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Abstract. Let G be a bounded Jordan domain in the complex plane.
The Bergman polynomials {pn}∞n=0 of G are the orthonormal polynomi-
als with respect to the area measure over G. They are uniquely defined
by the entries of an infinite upper Hessenberg matrix M . This ma-
trix represents the Bergman shift operator of G. The main purpose of
the paper is to describe and analyze a close relation between M and
the Toeplitz matrix with symbol the normalized conformal map of the
exterior of the unit circle onto the complement of G. Our results are
based on the strong asymptotics of pn. As an application, we describe
and analyze an algorithm for recovering the shape of G from its area
moments.

1. Introduction

Let G be a bounded simply-connected domain in the complex plane C,
whose boundary Γ := ∂G is a Jordan curve and let {pn}∞n=0 denote the
sequence of Bergman polynomials of G. This is the unique sequence of
polynomials

pn(z) = λnz
n + · · · , λn > 0, n = 0, 1, 2, . . . , (1.1)

that are orthonormal with respect to the inner product

⟨f, g⟩ :=
∫
G
f(z)g(z)dA(z),

where dA stands for the area measure. We denote by L2
a(G) the Hilbert

space of all functions f analytic in G for which

∥f∥L2(G) := ⟨f, f⟩1/2 < ∞,

and recall (cf. [6]) that the polynomials {pn}∞n=0 form a complete orthonor-
mal system for L2

a(G).
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Let Ω := C \ G denote the complement of G in C and let Φ denote the
conformal map Ω → ∆ := {w : |w| > 1}, normalized so that near infinity

Φ(z) = γz + γ0 +
γ1
z

+
γ2
z2

+ · · · , γ > 0. (1.2)

Finally, let Ψ := Φ−1 : ∆ → Ω denote the inverse conformal map. Then,

Ψ(w) = bw + b0 +
b1
w

+
b2
w2

+ · · · , |w| > 1, (1.3)

with
b = 1/γ = cap(Γ), (1.4)

where cap(Γ) denotes the (logarithmic) capacity of Γ.
On L2

a(G) we consider the multiplication by z operator (also known as
the Bergman shift operator) M : f → zf . Note that M defines a bounded,
noncompact, linear operator on L2

a(G) and that

σess(M) = Γ; (1.5)

see [1], where we use σess(L) to denote the essential spectrum of a bounded
linear operator L; that is, the set of all λ ∈ C for which L − λI is not a
Fredholm operator. For the operators we consider, the essential spectrum is
the same as the continuous spectrum.

We also consider the matrix representation of M in terms of the orthonor-
mal basis {pn}∞n=0. This induces the upper Hessenberg matrix

M =



b00 b01 b02 b03 b04 · · ·
b10 b11 b12 b13 b14 · · ·
0 b21 b22 b23 b24 · · ·
0 0 b32 b33 b34 · · ·
0 0 0 b43 b44 · · ·
...

...
...

. . .
. . .

. . .


, (1.6)

where
bk,j = ⟨zpj , pk⟩, k ≥ 0, j ≥ 0. (1.7)

Note that bk,j = 0 for k ≥ j + 2 and that

zpn(z) =
n+1∑
k=0

bk,npk(z). (1.8)

In particular,

bn+1,n =
λn

λn+1
> 0, n = 0, 1, . . . . (1.9)

It follows

bn+1,npn+1(z) = zpn(z)−
n∑

k=0

bk,npk(z) (1.10)

and, hence, the entries of M define uniquely the sequence of Bergman poly-
nomials of G, in the sense that pn+1, n = 0, 1, . . ., can be computed recur-
sively from (1.10).
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It is shown in [11] and [9] (see also [12, Thm 2.4]) that except for some
trivial cases, the matrix (1.6) is not banded; i.e., the pn’s do not satisfy
a recurrence relation of bounded length. It is also well-known that the
eigenvalues of the n × n principal submatrix of M coincide with the zeros
of pn(z).

Our goal is to investigate the asymptotic behavior of the entries in the
matrix M . In particular, we show that if the boundary of G is piecewise
analytic without cusps, then all the diagonals (sub, super and main) have
limits which are the coefficients of the Laurent expansion (1.3) of the inverse
conformal map Ψ:

lim
n→∞

bn+1,n = b and lim
n→∞

bn−k,n = bk, k = 0, 1, . . . . (1.11)

A potential application of (1.11) is in the area of geometric tomography,
where the following inverse problem arises: Given a finite number of complex
moments

µkj := ⟨zk, zj⟩ =
∫
G
zkzj dA(z), k, j = 0, 1, . . . , (1.12)

how can one approximate the region G that generated these moments? Re-
garding existence and uniqueness, we note a result of Davis and Pollak [4]
stating that the infinite matrix [µm,k]

∞
m,k=0 defines uniquely the curve Γ. By

utilizing the given moments to compute Bergman polynomials, and thereby
a principal submatrix of M , the subdiagonals of the submatrix will provide
an approximation to the Laurent coefficients of the mapping of the unit
circumference onto the boundary of G. We will discuss this procedure in
Section 3.

We note that there is a one-to-one correspondence between the complex
moments (1.12) and the real moments

τmn :=

∫
G
xmyn dxdy, m, n = 0, 1, . . . . (1.13)

Namely,

µm,n =

m∑
j=0

n∑
k=0

im−jin−k

(
m

j

)(
n

k

)
τj+k,m+n−j−k, i :=

√
−1, (1.14)

or, in the inverse direction,

τm,n = (−i)n2−m−n
m∑
j=0

n∑
k=0

(
m

j

)(
n

k

)
µj+k,m+n−j−k; (1.15)

see [4]. Thus, the moments in (1.12) will uniquely determine the moments
in (1.13) and vice-versa.

The Faber polynomials {Fn}∞n=0 of G are defined as the polynomial part
of the expansion of Φn(z), n = 0, 1, . . ., near infinity, that is,

Φn(z) = Fn(z)− En(z), z ∈ Ω, (1.16)
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where

Fn(z) = γnzn + · · · and En(z) = O

(
1

z

)
, z → ∞. (1.17)

The Faber polynomial of the 2nd kind, Gn(z), is defined as the polynomial
part of Φn(z)Φ′(z), that is,

Gn(z) = Φn(z)Φ′(z)−Hn(z), z ∈ Ω, (1.18)

where

Gn(z) = γn+1zn + · · · and Hn(z) = O

(
1

z2

)
, z → ∞. (1.19)

It follows immediately from (1.16) and (1.18) that

Gn(z) =
F ′
n+1(z)

n+ 1
and Hn(z) =

E′
n+1(z)

n+ 1
. (1.20)

It is well-known that the Faber polynomials of the 2nd kind satisfy the
following recurrence relation (see [5, p. 52]):

zGn(z) = bGn+1(z) +

n∑
j=0

bjGn−j(z), G0(z) ≡ b. (1.21)

Consider now the Toeplitz (and upper Hessenberg) matrix TΨ defined by
the continuous function Ψ(w) on T := {w : |w| = 1}, that is,

TΨ :=



b0 b1 b2 b3 b4 · · ·
b b0 b1 b2 b3 · · ·
0 b b0 b1 b2 · · ·
0 0 b b0 b1 · · ·
0 0 0 b b0 · · ·
...

...
...

. . .
. . .

. . .


. (1.22)

It follows from (1.21) that the eigenvalues of the n×n principal submatrix of
TΨ coincide with the zeros of Gn(z); see also [15]. This is a relation similar
to the one connecting the upper Hessenberg matrix M with the Bergman
polynomials {pn}∞n=0.

In [13, §7.8] it is shown that if Γ is piecewise analytic without cusps, then

|bn| ≤ c1(Γ)
1

n1+ω
, n ∈ N, (1.23)

where ωπ (0 < ω < 2) is the smallest exterior angle of Γ. (Hereafter, we
use ck(Γ), k = 1, 2, . . ., to denote a non-negative constant that depends
only on Γ.) Therefore, in this case, the symbol Ψ of the Toeplitz matrix TΨ

belongs to the Wiener algebra, which leads to the conclusion that TΨ defines
a bounded linear operator on the Hilbert space l2 and that

σess(TΨ) = Γ; (1.24)

see e.g. [2, p. 1–10].



5

We end this section by noting a result, regarding a property of Hn, that
we are going to use in Section 5. A proof can be found in [13, Lem. 2.1].

Lemma 1.1. For any n ∈ N, Hn is analytic and square integrable in Ω.

2. Main results

In this section we state and discuss our main results. Their proofs are
given in Section 5. Section 3 contains applications of our results to the
recovery of planar regions.

From (1.5) and (1.24) it follows that

σess(M) = σess(TΨ). (2.1)

The next theorem shows that the connection between the matrices M and
TΨ is much more substantial.

Theorem 2.1. Assume that Γ is piecewise analytic without cusps. Then, it
holds as n → ∞, √

n+ 2

n+ 1
bn+1,n = b+O

(
1

n

)
, (2.2)

and for k ≥ 0, √
n− k + 1

n+ 1
bn−k,n = bk +O

(
1√
n

)
, (2.3)

where O depends on k but not on n. (See (5.17) for more precise estimates.)

Improvements in the order of convergence occur in cases when Γ is smooth.
In order to state the corresponding results we need to introduce the smooth-
ness class C(q, α) of Jordan curves. We say that Γ belongs to C(q, α), q ∈ N,
if Γ is defined by z = g(s), where s denotes arclength, with g(q) ∈ Lipα,
for some 0 < α < 1. Then both Φ and Ψ := Φ−1 are q times continuously
differentiable in Ω \ {∞} and ∆ \ {∞} respectively, with Φ(q) and Ψ(q) in
Lipα: see, e.g., [14, p. 5].

Theorem 2.2. Assume that Γ ∈ C(p + 1, α), with p + α > 1/2. Then, it
holds as n → ∞, √

n+ 2

n+ 1
bn+1,n = b+O

(
1

n2(p+α)

)
, (2.4)

and for k ≥ 0, √
n− k + 1

n+ 1
bn−k,n = bk +O

(
1

np+α

)
, (2.5)

where O depends on k but not on n. (See (5.29) for more precise estimates.)

For the case of an analytic boundary Γ further improved asymptotic re-
sults can be obtained. To state these results we need to introduce some
notation. For an analytic curve Γ the mapping Ψ can be analytically con-
tinued as a conformal map to the exterior of some disk {w : |w| < ϱ}, where
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0 < ϱ < 1. We denote by Lσ the image of the circle {w : |w| = σ} under the
map Ψ. In other words,

Lσ := {z ∈ C : |Φ(z)| = σ}.

Theorem 2.3. ∗ Assume that the boundary Γ is analytic and let ϱ < 1 be
the smallest index for which Φ is conformal in the exterior of Lϱ. Then, it
holds as n → ∞, √

n+ 2

n+ 1
bn+1,n = b+O(ϱ2n), (2.6)

and for k ≥ 0, √
n− k + 1

n+ 1
bn−k,n = bk +O(

√
n log nϱn), (2.7)

where O depends on k but not on n. (See (5.39) for more precise estimates.)

In the converse direction we have:

Theorem 2.4. Assume that Γ is a Jordan curve without zero interior an-
gles. If

lim sup
n→∞

∣∣∣∣∣
√

n+ 2

n+ 1
bn+1,n − b

∣∣∣∣∣
1/n

< 1, (2.8)

then Γ is analytic.

The following example shows that the inverse statement does not make
sense for the main diagonal of M .

Example 2.1. Consider the case where the domain G has m-fold rotational
symmetry about the origin, for some m ≥ 2.

This means that ei2π/mz ∈ Ω, whenever z ∈ Ω. Then, it is easy to see
that

b0 = 0 and bn,n = 0, n ≥ m. (2.9)

Indeed, by using symmetry arguments it follows

Ψ(ei2π/mw) = ei2π/mΨ(w), w ∈ Ω, (2.10)

and for n = km+ j, with j = 0, 1, . . . ,m− 1,

pn(z) = zjqk(z
m), deg(qk) = k. (2.11)

The first relation in (2.9) follows at once from (2.10). For the second relation
in (2.9), observe that (2.11) implies for n ≥ m that

pn(z) = λnz
n +O(zn−m),

which, in turn, yields ⟨zn+1, pn⟩ = 0 and therefore bn,n = ⟨zpn, pn⟩ = 0.

∗This theorem, along with a sketch of its proof given in Section 5.3, was presented by
the first author at the Joint Meeting of the AMS and MAA in Phoenix, January 2004.
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3. A recovery algorithm

Reconstruction Algorithm

1. Start with a finite set of complex moments µkj, k, j = 0, 1, . . . , n; see
(1.12), or, equivalently from a finite set of real moments τkj, k, j =
0, 1, . . . , n; see (1.13).

2. Use the Arnoldi version of the Gram-Schmidt (GS) process, in the way
indicated in [13, §7.4], to construct the Bergman polynomials {pk}nk=0
from the moments µkj, k, j = 0, 1, . . . , n. This involves at the k-step
the orthonormalization of the set {p0, p1, . . . , pk−1, zpk−1}, rather than
the set of monomials {1, z, . . . , zk−1, zk}, as in the conventional GS. This
process, in particular, yields the inner products

bk,j = ⟨zpj , pk⟩, j = 0, 1, . . . , n, k = 0, . . . , j + 1.

3. Choose a number m, 1 < m < n, and set

b(n) :=

√
n+ 2

n+ 1
bn+1,n, b

(n)
k :=

√
n− k + 1

n+ 1
bn−k,n, k = 0, 1, . . . ,m.

(3.1)
(See Theorem 3.1 and Remark 3.2 below, for a suitable choice of m.)

4. Form

Ψ(n)
m (w) := b(n)w + b

(n)
0 +

b
(n)
1

w
+ . . .+

b
(n)
m

wm
. (3.2)

5. Approximate Γ by Γ
(n)
m , where

Γ(n)
m := Ψ(n)

m (w), w ∈ T. (3.3)

Remark 3.1. We refer to [13, §7.4] for a discussion regarding the stability
properties of the Arnoldi GS. In particular, we note that the Arnoldi GS does
not suffer from the severe ill-conditioning associated with the conventional
GS as reported, for instance, by theoretical and numerical evidence in [10].

The following result justifies the use of the algorithm for analytic curves.

Theorem 3.1. Assume that Γ is analytic, and let ϱ < 1 be the smallest
index for which Φ is conformal in the exterior of Lϱ. Set n = 2m. Then,
for any |w| ≥ 1 it holds that

|Ψ(w)−Ψ(n)
m (w)| ≤ c1(Γ)

√
m logmϱm + c2(Γ)|w|ϱ4m, (3.4)

where the constants c1(Γ) and c2(Γ) depend on Γ only.

Remark 3.2. Similar estimates, as in the above theorem, can be obtained
for the case where Γ is piecewise analytic without cusps. However, these
estimates are too pessimistic compared with actual numerical evidence; see
Figure 2 below. We were only able to rigorously show that for an uniform
error of order O(1/

√
m) we require the computation of the orthonormal poly-

nomials up to degree m4+ω, where ωπ is the smallest exterior angle of Γ.
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Figure 1. Recovery of an ellipse, with n = 10 (left) and
n = 20 (right).

For applications to the 2D image reconstruction arising from tomographic
data we refer to [8]. Here we highlight the performance of the reconstruc-
tion algorithm by applying it to the recovery of three curves, coming from
different classes: an analytic curve, one curve with corners and one curve
with cusps. For providing matter for comparison with the reconstruction al-
gorithm of [13, §7.7] we have chosen to present results for exactly the same
curves as in [13]. We note that the reconstruction algorithm of [13] is based
on approximating first the exterior conformal mapping w = Φ(z) in terms of
the ratio pn+1(z)/pn(z), cf. the estimates (5.3)–(5.4) below, and then on in-
verting the so-formed Laurent series in order to compute an approximation
of the inverse map z = Ψ(w).

In each case we start by computing a finite set of complex moments (1.12)
up to degree n, and then follow the steps 2–5 of the algorithm, taking
m = n/2. In all three examples the complex moments are known explicitly.
All computations were carried out on a desktop PC, using the computing
environment MAPLE.

In Figures 1–3 we depict the computed approximation Γ
(n)
m against the

original curve Γ. The presented plots indicate that the above reconstruction
algorithm constitutes a valid method for recovering a shape from its partial
moments. Even in the cusped case, pictured in Figure 3, the fitting is
remarkably close, despite the low degree of the moment matrix used.

In Figure 1 we illustrate the reconstruction of an ellipse, where, with the
notation of Theorem 3.1, ϱ = 1/3.

In Figure 2 we reconstruct a square by using the complex moments up
to the degree 16. We have chosen n = 16, so that the result can be com-
pared with the recovery of a square, as shown on page 1067 of [7], obtained
using the Exponential Transform Algorithm. This is another reconstruction
algorithm based on moments.

In order to show that the proposed reconstruction algorithm works equally
well for domains where the results of neither Theorem 3.1 nor that of Re-
mark 3.2 apply, we use it for the recovery of the boundary of the 3-cusped
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Figure 2. Recovery of a square, with n = 16.

Figure 3. Recovery of a 3-cusped hypocycloid, with n = 20
(left) and n = 30 (right).

hypocycloid defined by

Γ := {z = Ψ(w) = w +
1

2w2
, w ∈ T}.

The application of the algorithm with n = 20 and n = 30 is depicted in
Figure 3.

Comparing the performance of the above algorithm with that of [13] for
the cases of the ellipse and the hypocycloid, it appears that the latter algo-
rithm performs slightly better. On the other hand, both algorithms perform
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better than the reconstruction algorithms of [7] for the case of the square.
More definitive comparisons will require further experimentation and anal-
ysis of all three reconstruction algorithms.

4. Numerical Results

In this section we employ the first three steps of the reconstruction al-
gorithm in order to present numerical results that illustrate the order of
convergence in (2.2) and (2.3), that is the order in approximating b and b2

by b(n) and b
(n)
2 , respectively. We consider the case where Γ is the equilat-

eral triangle Π3 with vertices at 1, e2iπ/3, and e4iπ/3. Then, by using the
Schwarz-Christoffel formula it is not difficult to see that the coefficients bn
of the associated conformal map (1.3) are given by b0 = 0 and

bn =

{
cap(Π3)(−1)m+1

(
2/3
m

)
1
n , if l = 1,

0, if l ̸= 1,
(4.1)

for n = 3m− l, m ∈ N and l ∈ {0, 1, 2}, where
(
2/3
m

)
denotes the binomial co-

efficient; see, e.g., [13, §7.8]. Furthermore, it follows by using the properties
of hypergeometric functions that

b = cap(Π3) =
3

2

Γ(1/3)3

4π2
= 0.730 499 243 103 · · · , (4.2)

where Γ(x) denotes the Gamma function with argument x.
By using the rotational property of the equilateral triangle, as this is

reflected in the relation (2.11), it is easy to see that

bn−k,n = 0, if k /∈ {2, 5, 8, . . .}.

This is actually the reason why we consider the two approximations b(n) and

b
(n)
2 . Accordingly, we let t(n) and t

(n)
2 denote the two errors

t(n) := b− b(n) and t
(n)
2 := b2 − b

(n)
2 . (4.3)

Then, from Theorem 2.1 we have that

|t(n)| ≤ c(Γ)
1

n
and |t(n)2 | ≤ c(Γ)

1√
n
, n ∈ N. (4.4)

In Tables 4.1 and 4.2 we report the computed values of b(n), t(n) and

b
(n)
2 , t

(n)
2 , with n varying from 100 to 200. We also report the values of the

parameter s, which is designed to test the two hypotheses

|t(n)| ≈ 1/ns and |t(n)2 | ≈ 1/ns.

This was done by estimating s by means of the two formulae

sn := log

(
|t(n)|

|t(n+10)|

)/
log

(
n+ 10

10

)
and sn := log

(
|t(n)2 |

|t(n+10)
2 |

)/
log

(
n+ 10

10

)
.

In view of Remark 3.1, regarding the stability properties of the Arnoldi
GS process, we expect all the figures quoted in the tables to be correct.
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n b(n) t(n) s

100 0.730 487 539 1.17e-05 1.9627
110 0.730 489 536 9.70e-06 1.9659
120 0.730 491 062 8.18e-06 1.9685
130 0.730 492 255 6.98e-06 1.9708
140 0.730 493 204 6.03e-06 1.9728
150 0.730 493 973 5.26e-06 1.9745
160 0.730 494 603 4.63e-06 1.9761
170 0.730 495 127 4.11e-06 1.9774
180 0.730 495 567 3.67e-06 1.9786
190 0.730 495 940 3.30e-06 1.9799
200 0.730 496 259 2.98e-06 —

Table 4.1. Equilateral triangle: Errors and rates in approx-
imating b = 0.730 499 243 103 · · · by b(n).

n b
(n)
2 t

(n)
2 s

100 0.243 555 903 -5.61e-05 1.9873
110 0.243 546 213 -4.64e-05 1.9886
120 0.243 538 830 -3.90e-05 1.9897
130 0.243 533 076 -3.33e-05 1.9907
140 0.243 528 504 -2.87e-05 1.9914
150 0.243 524 812 -2.50e-05 1.9921
160 0.243 521 788 -2.20e-05 1.9926
170 0.243 519 280 -1.95e-05 1.9931
180 0.243 517 177 -1.74e-05 1.9936
190 0.243 515 396 -1.56e-05 1.9939
200 0.243 513 875 -1.41e-05 —

Table 4.2. Equilateral triangle: Errors and rates in approx-

imating b2 := 0.243 499 747 701 · · · by b
(n)
2 .

It is interesting to note the following regarding the presented results:

• The values of b(n) decay monotonically to b.

• The values of b
(n)
2 increase monotonically b2.

• The values of the parameter s indicate clearly that

|t(n)| ≈ 1/n2 and |t(n)2 | ≈ 1/n2,

This suggests that the two estimates

|t(n)| ≤ c(Γ)
1

n
and |t(n)2 | ≤ c(Γ)

1√
n
, n ∈ N,
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predicted by Theorem 2.1 are pessimistic.

5. Proofs

5.1. Proof of Theorem 2.1. The derivation in the case where Γ is piece-
wise analytic without cusps is based on results from [12] and [13]. In par-
ticular, we utilize the following fact (see [12, Thm 1.1]):

n+ 1

π

γ2(n+1)

λ2
n

= 1− αn, (5.1)

where

0 ≤ αn ≤ c1(Γ)
1

n
. (5.2)

We also note the following estimate [12, Thm 1.2]:

pn(z) =

√
n+ 1

π
Φn(z)Φ′(z) {1 +An(z)}, z ∈ Ω, (5.3)

where

|An(z)| ≤
c2(Γ)

dist(z,Γ) |Φ′(z)|
1√
n
+ c3(Γ)

1

n
. (5.4)

Recall that we use ck(Γ), k = 1, 2, . . ., to denote a non-negative constant
that depends on Γ only.

The result (2.2) follows immediately from (1.9) and (5.1)–(5.2). For the
general case (2.3), our proof relies on the use of the auxiliary polynomial

qn−1(z) := Gn(z)−
γn+1

λn
pn(z), n ∈ N. (5.5)

This is a polynomial of degree at most n− 1, but it can be identically zero,
as the special case when G is a disk shows.

Next we fix k = 0, 1, 2, . . .. Then from (1.21), in conjunction with (5.5)
and the orthogonality of pn, we deduce for any n = k, k + 1, k + 2, . . ., that

γn+1

λn
bn−k,n = ⟨z γ

n+1

λn
pn, pn−k⟩ = ⟨zGn − zqn−1, pn−k⟩

= ⟨zGn, pn−k⟩ − ⟨zqn−1, pn−k⟩

= b⟨Gn+1, pn−k⟩+
k∑

j=0

bj⟨Gn−j , pn−k⟩ − ⟨zqn−1, pn−k⟩. (5.6)

Thus, it remains to estimate the two different types of inner products
appearing in (5.6), namely ⟨pl, Gm⟩ and ⟨zqm, pl⟩. This is the objective of
the following two lemmas.

Lemma 5.1. Assume that Γ is piecewise analytic without cusps. Then, for
l = 0, 1, 2, . . ., it holds that

⟨pl, Gm⟩ =
{

γm+1/λm, m = l,
ξm, m = l + 1, l + 2, . . . ,

(5.7)
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where

|ξm| ≤ c1(Γ)
1

m
. (5.8)

Proof. For the special case where m = l the result is a trivial consequence
of the orthonormality property of the polynomial pm and the fact that Gm

is a polynomial of exact degree m with leading coefficient γm+1. That is,

⟨pm, Gm⟩ = ⟨pm, γm+1zm + · · · ⟩ = ⟨pm, γm+1zm⟩

= γm+1⟨pm,
1

λm
pm⟩ = γm+1

λm
. (5.9)

Assume now that m ∈ {l + 1, l + 2, . . .}. Then, an application of Green’s
formula, the splitting (1.18) and the residue theorem give:

⟨pl, Gm⟩ =
∫
G
pl(z)Gm(z)dA(z) =

∫
G
pl(z)

F ′
m+1(z)

m+ 1
dA(z)

=
π

m+ 1

{
1

2πi

∫
Γ
pl(z)Fm+1(z)dz

}
=

π

m+ 1

{
1

2πi

∫
Γ
pl(z)Φm+1(z)dz +

1

2πi

∫
Γ
pl(z)Em+1(z)dz

}
=

π

m+ 1

{
1

2πi

∫
Γ

pl(z)

Φm+1(z)
dz +

1

2πi

∫
Γ
pl(z)Em+1(z)dz

}
=

1

2(m+ 1)i

∫
Γ
pl(z)Em+1(z)dz. (5.10)

To conclude the proof we use the estimate given in [13, Lem. 2.5], to
obtain∣∣∣∣ 12i

∫
Γ
pl(z)Em+1(z)dz

∣∣∣∣ ≤ c2(Γ)∥pl∥L2(G)

[∫
Ω
|E′

m+1(z)|2dA(z)

]1/2
, (5.11)

where we made use of the fact that E′
m+1 ∈ L2(Ω) (see Lemma 1.1) and

that a piecewise analytic without cusps Jordan curve is quasiconformal and
rectifiable.

Therefore, from (5.10), the second relation in (1.20) and (5.11), we have

|⟨pl, Gm⟩| ≤ c3(Γ)

[∫
Ω
|Hm(z)|2dA(z)

]1/2
, (5.12)

and the required result follows, because the last integral is O(1/m2); see [13,
Thm 2.4]. �

Lemma 5.2. Assume that Γ is piecewise analytic without cusps. Then, for
every m ∈ N and l = 0, 1, 2, . . ., it holds that

|⟨zqm, pl⟩| ≤ c1(Γ)
1

m
. (5.13)



14 E. SAFF AND N. STYLIANOPOULOS

Proof. The result is a simple consequence of Corollary 2.1 in [13] which
states

∥qm∥L2(G) ≤ c2(Γ)
1

m
,

and the Cauchy-Schwarz inequality:

|⟨zqm, pl⟩| ≤ ∥zqm∥L2(G)∥pl∥L2(G) ≤ max{|z| : z ∈ Γ} ∥qm∥L2(G).

�

Returning to the proof of Theorem 2.1, we apply the results of the two
previous lemmas to (5.6) and use (1.23) to obtain:

γn+1

λn
bn−k,n = b⟨Gn+1, pn−k⟩+

k−1∑
j=0

bj⟨Gn−j , pn−k⟩+ bk
γn−k+1

λn−k
− ⟨zqn−1, pn−k⟩

= O

(
1

n

)
+

k−1∑
j=1

O

(
1

(n− j) j1+ω

)
+ bk

γn−k+1

λn−k
, (5.14)

where 0 < ω < 2, and O does not depend on n or k. Furthermore, from
(5.1)–(5.2) we have:

γn+1

λn
=

√
π

n+ 1

[
1 +O

(
1

n

)]
(5.15)

and

λn−k

γn−k+1
=

√
n− k + 1

π

[
1 +O

(
1

n− k + 1

)]
. (5.16)

Thus, by multiplying both sides of (5.14) by λn−k/γ
n−k+1 we get

λn−k

γn−k+1

γn+1

λn
bn−k,n = bk +

λn−k

γn−k+1

O( 1

n

)
+

k−1∑
j=1

O

(
1

(n− j) j1+ω

) ,

which, in view of the estimates (5.15)–(5.16), yields for n ≥ k ≥ 0, n ≥ 1,
that√

n− k + 1

n+ 1
bn−k,n = bk

[
1 +O

(
1

n− k + 1

)]

+O(
√
n− k + 1)

O( 1

n

)
+

k−1∑
j=1

O

(
1

(n− j) j1+ω

) , (5.17)

where an empty sum equals zero. This leads, for fixed k and n → ∞, to the
required estimate (2.3), where now O depends on k but not on n. �
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5.2. Proof of Theorem 2.2. If Γ ∈ C(p+ α), with p+ α > 1/2, then the
following asymptotic formulas hold as n → ∞, see [14, p. 19–20]:√

n+ 1

π

γn+1

λn
= 1 +O

(
1

n2(p+α)

)
(5.18)

and

pn(z) =

√
n+ 1

π
Φn(z)Φ′(z)

{
1 +O

(
log n

np+α

)}
, z ∈ Ω. (5.19)

The proof of the theorem goes along similar lines as the proof of Theo-
rem 2.1 given above. More precisely, for deriving the result for bn+1,n we
use the estimate (5.18) in the place of (5.1)–(5.2).

For the general case k = 0, 1, . . ., we need estimates for the inner products
⟨pl, Gm⟩ and ⟨zqm, pl⟩. This is done in the following two lemmas, which play
the role of Lemma 5.1 and Lemma 5.2 in the proof of Theorem 2.1.

Lemma 5.3. Assume that Γ ∈ C(p + 1, α), with p + α > 1/2, then for
l = 0, 1, 2, . . ., it holds that

⟨pl, Gm⟩ =
{

γm+1/λm, m = l,
ξm, m = l + 1, l + 2, . . . ,

(5.20)

where

|ξm| ≤ c1(Γ)
1

mp+α+1/2
. (5.21)

Proof. The result for m = l is established in Lemma 5.1. Hence, we only
consider the case m = l + 1, l + 2, . . ..

The following estimate has been obtained by Suetin for Γ ∈ C(p+α); see
[14, Lem. 1.5]: ∣∣∣∣ 1

2πi

∫
Γ
Hm(z)Em+1(z)dz

∣∣∣∣ ≤ c2(Γ)
1

m2(p+α)
. (5.22)

By using Green’s formula in the unbounded domain Ω, together with (1.20),
it is readily seen that

1

2πi

∫
Γ
Hm(z)Em+1(z)dz = −m+ 1

π

∫
Ω
|Hm(z)|2dA(z). (5.23)

Hence, from (5.22),∫
Ω
|Hm(z)|2dA(z) ≤ c3(Γ)

1

m2(p+α)+1
, (5.24)

and the result (5.21) follows from the estimate (5.12), which is applicable
in this case because any smooth Jordan curve is also quasiconformal and
rectifiable. �
Lemma 5.4. Assume that Γ ∈ C(p + 1, α). Then for every m ∈ N and
l = 0, 1, 2, . . ., it holds that

|⟨zqm, pl⟩| ≤ c1(Γ)
1

mp+α+1/2
. (5.25)
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Proof. As in the proof of Lemma 5.2 we have

|⟨zqm, pl⟩| ≤ max{|z| : z ∈ Γ} ∥qm∥L2(G).

The result of the lemma then follows from (5.24) and the estimate

∥qm∥L2(G) ≤ c2(Γ)

[∫
Ω
|Hm(z)|2dA(z)

]1/2
,

established in [13, Thm 2.1] for domains bounded by a quasiconformal and
rectifiable boundary. �

In order to conclude the proof of the theorem, we need an estimate for
the decay of the coefficients bn, when the boundary Γ belongs to the class
C(p + 1, α), with p + α > 1/2. This is done in [13, Cor. 1.1], where it is
shown that

|bn| ≤ c3(Γ)
1

np+α+1/2
, n ∈ N. (5.26)

Therefore, by using the results for ⟨pl, Gm⟩ and ⟨zqm, pl⟩, obtained in the
previous two lemmas, together with (5.18) and (5.6), we see that

γn+1

λn
bn−k,n = O

(
1

np+α+1/2

)
+

k−1∑
j=1

O

(
1

(j(n− j))p+α+1/2

)
+ bk

γn−k+1

λn−k
,

where O does not depend on n or k. Furthermore, from (5.18) we get

γn+1

λn
=

√
π

n+ 1

[
1 +O

(
1

n2(p+α)

)]
(5.27)

and

λn−k

γn−k+1
=

√
n− k + 1

π

[
1 +O

(
1

(n− k + 1)2(p+α)

)]
. (5.28)

The above yield, for n ≥ k ≥ 0, n ≥ 1, that√
n− k + 1

n+ 1
bn−k,n = bk

[
1 +O

(
1

(n− k + 1)2(p+α)

)]
+O(

√
n− k + 1)

×

O( 1

np+α+1/2

)
+

k−1∑
j=1

O

(
1

(j(n− j))p+α+1/2

) , (5.29)

where a empty sum equals zero. This leads, for fixed k and n → ∞, to the
required estimate (2.5), where now O depends on k but not on n. �

5.3. Proof of Theorem 2.3. Assume that Γ := ∂G is an analytic Jordan
curve. Then the conformal map Φ has an analytic and univalent continuation
across Γ in G. Let ϱ < 1 be defined by

ϱ := inf{r : Φ is analytic and univalent in ext(Lϱ) \∞}.
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Then the following asymptotic formulas of Carleman [3] hold as n → ∞:√
n+ 1

π

γn+1

λn
= 1 +O(ϱ2n) (5.30)

and

pn(z) =

√
n+ 1

π
Φn(z)Φ′(z)

{
1 +O(

√
nϱn)

}
, z ∈ Ω, (5.31)

see [6, p. 12]. In particular,

pn(z) =
λn

γn+1
Φn(z)Φ′(z) {1 + ωn(z)} , (5.32)

where

ωn(z) =

n∑
ν=1

νAνw
ν−1−n −

∞∑
ν=1

νaνw
−ν−1−n, w = Φ(z), (5.33)

with
n∑

ν=1

ν|Aν |2 +
∞∑
ν=1

ν|aν |2ϱ−2ν ≤ ϱ2n+2

(n+ 1)(1− ϱ2n)
, n ∈ N; (5.34)

see [6, p. 15].
We fix two different points z and z0 on Γ and define

Qj+1(z) :=

∫ z

z0

pj(ζ)dζ +
λj

(j + 1)γj+1
Φj+1(z0).

Then, by using integration by parts and the change of variable w = Φ(ζ),
we have from (5.32) and (5.33) that, for any j ∈ N,

Qj+1(z) =
λj

(j + 1)γj+1
Φj+1(z) +

λj

γj+1

∫ z

z0

Φj(ζ)Φ′(ζ)ωj(ζ)dζ

=
λj

(j + 1)γj+1
Φj+1(z) +

λj

γj+1

∫ Φ(z)

w0

wjωj(Ψ(w))dw

=
λj

(j + 1)γj+1
Φj+1(z) +

λj

γj+1

[
j∑

ν=1

Aνw
ν +

∞∑
ν=1

aνw
−ν

]Φ(z)

w0

,

(5.35)
where w0 = Φ(z0). We claim that for |w| = 1 there holds∣∣∣∣∣

j∑
ν=1

Aνw
ν +

∞∑
ν=1

aνw
−ν

∣∣∣∣∣ = O

(√
log(j + 1)

j + 1
ϱj

)
. (5.36)

Indeed,∣∣∣∣∣
j∑

ν=1

Aνw
ν +

∞∑
ν=1

aνw
−ν

∣∣∣∣∣ ≤
j∑

ν=1

|Aν |+
∞∑
ν=1

|aν |
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≤

√√√√ j∑
ν=1

ν|Aν |2

√√√√ j∑
ν=1

1

ν
+

√√√√ ∞∑
ν=1

ν|aν |2ϱ−2ν

√√√√ ∞∑
ν=1

ϱ2ν

ν

≤ c1(Γ)
√

log(j + 1)

√√√√ j∑
ν=1

ν|Aν |2 + c2(Γ)

√√√√ ∞∑
ν=1

ν|aν |2ϱ−2ν

≤ c3(Γ)

√
log(j + 1)

j + 1
ϱj , (5.37)

by (5.34), which establishes the claim.
Hence, using the estimate (5.30) we get

Qj+1(z) =
Φj+1(z)√
π(j + 1)

{
1 +O

(√
(j + 1) log(j + 1)

)
ϱj
}
, z ∈ Γ. (5.38)

Next, by Green’s formula we have for fixed k = 0, 1, . . . and n ≥ k + 1:

2πi

√
n− k + 1

n+ 1
bn−k,n = 2πi

√
n− k + 1

n+ 1
⟨zpn, pn−k⟩

=
2πi

2i

√
n− k + 1

n+ 1

∫
Γ
zpn(z)Qn−k+1(z)dz

=

∫
Γ
zΦn(z)Φ′(z)Φn−k+1(z)dz + hn

=

∫
Γ

Φn(z)

Φn−k+1(z)
Φ′(z)zdz + hn

=

∫
|w|=1

wn

wn−k+1
Ψ(w)dw + hn

= 2πibk + hn, (5.39)

where

hn = O(
√
n)ϱn +O

(√
(n− k + 1) log(n− k + 1)

)
ϱn−k{1 +O(

√
n)ϱn}.

(5.40)
Thus, for k ≥ 0 fixed and ϱ < 1,√

n− k + 1

n+ 1
bn−k,n = bk +O(

√
n log nϱn), as n → ∞. (5.41)

It remains to prove (2.6). This follows at once from the strong asymptotics
for the leading coefficient (5.30) and the relation (1.9). �

5.4. Proof of Theorem 2.4. We first note that our assumption (2.8), com-
bined with (1.9), implies that

lim sup
n→∞

∣∣∣∣∣
√

n+ 2

n+ 1

λn

λn+1
− b

∣∣∣∣∣
1/n

< 1. (5.42)
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Now set

ξn :=

√
n+ 2

n+ 1

λn

λn+1

1

b
− 1,

so that

lim sup
n→∞

|ξn|1/n < 1. (5.43)

At the other hand, we have from (5.1) and (1.4) that

(1 + ξn)
2 =

1− αn+1

1− αn
.

Hence,

ξn =
αn − αn+1

(1− αn)(2 + ξn)
,

and by using the fact that ξn → 0, as n → ∞ together with 0 ≤ αn < 1 and
αn → 0, as n → ∞, we obtain the double inequality

c1|αn − αn+1| ≤ |ξn| ≤ c2|αn − αn+1|, (5.44)

for some positive constants c1 and c2.
Now, by expanding αn in the telescoping series

αn = (αn − αn+1) + (αn+1 − αn+2) + · · · ,

we conclude, in view of (5.43)–(5.44), that

lim sup
n→∞

α1/n
n < 1, (5.45)

and this, in view of Theorem 1.3 in [13] leads to

lim sup
n→∞

|bn|1/n < 1.

The last inequality implies that the conformal map Ψ(w) has an analytic
continuation across T into D (see (1.3)) and thus Γ is the analytic image
of T. Therefore, around any w0 ∈ T, the map Ψ can be represented by a
Taylor series expansion of the form

Ψ(w) = Ψ(w0) + a1(w − w0) + a2(w − w0)
2 + a3(z − z0)

3 · · · .

If we had Ψ′(w0) = 0, then

Ψ(w) = Ψ(w0) + a2(w − w0)
2 + · · · ,

with a2 ̸= 0, because Ψ is univalent in ∆. These show that w0 would be
mapped by Ψ onto an exterior pointing cusp on Γ. Since, by assumption,
this cannot happen, we see that Ψ′(w) ̸= 0, w ∈ T, which yields the required
property that Γ is an analytic Jordan curve. �
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5.5. Proof of Theorem 3.1. Recall that n := 2m. On |w| = R, where
ϱ < 1 ≤ R < ∞, we have from (1.3) and (3.2)

|Ψ(w)−Ψ(n)
m (w)| ≤ |b(n) − b|R+

m∑
k=0

|b(n)k − bk|
Rk

+
∞∑

k=m+1

|bk|
Rk

.

Therefore, by using the result of Theorem 2.3 (see also (5.39)) and the
estimate

|bk| ≤ c1(Γ)
ϱk√
k
, k ∈ N;

see [13, Cor. 1.1] we get

|Ψ(w)−Ψ(n)
m (w)| ≤ c2(Γ)ϱ

4mR+ c3(Γ)
√

m logmϱm+ c4(Γ)
( ϱ

R

)m
, (5.46)

which yields the desired estimate. �
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