ⊂ Rm with special focus on the unit
sphere and unit ball. We combine elementary averaging arguments with potential theoretic tools to formulate
and prove our results. We also give a discrete version of the recent result of Hardin, Kendall, and Saff which
solves the Riesz polarization problem for the case when A is the unit circle and p > 0, as well as provide
an independent proof of their result for p = 4 that exploits classical polynomial inequalities and yields new
estimates. Furthermore, we raise some challenging conjectures.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction

For n ∈ N, let ωn = {x1, x2, . . . , xn} denote n (not necessarily distinct) points in m-
dimensional Euclidean space Rm . We define for p > 0 and a compact set A ⊂ Rm , the Riesz
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polarization quantities

M p(ωn, A) := min
x∈A

n
j=1

1
|x − x j |p , M p

n (A) := max
ωn⊂A

M p(ωn, A). (1.1)

Such max–min quantities for potentials were first introduced by M. Ohtsuka who explored
(for very general kernels) their relationship to various definitions of capacity that arise in
electrostatics (see [17]). In particular, he showed that for any compact set A ⊂ Rm the following
limit, called the Chebyshev constant of A, exists as an extended real number:

Mp(A) := lim
n→∞

M p
n (A)

n
. (1.2)

Moreover, he showed that Mp(A) is not smaller than the Wiener constant Wp(A) for A (see
Section 2). In this paper we primarily focus on results when the set A is the unit sphere or the
unit ball and consider both the cases when the limit (1.2) is finite and when it is infinite.

In his Ph.D. dissertation [1], G. Ambrus proved the following basic result for the case when
A ⊂ R2 is the unit circle S1 and p = 2.

Theorem 1.1. We have

M2
n (S1) =

n2

4
, n ≥ 1, (1.3)

and M2(ωn, S1) = n2/4, ωn ⊂ S1, if and only if the n points of ωn are distinct and equally
spaced on S1.

In [2], Ambrus’s rather technical proof along with a simpler proof based on Bernstein’s
inequality [3] for entire functions are presented. Bernstein’s inequality was also used in [2] to
provide an equally simple proof of the following estimates for the unit circle.

Theorem 1.2. For n ≥ 2 we have

M p
n (S1) ≤


cpn p, p > 1,

c1n log n, p = 1,
c0n

1 − p
, p ∈ [0, 1),

for some constants cp > 0 depending only on p ≥ 1 and an absolute constant c0 > 0.

In Section 2 we use minimum energy methods and potential theory to obtain estimates for
M p

n (A) for a large class of sets A ⊂ Rm . In Section 3 we apply the results of Section 2 to obtain
higher dimensional analogs of Theorem 1.2 for the unit sphere as well as for the unit ball.

In Section 4 we return to the case of the unit circle of the complex plane. For all p > 0,
it is conjectured in [2] that the maximum polarization on S1 occurs for the n-th roots of unity
ω∗

n := {ei2πk/n
: k = 1, 2, . . . , n}; that is,

M p
n (S1) = M p(ω∗

n, S1). (1.4)

This conjecture was recently proved by Hardin, Kendall, and Saff in [9]. Here, we provide some
additional consequences of their argument. Furthermore, by exploring connections to classical
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polynomial inequalities, we provide an independent proof of the conjecture for p = 4, namely
that

M4
n (S1) =

n4

48
+

n2

24
, (1.5)

where the maximum is attained for n distinct equally spaced points on the unit circle. Although
our argument (obtained prior to the general result in [9]) is not brief, it does yield additional
inequalities for the discrete Riesz potential in this special case.

In Section 5, we provide the proofs of results stated in Sections 2 and 3.
We call the reader’s attention to two recent articles [15,16] that contain somewhat related

results for the extrema of sums of certain powered distances to finite point sets.

2. Polarization inequalities via energy methods

For a set ωn = {x1, x2, . . . , xn} of n(≥2) distinct points in Rm , we define the Riesz p-energy
of ωn by

E p(ωn) :=


j≠k

1
|x j − xk |p = 2


1≤ j<k≤n

1
|x j − xk |p ,

and we consider the minimum n-point Riesz p-energy of an infinite compact set A ⊂ Rm defined
by

Ep(A; n) := min{E p(ωn) : ωn ⊂ A, |ωn| = n}. (2.1)

We denote by ω∗
n,p = {x∗

1, x∗

2, . . . , x∗
n} an n-point p-energy minimizing configuration on A; i.e.,

E p(ω
∗
n,p) = Ep(A; n). Further we denote by U∗

n,p(x) the potential function associated with ω∗
n,p;

i.e.,

U∗
n,p(x) :=

n
j=1

|x − x∗

j |
−p.

It is well-known (and easy to show) that

(n − 1)Ep(A; n + 1) ≥ (n + 1)Ep(A; n), (2.2)

from which it follows that

C∗(A, n, p) := min{U∗
n,p(x) : x ∈ A} ≥

1
n − 1

Ep(A; n); (2.3)

indeed, we have

2C∗(A, n, p) + Ep(A; n) ≥ Ep(A; n + 1),

and after multiplying this inequality by n − 1 and applying (2.2), we get (2.3). Thus lower
estimates for Ep(A; n) yield lower estimates for M p

n (A).
We next mention some known asymptotic results for Ep(A; n) as n → ∞. The following

theorem appearing in [10,4] has been referred to as the Poppy-seed Bagel Theorem because of its
interpretation for distributing points on a torus.
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Theorem 2.1. Let d ∈ N and A ⊂ Rm be an infinite compact d-rectifiable set. Then for p > d
we have

lim
n→∞

Ep(A; n)

n1+p/d =
C p,d

Hd(A)p/d , (2.4)

where C p,d is a finite positive constant (independent of A and m) and Hd(·) denotes the d-
dimensional Hausdorff measure in Rm normalized so that an embedded d-dimensional unit cube
has measure 1.

By a d-rectifiable set we mean the Lipschitz image of a bounded set in Rd .
In [13, Theorem 3.1] it is shown that C p,1 can be expressed in terms of the classical Riemann

zeta function; namely C p,1 = 2ζ(p). For d ≥ 2 the precise value of C p,d is not known. The
significance (and difficulty) of determining C p,d is deeply rooted in its connection to densest
sphere packings in Rd . For d = 2 it is conjectured in [11] that C p,2 = (

√
3/2)p/2ζL(p), where

L denotes the planar hexagonal lattice of points m(1, 0) + n(1/2,
√

3/2), m, n ∈ Z, and ζL is
the Epstein zeta function ζL(p) :=


X∈L ,X≠0 |X |

−p.
Concerning lower estimates for C p,d , it follows from [6, Proposition 4] that, for p > d ≥ 2

and 1
2 (p − d) not an integer,

C p,d ≥
dπ p/2

p − d

Γ


1 +
p−d

2


Γ

1 +

p
2


p/d

. (2.5)

For the case p = d , the minimum p-energy grows like n2 log n. The following result is given
in [10].

Theorem 2.2. Let d ∈ N and A be an infinite compact subset of a d-dimensional C1-manifold
embedded in Rm . Then

lim
n→∞

Ed(A; n)

n2 log n
=

βd

Hd(A)
,

where βd is the volume of the d-dimensional unit ball.

For the case when 0 < p < d := dim(A), the Hausdorff dimension of A, a theorem from
classical potential theory (cf., e.g. [12]) asserts that

lim
n→∞

Ep(A; n)

n2 = Wp(A), (2.6)

where Wp(A) is the so-called Wiener constant defined by

Wp(A) := inf


1
|x − y|p dµ(x) dµ(y),

the infimum being taken over all Borel probability measures µ supported on A.
From the above results and observations we immediately obtain the following.

Theorem 2.3. If A ⊂ Rm is an infinite compact set, then

M p
n (A) ≥

1
n − 1

Ep(A; n), n ≥ 2. (2.7)
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Let d ∈ N. If A is d-rectifiable, then

lim inf
n→∞

M p
n (A)

n p/d ≥
C p,d

Hd(A)p/d , p > d, (2.8)

where the constant C p,d is given in Theorem 2.1.
If A is any infinite compact subset of a d-dimensional C1-manifold, then

lim inf
n→∞

Md
n (A)

n log n
≥

βd

Hd(A)
, p = d. (2.9)

If A is any infinite compact subset of Rm , then

Mp(A) = lim
n→∞

M p
n (A)

n
≥ Wp(A), 0 < p < d = dim(A). (2.10)

We remark that inequality (2.7) appears in [7,8]. Also, as previously mentioned, the inequality
(2.10) is proved in [17]. Moreover, it follows from [7, Theorem 11] that equality holds in
(2.10) whenever the maximum principle is satisfied on A for Riesz potentials having kernel
K (x, y) = |x − y|

−p.
Regarding upper bounds for M p

n (A), standard arguments (see Section 5) yield the following.

Theorem 2.4. Let A ⊂ Rm be an infinite compact set. If Hd(A) > 0, then there exists a constant
cp > 0 depending only on p such that

M p
n (A) ≤

cp

p − d
n p/d , p > d, n ≥ 1, (2.11)

and there exists an absolute constant c1 > 0 such that

Md
n (A) ≤ c1n log n, p = d, n ≥ 2. (2.12)

If there exists a probability measure µA supported on A whose p-potential is bounded on A, say
1

|x − y|p dµA(y) ≤ wp, x ∈ A,

then

M p
n (A) ≤ nwp, p > 0, n ≥ 1. (2.13)

The essential property used in the proof of Theorem 2.4 given in Section 5 is that A is upper
d-regular with respect to a Borel probability measure µ supported on A; that is, there exists a
positive constant C0 such that for any open ball Bm(x, r) ⊂ Rm with center x ∈ A and radius
r > 0 there holds

µ(Bm(x, r) ∩ A) ≤ C0rd . (2.14)

This property is a consequence of Frostman’s Lemma (see [14, Chapter 8]).
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3. Polarization inequalities for the unit sphere and unit ball

Let

Sd
:= {x ∈ Rd+1

: |x| = 1} and Bd
:= {x ∈ Rd

: |x| ≤ 1}. (3.1)

Utilizing the results of Section 2 together with the known facts (cf. [12]) that

Wp(Sd) =


1

|x − y|p dσd(x) dσd(y)

= 2d−p−1
Γ


d+1
2


Γ


d−p
2


√

π Γ

d −

p
2

 , 0 < p < d, (3.2)

where σd denotes the normalized surface area on Sd , and

Wp(Bd) =

Γ


d−p
2


Γ
 p

2 + 1


Γ
 d

2

 , d − 2 ≤ p < d, p > 0, (3.3)

we shall prove the following two theorems.

Theorem 3.1. For the sphere Sd , d ≥ 2, we have

lim inf
n→∞

M p
n (Sd)

n p/d ≥ C p,d

 Γ


d+1
2


2π (d+1)/2

p/d

, p > d; (3.4)

lim
n→∞

M p
n (Sd)

n log n
=

1
d

Γ


d+1
2


√

π Γ
 d

2

 =: τd , p = d; (3.5)

lim
n→∞

M p
n (Sd)

n
= 2d−p−1

Γ


d+1
2


Γ


d−p
2


√

π Γ

d −

p
2

 , 0 < p < d. (3.6)

Furthermore, the following upper estimates hold for all n ≥ 3.

M p
n (Sd) ≤




npτd

p − d

p/d

, p > d,

τd
n[log n + log(log n) + log(2dτd)]

1 − (log n)−1 , p = d,

n2d−p−1
Γ


d+1
2


Γ


d−p
2


√

π Γ

d −

p
2

 , 0 < p < d.

(3.7)

Theorem 3.2. For the unit ball Bd , we have

lim inf
n→∞

M p
n (Bd)

n p/d ≥ C p,d


Γ
 d

2 + 1


πd/2

p/d

, p > d; (3.8)
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lim
n→∞

M p
n (Bd)

n log n
= 1, p = d; (3.9)

lim
n→∞

M p
n (Bd)

n
=

Γ


d−p
2


Γ
 p

2 + 1


Γ
 d

2

 , 0 ≤ d − 2 < p < d, p > 0; (3.10)

M p
n (Bd)

n
= 1, 0 < p ≤ d − 2, n = 1, 2, . . . . (3.11)

Furthermore, the following upper estimates hold for all n ≥ 3:

M p
n (Bd) ≤




pn

p − d

p/d

, p > d,

n[log n + log(log n) + d log 2]

1 − (log n)−1 , p = d,

nΓ


d−p
2


Γ
 p

2 + 1


Γ
 d

2

 d − 2 < p < d, p > 0.

(3.12)

Remark 1. It is easily seen that for p > d and n ≥ 2d , we have M p
n (Bd) ≥ 4−pn p/d . Indeed,

let {x1, x2, . . . , xm} be a maximal δ-net in Bd with δ := 4n−1/d . Then

mβd(δ/2)d
≤ βd(1 + δ/2)d ,

so

m ≤


1 + δ/2

δ/2

d

≤


4
δ

d

≤ n.

Also, for every x ∈ Bd , there is an xk ∈ {x1, x2, . . . , xm} such that |x − xk | ≤ δ. Therefore,
m

j=1

|x − x j |
−p

≥ |x − xk |
−p

≥ δ−p
= 4−pn p/d .

Observe further that for the case 0 < p < d , we have M p
n (Bd) ≥ n since we can take all the

points x j equal to 0, the center of the unit ball Bd , and, moreover, such points are optimal in the
case when 0 < p ≤ d − 2 (see the proof of (3.11) in Section 5).

Remark 2. For the case p > d the above theorems establish the asymptotically sharp order
(namely n p/d ) but not the sharp coefficient for the unit sphere and unit ball. Note, however, from
the lower estimates in (2.5), (3.4) and (3.8) that, for A = Bd or A = Sd , we have

lim
p→d+


lim inf
n→∞

M p
n (A)

n p/d


= ∞.

This is clearly consistent with the upper bounds provided in Theorems 3.1 and 3.2 for the case
p > d .

We conclude this section with the following conjectures, which would be analogs of
Theorems 2.1 and 2.2.



Author's personal copy
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Conjecture 1. Let p > d and m ≥ d, where p and m are integers. We conjecture that for every
infinite compact d-rectifiable set A in Rm , there should hold

lim
n→∞

M p
n (A)

n p/d =
σp,d

Hd(A)p/d , (3.13)

where σp,d is a positive and finite constant independent of A and m.
We further conjecture that if A is d-rectifiable with Hd(A) > 0, then any sequence {ω∗

n}
∞

n=2
of p-polarization maximizing configurations on A is asymptotically uniformly distributed on A
with respect to Hd .

In particular, (1.4) implies that the constant σp,1 appearing in this conjecture would have to
equal 2(2p

− 1)ζ(p).

Conjecture 2. Let d ∈ N and A be an infinite compact subset of a d-dimensional C1-manifold
embedded in Rm . Then we conjecture that

lim
n→∞

M p
n (A)

n log n
=

βd

Hd(A)
, (3.14)

where βd is the volume of the d-dimensional unit ball.

The results of this section assert that (3.14) holds for spheres and balls.

4. Polarization on the unit circle

In this section we explore some connections between polynomial inequalities and the
polarization inequality recently proved in [9]. Let gbe a positive-valued even function defined
on R \ (2πZ) that is periodic with period 2π . We denote by Ωn the collection of all sets

ωn := {t1 < t2 < · · · < tn} ⊂ [0, 2π)

and put

ωn := {t1 <t2 < · · · <tn} ⊂ [0, 2π)

with t j := 2( j − 1)π/n, j = 1, 2, . . . , n.

We introduce the notation

Pωn(t) :=

n
j=1

g(t − t j ), Pωn (t) :=

n
j=1

g(t −t j ).

In [9] the following theorem is proved.

Theorem 4.1. Let g be a positive-valued even function defined on R \ (2πZ) that is periodic
with period 2π . If g is non-increasing and strictly convex on (0, π], then

max
ωn∈Ωn


min

t∈[−π,π)
Pωn (t)


= Pωn (π/n).
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In fact, a closer look at the proof of the main result in [9] shows that the following Riesz
lemma type improvement also holds.

Theorem 4.2. Let g be a positive-valued even function defined on R \ (2πZ) that is periodic
with period 2π . If g is non-increasing and strictly convex on (0, π], then there is a number
γ ∈ [0, 2π) (depending on ωn) such that

Pωn (t) ≤ Pωn (t − γ ), t ∈ (γ, γ + 2π/n),

for every ωn ∈ Ωn .

A consequence of Theorem 4.2 is the following discrete version of Theorem 4.1.

Theorem 4.3. Let g be a positive-valued even function defined on R \ (2πZ) that is periodic
with period 2π . If g is non-increasing and strictly convex on (0, π], then

max
ωn∈Ωn


min
t∈ω2n

Pωn (t)


= Pωn (π/(2n)),

and equality holds when ωn = ω∗
n = {t∗1 < t∗2 < · · · < t∗n } with

t∗j =
π

2n
+

2( j − 1)π

n
, j = 1, 2, . . . , n.

Proof. Let γ be the number guaranteed by Theorem 4.2. Observe thatω2n has exactly two points
in the interval (γ, γ + 2π/n) (mod 2π ). Denote these points by α and β = α + π/n. Due to the
fact that Pωn is non-increasing on (0, π/n) and

Pωn (t) = Pωn (2π/n − t), t ∈ (0, 2π/n),

we have

min{Pωn (α − γ ), Pωn (β − γ )} ≤ Pωn (π/(2n)),

which finishes the proof of the inequality of the theorem. The fact that equality holds in the case
described in the theorem is obvious. �

Associated with ωn := {t1 < t2 < · · · < tn} ⊂ [0, 2π) let

Qωn (t) :=

n
j=1

sin


t − t j

2


.

Let

Tn(t) := Qωn (t) = 21−n sin


nt
2


.

Our next three theorems are consequences of Theorems 4.2 and 4.3.

Theorem 4.4. There is a number γ ∈ [0, 2π) (depending on ωn) such that

−(log |Qωn |)
(m)(t) ≤ −(log |Tn|)(m)(t), t ∈ (γ, γ + 2π/n),

for every ωn ∈ Ωn and for every even integer m > 0.
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Theorem 4.5. Let

E(ωn) := [0, 2π) \

n
j=1


t j − π/n, t j + π/n


(mod 2π).

We have

max
ωn∈Ωn


min

t∈E(ωn)
−(log |Qωn |)

(m)(t)


= −(log |Tn|)(m)(π/n)

for every even integer m > 0.

Theorem 4.6. We have

max
ωn∈Ωn


min
t∈ω2n

−(log |Qωn |)
(m)(t)


= −(log |Tn|)(m)(π/(2n)),

for every even integer m > 0, and equality holds when ωn = ω∗
n = {t∗1 < t∗2 < · · · < t∗n } with

t∗j =
π

2n
+

2( j − 1)π

n
, j = 1, 2, . . . , n.

Proof of Theorem 4.4. For the sake of brevity let Q := Qωn (t). Let t ∉ ωn (mod 2π). We have

(log |Q|)′′(t) =


Q′

Q

′

(t) =
d
dt


1
2

n
j=1

cot


t − t j

2


= −

1
4

n
j=1

csc2


t − t j

2


,

and hence

−(log |Q|)(m)(t) =
1
4

n
j=1

f (m−2)(t − t j ) =

n
j=1

gm(t − t j ),

where f (t) := csc2(t/2) and gm(t) :=
1
4 f (m−2)(t). It is well known and elementary to check

that

tan t =

∞
j=1

a j t j , t ∈ (−π/2, π/2),

with each a j ≥ 0, j = 1, 2, . . . . Hence, if h(t) = tan(t/2), then

h(k)(t) > 0, t ∈ (0, π), k = 0, 1, . . . .

Now observe that

f (t) = csc2


t
2


= sec2


π − t

2


= 2h′(π − t),

and hence,

(−1)k f (k)(t) = 2h(k+1)(π − t) > 0, t ∈ (0, π).

This implies that if m > 0 is an even integer, gm(t) =
1
4 f (m−2)(t) is a positive, decreasing,

strictly convex function on (0, π). It is also clear that if m is even, then gm is even since f is
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even. Now we can apply Theorem 4.2 to deduce that there is a number γ ∈ [0, 2π) (depending
on ωn) such that

−(log |Qωn |)
(m)(t) =

n
j=1

gm(t − t j ) ≤ −(log |Tn|)(m)(t), t ∈ [γ, γ + 2π/n),

and the proof is finished. �

Proof of Theorem 4.5. The theorem follows from Theorem 4.4 immediately. �

Proof of Theorem 4.6. We use the notation and the observations in the proof of Theorem 4.4.
However, at the end of the proof we use Theorem 4.3 to deduce that

min
t∈ω2n

Qωn (t) ≤ Tn(π/(2n)),

and equality holds when Qωn = Tn . �
We conclude this section by giving an independent proof of the unit circle polarization

conjecture in [2] for the case p = 4, where we show that, for z1, z2, . . . , zn ∈ S1, a “good
polarization point” z0 ∈ S1 can be chosen so that

n
j=1

|z0 − z j | = max
z∈S1

n
j=1

|z − z j |. (4.1)

Theorem 4.7. If z1, z2, . . . , zn ∈ S1, then

min
z∈S1

n
j=1

1
|z − z j |4

≤
n4

48
+

n2

24
, n ≥ 1,

and equality holds when the points z j are distinct and equally spaced on S1; that is, (1.5) holds.
Moreover, if z1, z2, . . . , zn ∈ S1, and z0 ∈ S1 is chosen so that (4.1) holds, then

n
j=1

1
|z0 − z j |4

≤
n4

48
+

n2

24
, n ≥ 1.

This result naturally suggests the following open question.

Problem. For what values of p ∈ (0, ∞) is it true that
n

j=1

1
|z0 − z j |p ≤ M p

n (S1)

whenever z1, z2, . . . , zn ∈ S1 and z0 ∈ S1 satisfies (4.1)?

In addition to the value p = 4, a closer look at the main result in [2] shows that p = 2 is also
such a value.

Proof of Theorem 4.7. Write z j = ei t j , t j ∈ [0, 2π), j = 1, 2, . . . , n, and set

Qn(t) :=

n
j=1

sin


t − t j

2


.
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Then Hn defined by Hn(t) := Qn(2t) is a real trigonometric polynomial of degree n. We have
the following identities:

Q′
n(t)

Qn(t)
=

1
2

n
j=1

cot


t − t j

2


,


Q′

n

Qn

′

(t) = −
1
4

n
j=1

csc2


t − t j

2


= −

1
4

n
j=1

sin−2


t − t j

2


,


Q′

n

Qn

′′

(t) =
1
4

n
j=1

cos


t − t j

2


sin−3


t − t j

2


,


Q′

n

Qn

′′′

(t) =
1
4

n
j=1


sin−2


t − t j

2


−

3
2

sin−4


t − t j

2


,

so

3
8

n
j=1

sin−4


t − t j

2


= −


Q′

n

Qn

′′′

(t) −


Q′

n

Qn

′

(t).

On the other hand,
Q′

n

Qn

′′′

=
Q(4)

n

Qn
− 3Q′′′

n
Q′

n

Q2
n

− 3Q′′
n


Q′′

n Q2
n − 2Qn Q′

n Q′
n

Q4
n


+ Q′

n


1

Qn

′′′

and 
Q′

n

Qn

′

=
Q′′

n

Qn
−


Q′

n

Qn

2

.

Hence
Q′

n

Qn

′′′

(t0) =
Q(4)

n

Qn
(t0) − 3


Q′′

n

Qn

2

(t0) and


Q′
n

Qn

′

(t0) =
Q′′

n

Qn
(t0)

at every point t0 such that Q′
n(t0) = 0. So if z0 = ei t0 ∈ S1 is chosen so that

|Qn(t0)| = max
t∈[−π,π ]

|Qn(t)|,

then

6
n

j=1

1
|z0 − z j |4

=


3


Q′′
n

Qn

2

−
Q(4)

n

Qn
−

Q′′
n

Qn


(t0)

=


3
16


H ′′

n

Hn

2

−
1
16

H (4)
n

Hn
−

1
4

H ′′
n

Hn


t0
2


.

Without loss of generality we may assume that t0 = 0 and z0 = 1.
Set

F(Hn) :=


3
16

(H ′′
n )2

−
1

16
H (4)

n −
1
4

H ′′
n


(0)
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and let An be the set of all real trigonometric polynomials Hn of degree at most n such that

Hn(0) = max
t∈[−π,π ]

|Hn(t)| = 1.

A simple compactness argument shows that there is a Hn ∈ An such that

F(Hn) = sup
Hn∈An

F(Hn).

Let

Un(t) :=
1
2
(Hn(t) + Hn(−t)).

Then Un ∈ An is even and F(Un) = F(Hn). Since Un ∈ An is even, it is of the formUn(t) =: Pn(cos t)

for a Pn ∈ Pn satisfyingPn(1) = max
x∈[−1,1]

|Pn(x)| = 1,

where Pn denotes the set of all real algebraic polynomials of degree at most n.
Observe that Un ∈ An is even if and only if it is of the form

Un(t) =: Pn(cos t)

for a Pn ∈ Pn satisfying

Pn(1) = max
x∈[−1,1]

|Pn(x)| = 1.

A simple calculation shows that

Un(0) = Pn(1), U ′′
n (0) = −P ′

n(1), U (4)
n (0) = 3P ′′

n (1) + P ′
n(1).

Let

G(Pn) := F(Un) =


3

16
(U ′′

n )2
−

1
16

U (4)
n −

1
4

U ′′
n


(0)

=
3
16

((P ′
n)2

− P ′′
n + P ′

n)(1).

We have

G(Pn) = F(Un) ≤ F(Hn) = F(Un) = G(Pn)

for every Pn ∈ Pn such that

Pn(1) = max
x∈[−1,1]

|Pn(x)| = 1.

Next we show by a simple variational method that Pn ∈ Pn equioscillates between −1 and 1
at least n times on [−1, 1]. That is, there are

−1 ≤ yn < yn−1 < · · · < y1 = 1

such thatPn(y j ) = (−1) j−1, j = 1, 2, . . . , n.
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To show this, first we observe that P ′
n(1) > 0 since P ′

n(1) ≥ 0, and Markov’s inequality for the
second derivative (see p. 249 of [5]) together with P ′

n(1) = 0 would imply that

G(Pn) =
3

16
((P ′

n)2
− P ′′

n + P ′
n)(1) =

−3
16

P ′′
n (1)

≤
3

16
T ′′

n (1) =
3

16
n2(n2

− 1)

3
<

1
16

(2n4
+ 4n2) = G(Tn),

where Tn is the Chebyshev polynomial of degree n defined by Tn(cos t) = cos(nt), and this
contradicts the extremal property of Pn . Now let

E := {y ∈ [−1, 1] : |P(y)| = 1}.

We list the elements of E as

E = {1 = y1 > y2 > · · · > yµ},

wherePn(yk j ) = Pn(yk j +1) = · · · = Pn(yk j+1−1), j = 0, 1, . . . , m − 1,

and Pn(yk j ) = −Pn(yk j −1) = (−1) j , j = 1, 2, . . . , m − 1,

for some

1 = k0 < k1 < · · · < km = µ + 1.

Now we pick

α j ∈ (yk j , yk j −1), j = 1, 2, . . . , m − 1.

Assume that m ≤ n − 1. For the polynomial Rn ∈ Pn defined by

Rn(x) := (x − 1)2
m−1
j=1

(x − α j )

we have

Rn(y)Pn(y) > 0, y ∈ E \ {1},

Rn(1) = R′
n(1) = 0 and R′′

n (1) > 0.

These properties together with P ′
n(1) > 0 imply that for a sufficiently small value of ε > 0 the

polynomial

Sn = Pn − εRn ∈ Pn

satisfies

Sn(1) = max
x∈[−1,1]

|Sn(x)| = 1

and G(Sn) > G(Pn), so Sn ∈ Pn contradicts the extremal property of Pn . This finishes the proof
of the fact that Pn ∈ Pn equioscillates between −1 and 1 at least n times on [−1, 1], as we
claimed.
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As a consequence, the Intermediate Value Theorem implies that Pn has at least n − 1 zeros in
(−1, 1), say

(−1 <)xn−1 < xn−2 < · · · < x1(< 1).

Observe that the polynomial Pn ∈ Pn has an odd number of zeros (by counting multiplicities) in
each of the intervals (y j+1, y j ) for j = 1, 2, . . . , n − 1; hence x j is the only (simple) zero of Pn
in (y j+1, y j ) for each j = 1, 2, . . . , n − 1. Therefore Pn has only real zeros and it is of the form

Pn(x) = c
µ

j=1

(x − x j )

with either µ = n − 1 or µ = n, and in the case µ = n we have xn ∈ R \ [yn, 1].
Note thatP ′

n(x)Pn(x)
=

µ
j=1

1
x − x j

,

 P ′
n(x)Pn(x)

′

= −

µ
j=1

1
(x − x j )2 ,

and

G(Pn) =
3

16


(P ′

n)2
− P ′′

n
Pn

(Pn)2
+

P ′
nPn


(1) =

3
16


µ

j=1

1
(1 − x j )2 +

µ
j=1

1
(1 − x j )


.

If µ = n − 1, then Pn equioscillates between −1 and 1 on [−1, 1] the maximum number of
times, so Pn ≡ Tn−1, where Tn−1 is the Chebyshev polynomial of degree n − 1 defined by
Tn−1(cos t) = cos((n − 1)t). Hence

G(Pn) =
3

16


µ

j=1

1
(1 − x j )2 +

µ
j=1

1
1 − x j



=
3

16


(T ′

n−1)
2
− T ′′

n−1Tn−1

T 2
n−1

+
T ′

n−1

Tn−1


(1)

=
3

16


(n − 1)4

−
(n − 1)2((n − 1)2

− 1)

3
+ (n − 1)2


=

1
8
(n − 1)4

+
1
4
(n − 1)2.

If µ = n we must have xn ∈ (−∞, yn) ∪ (1, ∞). However, 1 < xn would imply that

Yn(x) := −c(x − (2 − xn))

n−1
j=1

(x − x j )

satisfies

Yn(1) = max
x∈[−1,1]

|Yn(x)| = 1 and G(Yn) = G(Pn),

and hence Yn ∈ Pn also shares the extremal property of Pn while it has all its zeros in (−∞, 1).
Hence xn < yn < xn−1. But then Pn is just the Chebyshev polynomial Tn transformed linearly
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from the interval [−1, 1] to [η, 1] for some η ≤ −1. This implies that

G(Pn) =
3

16


µ

j=1

1
(1 − x j )2 +

µ
j=1

1
1 − x j



=
3

16


2

1 − η

2
(T ′

n)2
− T ′′

n Tn

T 2
n

+
2

1 − η

T ′
n

Tn


(1)

≤
3

16


n4

−
n2(n2

− 1)

3
+ n2


=

1
8

n4
+

1
4

n2.

Now we conclude that

G(Pn) ≤ G(Tn) =
1
8

n4
+

1
4

n2,

and hence

F(Hn) = G(Pn) ≤ G(Tn) =
1
8

n4
+

1
4

n2.

Therefore

6
n

j=1

1
|z0 − z j |4

= F(Hn) ≤ F(Hn) ≤ G(Tn) =
1
8

n4
+

1
4

n2,

and this completes the proof. �
We conclude this section by mentioning two formulas that may be useful for future

investigation of the polarization problem for the unit circle. Let

Ap(t) :=

n
j=1

1
|ei t − z j |p , p > 0,

where z j = ei t j ∈ S1, j = 1, 2, . . . , n. Then a straightforward calculation yields the following:

A2(t) =
(Q′

n(t))2
− Q′′

n(t)Qn(t)
(Qn(t))2 with Qn(t) :=

n
j=1

sin


t − t j

2


,

and

Ap+2(t) =
1

p2 + p


A′′

p(t) +
p2

4
Ap(t)


, p > 0.

5. Proofs of Theorems 2.4, 3.1 and 3.2

Proof of Theorem 2.4. We proceed with an argument similar to that in [11]. Let ωn = {x j }
n
j=1

⊂ A. Setting

rn := (2nC0)
−1/d , D j := A \ Bm(x j , rn), D := ∩

n
j=1 D j ,

we have from (2.14) that

µ(D) ≥ 1 −

n
j=1

µ(Bm(x j , rn) ∩ A) ≥ 1 − nC0rd
n =

1
2
.
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Thus, for

fn(x) :=

n
j=1

|x − x j |
−p,

we obtain

M p(ωn, A) ≤
1

µ(D)


D

fn(x) dµ(x) ≤ 2
n

j=1


D j

|x − x j |
−p dµ(x). (5.1)

Next, we bound the integrals over D j utilizing (2.14):
D j

|x − x j |
−p dµ(x) =


∞

0
µ{x ∈ D j : |x − x j |

−p > t} dt

≤ 1 +

 r−p
n

1
µ(Bm(x j , t−1/p) ∩ A) dt

≤ 1 + C0

 r−p
n

1

1
td/p dt,

where we assume that n is sufficiently large so that r−p
n > 1. Thus from (5.1) it follows that

M p(ωn, A) ≤ 2n


1 + C0

 r−p
n

1

1
td/p dt


. (5.2)

Consequently, for p > d we get

M p(ωn, A) ≤ 2n


1 + C0
p

p − d
[rd−p

n − 1]


≤

cp

p − d
n p/d (5.3)

and for p = d we obtain

Md(ωn, A) ≤ 2n[1 + C0 log(r−d
n )] = 2n[1 + C0 log(2nC0)] ≤ c1n log n. (5.4)

This completes the proof of parts (2.11) and (2.12) of Theorem 2.4, while (2.13) follows
immediately upon integration of fn(x) with respect to dµA. �

Proof of Theorem 3.1. Inequality (3.4) is an immediate consequence of (2.8), while Eq. (3.6)
follows from (3.2), (2.10), and the last assertion in Theorem 2.4, since

|x − y|
−p dσd(y) = Wp(Sd), x ∈ Sd , p < d. (5.5)

To prove Eq. (3.5), we first note that from (2.9) we have

lim inf
n→∞

M p
n (Sd)

n log n
≥

βd

Hd(Sd)
=

1
d

Γ


d+1
2


√

π Γ
 d

2

 = τd .

Hence, if we establish the upper estimate in (3.7) for p = d , then (3.5) will follow. For this
purpose, we refine the argument used in the proof of Theorem 2.4. With µ = σd , the following
estimates are known for x ∈ Sd (cf. [11]):

σd(Bd+1(x, r) ∩ Sd) ≤ τdrd , (5.6)
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and 
Sd\Bd+1(x,r)

|x − y|
−d dσd(y) = dτd2−d/2

 1−r2/2

−1
(1 − t)−1(1 + t)

d
2 −1 dt

≤ dτd log(2/r),

for 0 < r < 2. Utilizing these estimates and using (5.1) with rn = (τdn log n)−1/d , D j =

Sd
\ Bd+1(x j , rn), and n ≥ 3, we obtain

Md(ωn, A) ≤
1

1 − nτdrd
n

n
j=1


D j

|x − x j |
−d dσd(x) ≤

nd
1 − nτdrd

n
τd log(2/rn)

=
nd

1 − (log n)−1 τd


log 2 +

1
d

log(τdn log n)


= τd

n[log n + log(log n) + log(2dτd)]

1 − (log n)−1 .

This completes the proof of (3.5) as well as the upper bound in (3.7) for the case p = d.
It remains to establish (3.7) for the cases p < d and p > d. But, as observed above, the

former is a consequence of (2.13) and (5.5). So hereafter we assume p > d . From the estimate
Sd\Bd+1(x,r)

|x − y|
−p dσd(y) = dτd2−p/2

 1−r2/2

−1
(1 − t)−

p
2 +

d
2 −1(1 + t)

d
2 −1 dt

≤ dτd2−
p
2 +

d
2 −1

 1−r2/2

−1
(1 − t)−

p
2 +

d
2 −1 dt

=
dτd

p − d
[r−p+d

− 2−p+d
], r < 2,

and inequality (5.5), we deduce (as above) that

M p(ωn, A) ≤
n

1 − nτdrd


dτd

p − d


r−p+d . (5.7)

In this case, an optimal choice for r is

r = rn =


p − d
npτd

1/d

,

which when substituted in (5.7) yields the estimate stated in inequality (3.7) for the case
p > d. �

Proof of Theorem 3.2. Assertion (3.8) is immediate from (2.8). Also the upper bounds in (3.12)
for the cases p > d and p = d, can be established in the same way as in the proof of
Theorem 3.1, with the measure σd replaced by normalized d-dimensional Lebesgue measure
(volume measure). We leave the details for the reader. Furthermore, (3.9) follows from (3.12)
together with Theorem 2.2.

For the case d − 2 < p < d, p > 0, the upper estimate in (3.12) follows from (3.3), (2.13),
and the fact that

1
|x − y|p dµp(y) ≤ Wp(Bd), x ∈ Bd ,
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where µp is the p-equilibrium probability measure on Bd (cf. [12]). Together with (2.10), we
also deduce (3.10). (Alternatively, one can apply the result of [7, Theorem 11] mentioned in
Section 2 to deduce (3.10).)

It remains to establish (3.11). For this purpose observe that for the range 0 < p < d − 2,
the kernel K (x, y) = |x − y|

−p is superharmonic, so that the minimum principle applies. Let
ωn = {x1, x2, . . . , xn} be a list of n points (not necessarily distinct) in Bd and set

U (x) :=

n
k=1

1
|x − xk |p .

We claim that

M p(ωn, Bd) = min{U (x) : x ∈ Bd
} ≤ n, (5.8)

from which (3.11) will follow, since on taking all points xk to be at zero, we get that M p
n (Bd) ≥ n.

To establish (5.8), let σd−1 denote normalized surface area measure on the boundary Sd−1 of Bd .
By the minimum principle we have

M p(ωn, Bd) = min{U (x) : x ∈ Sd−1
} ≤


Sd−1

U (x) dσd−1(x). (5.9)

Again applying the minimum principle, it follows that

V (y) :=


Sd−1

1
|x − y|p dσd−1(x)

satisfies 1 = V (0) ≥ min{V (y) : |y| = r} for each 0 ≤ r ≤ 1. But as is easily seen, V is constant
on each sphere |y| = r , from which we deduce that 1 ≥ V (y) for all y ∈ Bd . Therefore, from
(5.9) we obtain

M p(ωn, Bd) ≤

n
k=1

V (xk) ≤ n,

which establishes the claim and completes the proof. �
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