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Summary. In this paper, we show that there exists a sequence of rational functions
of the form R, (2)=p,_i(5)/(1+2n)?" n=1,2,..., with degp, , <wn—1, which
converges geometrically to ¢7* in the uniform norm on [0, 4 o), as well as on some
infinite sector symmetric about the positive real axis. We also discuss the usefulness of
such rational functions in approximating the solutions of heat-conduction type

problems.

1. Introduction

Because of its applications to the study of certain numerical methods used in
computing solutions of systems of differential equations, a number of recent
papers ([1, 2, 6, 8], among others) have been devoted to the topic of rational
approximations to ¢~* on bounded and unbounded sets in the complex plane C.
Perhaps the simplest of all such rational approximants is the sequence

5, (2): :(1;;{)7 n=1,2, ... (1.1)

which enjoys the following readily verified properties:

(1) the sequence converges uniformly to ¢~% on every bounded subset of the
plane;

(ii) the sequence converges uniformly to ¢~ on the infinite real interval
[0, +o0); and

(iii) the poles of the sequence are all real and negative.

Of course, all of the above advantages are outweighed by the fact that the
sequence {1.1) converges too slowly to ¢ for use in any actual computations. It
is therefore desirable to seek other rational approximations {R,(z)}5=, which
possess properties (i), (ii), and (iii), and furthermore, say, converge geometrically
to e™*in the uniform norm on {0, o0}, 1.e.,

Tim o= — R, (1) [ ooy <1-
B—>00
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In the present paper, we prove that there exists a sequence of rational func-
tions {R, (2)}5>, of the form

R,(2)= P"-‘z(f)", with degp, ., S#n—1, (1.2)
=

such that {R,(z)}52, converges geometrically (in the uniform norm) to ¢™* on
every bounded subset of €, as well as on the ray {0, + o). Furthermore, we show
that no sequence of reciprocals of polynomials {1/g,(z)}3>,, deg g, =n, with the
g, (2) having only negative realroots, can converge geometrically to e~*on [0, + o).
These and related results are stated and discussed in Sec. 2, with their proofs
being given in Sec. 3. Then, in Sec. 4 we comment on the usefulness of rational
functions, of the form (1.2), in approximating the solutions of heat-conduction
type problems, and we also give numerical results estimating the geometric
convergence rate of such rational functions to e=* on [0, -} o0).

2, Statements of New Results

We now introduce some notation and state our main results, deferring their
proofs to Sec. 3.
Let 7, denote the collection of all polynomials in one variable having degree at
most #, and 7, , be the collection of all complex rational functions of the form
£(2)
q(2)
Next, for an arbitrary set 4 in the complex plane, we denote by |-|4 the supremum
norm on 4 ;i.e., for f defined on 4

|flla: =sup{|f(z)]|:2€4}.

Our primary result is the following:

v, 0

, where pem,, gem,.

Theorem 2.1, There exists a sequence of rational functions {R,, (z)}s=, of the
form

R, (2)= n=1(2) with ¢, ,€m,, forall n=1, (2.1)

z\n’
(1+;¢—>

n
le=* —R, (%) |r0, +00) = (?l_> as #n—> oo, (2.2)

which satisfies

Consequently, for these rational functions, there exists a ¢ = 2 such that
1 1
<
Regarding Theorem 2.1, it should first be noted that Newman [3] has shown

that for any sequence of rational functions {7, (2)}a=1, with #,€m, , for all n =2,
there holds

T o — R, ()0 =

- 1
le™* 71 (I 400 = 550 - (24)
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Hence a faster than geometric convergence rate to ¢~ on [0, + o) is not possible.
We further remark that, in [6], Schb‘nhage has proved that if

Ao i =inf{lle™ — -0, ooyt G €},

9, (x
then

1
lim AM% =
1m2 3

Thus, a geometric convergence rate faster than that indicated in (2.3) can be
attained by reciprocals of polynomials; however, as a consequence of Theorem 2.5
below, rational functions of this type cannot have all their poles on the real axis.

Theorem 2.2, Let {R, (2)}52, be any sequence of rational functions of the form
(2.1) which satisfies (2.3) for some g = 2. Then, on every bounded subset K of the
complex plane, there holds

T e R, (s = @)

1
-
Since the poles of the R, (2) are real, it follows 1mmediately from Theorems 2.1,
2.2, and the results of Saff and Varga [4], that the sequence {R, (z)}5>, must in
fact converge geometrically to ¢ in an infinite sector symmetric about the
positive x-axis. To precisely state this result, we introduce the following set

notation:
0): ={ze C:largz| <0}, o<bO<am. (2.6)

Theorem 2.3. Let {R, (z)}52,; be any sequence of rational functions of the form
(2.1) which satisfies (2.3) for some g = 2. Then for each fixed 8, with

0<6<4tan—1(ﬁ‘1>, (2.7)

Vg+1

where

prer) 240 (55)
> - 213 o
7 =4tan (W—H 4tan~ 511 38.942°,
the sequence {R, (2)}52, converges geometrically to ¢e~* on the closure S () of the
infinite sector defined in (2.6). Moreover,
— 1 4-sin (6/2)
Lim o™ — R, (2) | = (mz) ) ! (2.8)
We remark that the above property of geometric overconvergence to ¢~* in
infinite sectors is also shared by certain sequences of Padé approximants to e™*
as was shown by Saff, Varga, and Niin [5]. These Padé approximants, however,
have poles off of the real axis.
As for a lower bound for the error, an estimate much sharper than Newman’s
result of (2.4) can be obtained for the case when the rational approximations have
only real poles. This result is stated in

Theorem 2.4, If {r, (2)};2,, with 7, €m, , for all# =1, is any sequence of rational
functions having only real poles (not necessanly c01n01dent) then

lim [le=% —7, (%) | 1oy 2 3 —2]2% —57‘-% (2.9)

700
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In particular, for the sequence {R, (z)}7%, of Theorem 2.1, we have

— _ _ 1
3—2)2< lim ™ —R, (9)[if! 4oy = 5 - (2.10)

As our final result, we shall prove the impossibility of geometric convergence to

e~ %on [0, 4 o0) by reciprocals of polynomials having only real zeros.

Theorem 2.5. For every polynomial ¢,€7,, # =1, having only real zeros, there
holds

—e_ 1 > Eﬁ)g
le 7, (%) o, +o0y = € pray B (2.11)
where C is a positive constant independent of #. Consequently, we have

1

Um]e™ - &

1/n
[t s or =1,

for every sequence of polynomials g, € ,, having only real zeros.

3. Proofs of New Results
We now justify the results stated in Sec. 2.

Proof of Theovem 2.1. For each n =1, it is convenient to work with rational
functions of the general form

r(x)=—L(xi - PE€m,_y, >0
(1+%)

As we shall see, the choice ¢ = # is optimal for our error estimates.
For fixed¢ >0, # =1, set

My (c): = inf |e™% — ) - (3.1)
PE a1 (1+i)
¢/ o, +o0)-
Then, on replacing x by ¢ x and on replacing x by (14¢)/{(1—t), it follows that
s —ox__ Pl )
””(c)_pen:g_l ‘ (1+%)n {|10, +00)
— e N Ui ((iﬂ,))
—pelix'llnf—l e_c(1—t> > ple 127 ))|en. ) (3.2)
— inf [ () —q)
 gem R A Y
q(1)=0
1
=_inf | [ [f'(s)—T(s)]ds .
Tean~1||t [—1,1)
where
=
fs)i=—e""\1=s/,  (f(1)=0)
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Now, by Schwarz’s inequality, we have for ¢€[—1, 1] that
1 1
| [ [ () =T (s))ds| = {I F(s) =T (s)| ds
T 1/2
=2 (_fl £ () =T (s) |2ds)
Hence, if g,_, (¢) denotes the least squares error

sl = int [ [17(9— <s>|2ds)1’2,

TeEnp~1

we deduce from (3.2) that

&) =)/204-1(0)- (3-4)
Using the Legendre polynomials [7]
. 1 a* 2 k
B): = Zagy g (6" 1)) (3.5)
as an orthogonal basis on [—1, 1], we have
. 1/2
01 ( ( 2 yk) , (3.6)
where
V2251 + 1
Ve E T, ff ) Py(s)d (3.7)

Next, we show that y, can be expressed in the equivalent form

Vah1 [
yk:%af e“"‘(1:_ ) LYy [c(1+x)]dx, (3.8)

where L{"(«4) denotes the Laguerre polynomials [7] belonging to the weight
function e *on [0, 4+ ), 1.e.,
1 ar

TTaa=w gk e (3.9)

LP (u): =

To justify (3.8), we first use (3.5) and (3 7) to write

Partt ff ) e L1 ds,

ke V2
and then we integrate by parts % times to obtain

1
V2 k41 (—1)% L f(s)
'}’k:WV_ f (82—1)k—wd§‘. (3.10)
-1
Using (3.3) and mathematical induction, it can be easily verified that, with
v=2¢[(1—s),

ak+1 ar
et (1— )"+1—d—$ ToF *t1e™, £=0,1,2,...,

23 Numer. Math., Bd. 25
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and so from (3.9), we have

(1—s) dsttl T (1t —s)

Bl artLi(s) ek 2 c e—2el1—9) LQ’ ( 2¢ )
1—s

Making this substitution, equation (3.10) becomes
VihTiec [ d
2k41e _ _ S
= f (14s)ke20 S)LQ)<1_S)‘(;*;;)’;,

Zk— Z ~1

and a final change of variables x= (1 +s)/(1 —s) yields (3.8).
Now, since (see [7, p. 100])

f we *[LP(u))2du="r-11,

it follows by applying Schwarz’s inequality to (3.8) that

1+4-x%

f (1-42)2e =LY [c(1+2)] - (1+x) " 1/%-”/2( - )kdx}

<

8

2 k41 _M r —cx 2
< c? (__2*) f (14+x)e LY [c(1-+x)])2dx - f “('}"_}_}z,)zkﬂ' ax
é

c

(2 k1) (k1) T _ %3k
_2— f@ cxﬁfi:xymdx,

with strict inequality holding because ¢ > 0.
Hence, from (3.6), we have

da@ < [ g max (.11)
0
where
had 2k
=2 RN (G g (3.12)

We can obtain a closed form expression for g,(x) by setting z==x/(1+x) and
writing

R < . 1 d 252
g, (%)= Z QE+1) (2k-+2)2 PTrey dzz(zz )
R
T 201+ dz? (T:E‘E )

After performing the differentiation and observing that (1 —22)~1=(14%)%/(1+2 %),
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we find that

a=(1z) e,

where

(n+1) (2 n+41) x2 (4 n+5) »* 4 28
=G Gtn Tatemats T it 01

Consequently, inequality (3.11) becomes

ef y _ x 272 1 ~ .
9:-—1 (o) < > f e~ (1—_1_7) w, (¥)dx= > f e% 9. e, () dx, (3.14)
¢ 0

where
<p,,(x;c):=c——cx—{—x—(2n—2)ln(1+%>. (3.15)

Finally, observe from (3.13) that
[ e o, ax=0m, o, (3.16)
0
and so we endeavor to minimize the maximum value of ¢,(x; c) on [0, + ).
For ¢==, it is easily verified that

max{g,(x;#):x =0}=g¢,(1;#)=1—(2x2—2)1n2,

and, furthermore, ¢,(1; ¢)=1—(2 #—2) In 2 for all ¢>>0. Hence we choose c=#,
which gives the estimate (see (3.14), (3.16))

y 3
gﬁ_l(n)<?f-_—1f e *w,(x) dx:@(%), 7—> 00,
¢

Consequently, from (3.4) we arrive at the inequality

>y n
) SV2 0 =0(35),  nrcc, (347)
which proves Theorem 2.1. |}
We remark that the choice ¢=1 - # in the above proof (as opposed toc-=21 . #)
results in the best geometric decay in the upper bound of (3.17).
For the proof of Theorem 2.2, it is convenient to first state a special case of a

result due to Walsh [9].

Lemma 3.1. For ¢ >0 and s>1, let ¢(g, s) denote the ellipse in the complex
z-plane with foci at x=0 and x=p and semimajor and semiminor axes a and &

such that bfa=(s2—1)[(s?-+1), i.e.,

T e 5 B
8(9'3)'“{2—”” €C A GraT T Tem =197 —1}' (-18)

1f7,€m, , is a rational function which satisfies

Irn () o, =M < o0 (3.19)

23*
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and all the poles of 7, (2) lie on or exterior to ¢(p, A), then for 1 << 7 << 4, there holds

@i =30 (57 6.20

where ¢(p, 7) denotes the closed interior of ¢ (p, 7).

Proof of Theorem 2.2. More generally, let {7, (2)}52., be any sequence of rational
functions with #, €, , which satisfies (2.3), and is such that the poles of 7, tend to
infinity as #—> oo. Next, let K be a fixed bounded set in the plane. Define

Fon (2): =7,(2) —7,_1(2), for m=2,3,....

Clearly, 73, €7y, 25, and, as #n—> oo, all the poles of the #,,,(z) tend to infinity. Also,
from (2.3) and the triangle inequality, it follows that
1

,}L—fg Wen (%) ||%tl)?+oo) = r 3

in particular,

hm “72” ) [ = %, foreach p>0. (3.21)

Now, let 7> 1 be given and choose p* > 0 so large that K C&(p*, 7), where £(p¥, 7)
is as defined in Lemma 3.1. Furthermore, let A > 7. Then for » sufficiently large,
all the poles of the #,,(2) lie outside &(p*, 1), and so from (3.21) and Lemma 3.1,
it follows that

- 1 {Ar—1
Lim |7y, (2) [, o é?( A— ) '

T
Consequently,
T e~ " Ar—1
T o () =+ (1) 3.22)

Since (3.22) is valid for every A with 4> %, then on letting A—+ oo we obtain
T [, ) =
Finally, as ¥ > 1 was arbitrarily chosen, it follows that

T |7, (2)~7,-1 @) = T o, (R <

which implies by a standard M-test argument that the sequence {r,(z)}5>, con-
verges geometrically to ¢~* in the uniform norm on K, and that

T —i_, 1/n< <i
@i st sl

For the proofs of Theorems 2.3 and 2.4, we need the following result of Saff
and Varga [4] concerning overconvergence in sectors.
Lemma 3.2. For 6 >0and 4 =0, let S(0, u) denote generically the set
S(0,u): ={zeC:|arg z| < 8,| 2] > pu}. (3.23)

Assume that for a function f defined and finite on [0, --o0), there exists a
sequence of rational functions {,(2);2.,, with 7,€m, , for all # =1, and a real
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number ¢’ > 1 such that

Tim |1/ (%) — 7, (+) if?

q, <1. (3.24)

Assume further that for some 0, and p, with 0<0p<m, py=0, the region
S(0,, no) contains no poles of the #,(2) for all # large. Then, for every 6 satisfying

the inequality
- Vg’ —1 ) ( ) )}
1 2o
0< < 47 tan {( Vg +1 tan g (3.25)

there exists a y==u(0) >0 and an analytic function F(z) on the closure S(6, u)
with F (x) = (») for all real x in this set, such that {7, (z)}o>; converges geometric-
ally to F (z) on S (0, u). Moreover

-_— sin [%(6,+6)]
Fn =l < 7 {ntoieon) <" 6-26)

Proof of Theorem 2.3. For any sequence {R, (z)}5—, of rational functions of the
form (2.1) which satisfies (2.3), the hypotheses of Lemma 3.2 are fulfilled with
7,(8)=R,(2), f(x)=¢"% 1<q' <q, by=um, we=0. Now, fix 0 satisfying (2.7) and
choose ¢’ with 1 <<¢’' < g, sufficiently close to ¢, so that inequality (3.25) holds.
Then by Lemma 3.2, there exists a y=p (0) such that

sin [ {=46)] }2_ 1 ( 1 -}-sin (6/2)

Tim o7 =R, () Rl < o {m 7 1—sin(0/2))<1‘ (.27)

Furthermore, by Theorem 2.2, we have for the set K={z:|z| <}

T o R, G < o = o7
Nn=00 q

and this inequality together with (3.27) implies that

— . 14 0/2
Lim ™ —R, (2) Iy < (1:—220%) !

where S (0) is defined in (2.6). Letting ¢’ —¢ we obtain (2.8). |

Proof of Theorem 2.4. Assume to the contrary that there exists a sequence
{7, (2)}o>1, with #,€m, , for all # =1, such that the #,(2) have only real poles and
satisfy

E%"e"‘- P9 <~

where

1 [t—tan(a/8)\* .-~
2~ Tt 3212

Choose ¢’ so that
——— 1 1
lim [e=%— #, () [4* < .
H”lle (OB 400y < 7 < 40
Then since, as is readily verified,

e
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we can find an angle § which satisfies

i _1Ei_(g
Hence, by Lemma 3.2 (with 6,=x), the 7, (2) must converge geometrically to ¢~*
on the unbounded closed region S (6, y) (defined in (3.23)) for some > 0. But this
in particular implies that |e™*| is bounded in S(0, u), which is absurd since
0> m/2. |

Proof of Theorem 2.5. Let g,€m, be a polynomial having only real zeros. To
establish the lower bound of (2.11) it suffices to assume that g,(x) has the nor-

malization
"

q”(x)=H(1+ai), with  a,>0, k=1,2,...,n. (3.28)
Bl )

Furthermore, we may assume that # =#, and that

1t
9, (%)

e ¥ =¢™"[2, forsomer=7,>0, (3.29)

[0, +o0)

=

where #, and 7, are absolute constants which shall be specified later. The essence
of the proof lies in abtaining upper and lower bounds for the positive quantity

A::ii. (3.30)

1 —x e—" 1
q, (%) = T T2 = aex
and hence
le*—g,(2)| L g, ()n = **, for O0ZxZr. (3.31)

Since # =1n (1 +¢) for any ¢ = 0, we have

xd=>2 221n(1+i)=lnq,.(x), %20,
= = %,

@,
which together with (3.31) implies that
xA=Ing,(x) =In(e*— "), for 0<x<r.
Putting x=7/2in the last inequality gives
FAZg,2) 25 + 11—, (332)
or

AZ14 21—, (3.33)

As the right-hand side of (3.33) tends to 1 as r—-- 0o, we can choose 7, so large
that
A=1/2, for r=v, (3.34)
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To establish an upper bound for 4 we first note that

"
xA < H(1 —1——;(—) —1=q,(¥)—1, x=0.
[ 2,

Thus from (3.31) we have
¥ A LT —1,  0=x=v,

or
e%__ 4 82’:—1
As——+-——, 0<x=r (3-35)
But since
e*—1 % x? 1
_,r:14__2_!_;_?_;_...§1+Z(x+x2—|—x3—}—--~), for 0<x<1,

it follows that
e¥—1

p §1+2(1_x), 0<x<<1,
and hence from (3.35) we obtain
x oAx—r
A=1+ 20— PR 0<x<<1.

Choosing x=e¢""? < 1, the last inequality becomes
AZ14e7h), (3-36)
where

Alr): = 5 - exp (27,

2(1—e~"
As A(r) decreases to 1.5 as 7>+ o0, we can additionally require #, to be so large
that A(#) =1.6 for all » =7,, whence

A=S14H1.6e72, r=y,. (3-37)
Now from (3.37) and (3.32) we obtain
% A—Ing,(#[2) £0.87e—1n(1— ™),

and again we can choose 7, large enough so that
087¢ M —In(1—e ™) <re™?  forall rz=v,;

consequently
S A—Ing,(r[2)= ),
s ]

Next, observe that each term in the above sum is positive, and thus, no one term
can exceed the right-hand side, i.e.,

v

Za, sre rzr. (338)

_m0+lﬁ

2ay

v v
A < pp? <
0< 2a ln(d—}- 2ak)__re , for 1ZkZa, 721’9. (3.39)

Making the final assumption that #, be so large that

1 1
. > —1/2
> ln(1+ 22)4706 \
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it follows from (3.39) that

¥ 1
< <
0< 7a =3 for 1Zks0, r=v, (3.40)
But for 0 <¢<1/2, we have

t—In(148) =t
22 24 12 A4 12 8 2 /3 2
N LA TR A BRSNS SR I SR
(z2+3 )=2 ez -z (S t)_3,

whence from (3.40) and (3.38) we deduce

n 2
2 —1—( - ) Sre
=L 3\2g

or

S 12
E <l 7/2 > 4
=l2e T 7 ¢ TN (3-41)

Combining (3.34) and (3.41) with Schwarz’s inequality gives

1 — (& 1\ 12n\12
— 2 - < —r/d
< n( 2 k) = ( p ) 4 »

n
or
4 42
yn: e’ r=vw,. (3.42)
Since the function
e —t
hit): = e

is strictly increasing for £ = 0, and since, as is easily verified,
h{ln (n?/ytIn2n)} >0
for all » sufficiently large, say # =#,, it follows from (3.42) that

r<In(#3y*Iln?n), n=un,.
Hence,

e’ yiinfn  flnan
=" 2nt o\ n

Y

2
), n=ng, V=,

which completes the proof. ]

4. Numerical Results and Applications
Asin (3.1), weset
s P (%)

e T o ot S

- (1—*_%)” , n=A1. (4.1)

Mo () = inf

PE stn—1

[0, + o)
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By means of a modified Remez algorithm, the numbers {u, (#)}22, were computed,
and these, along with g, (1), are given in Table I. Now, from (2.10) of Theorem
2.4, we know that thereis a § = 2 such that

1
q

A

(4.2)

212 <Tm Yn. _. 1
3 2]/2§}Lrgun(n) : 5

and the computations of Table I appear to indicate that 5.828 = (3 —2 ]/5)‘1>
§ > 2. The exact value of § satisfying (4.2) is, as yet, unknown.

Finally, if

—x ﬁn— 1 (x)
X "
(+3)
n
then the sequence of rational functions

{ie ()= L2=2 G0 (4.4)
(1 + ;) I n=1

has attractive features in applications. Consider the numerical solution of the
linear system of ordinary differential equations

Y ()= |le , where §, j€m,_, forall n=1, (4.3)

[0, +o0)

ault)
—— =—Aul)+k >0,
dat ull) (4.5)
u(0) =u,
where % () = [4,(8), ..., #,,(£)]7 is a column vector with # components, and where

4 is a fixed real m xm positive definite symmetric matrix. Such systems arise (cf.
(1]) from semi-discretization of heat-conduction (parabolic) partial differential
equations. The solution of (4.5) is of course given explicitly by

uw(t)=Ark+exp(—tA){u,— A1k}, forall £=0, (4.6)
where exp(—tA4): =D, (—tA)¥k.
k=0

Now, since B, (2) of (4.4) is an approximation of ¢~# then we consider approxi-

mating exp(—A4¢A4) by R, (AtA): = (I—{-A;i)_ pu_1(AtA). Thus, for fixed n
and fixed 4¢, we compute

W = A1+ R, (At 4) - {u Y — 4711}, v, (4.7)

as an approximation of u (rA£), where #'%: = u,, or equivalently
At A\ 4 ” o
(1+_n_) o= (z+ —;‘i) A b5 (M) {0 Y AR (4.8)
But, because of the particular factored form of the matrix on the left above, this
means that © can be obtained from the repeated inversion of

4t A
”

<I+ )§l+1=§z, o=lsn—1, (4.9)

# times, i.e., with g, set equal to the right-hand side of (4.8), then g, =»".
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