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MINIMAL N-POINT DIAMETERS AND f-BEST-PACKING
CONSTANTS IN R¢

A. V. BONDARENKO, D. P. HARDIN, AND E. B. SAFF

(Communicated by Jim Haglund)

ABSTRACT. In terms of the minimal N-point diameter Dg4(N) for R%, we deter-
mine, for a class of continuous real-valued functions f on [0, +oc], the N-point
f-best-packing constant min{f(||z — y||) : =,y € R?}, where the minimum is
taken over point sets of cardinality N. We also show that

N1/dA;1/d —2< Dy(N) < Nl/dAdfl/d7 N>2

where Ay is the maximal sphere packing density in R®. Further, we provide
asymptotic estimates for the f-best-packing constants as N — oo.

Let f be a non-negative function on [0,00) and wy = {z1,22,..., 2N} a collec-
tion of N distinct points in Euclidean space R?. Set

3 (f) = min f(la—yl),

:I/,,

TFY
where || - || denotes the Euclidean norm. In this article we investigate the N-point
f-best-packing constant
(1) 0a(Ns f) = sup 03(f) = sup  min f([lz —yl),
wn CR? wNCRY 90,?;¢ZN
#u}N:N #UJN:N

where # A denotes the cardinality of a set A. A collection of N points w} C R? is
said to be an N-point f-best-packing configuration if 5:7" (f) = 0qa(N; f).

The classical best-packing problem is the problem of finding a configuration of
N points on a given compact set A with the largest minimal pairwise distance.
Formulated for the Euclidean space R?, this becomes the asymptotic problem of
finding the largest density of an infinite collection of non-overlapping equal balls in
R? (see e.g. [3], [7]). We denote this mazimal sphere packing density in R? by Ag;
e.g. A =1, Ay =7/\/12 (cf. [9]) and Az = 7//18 (cf. [10]).

As a natural extension, the asymptotics of certain weighted best-packing prob-
lems on compact sets are investigated in [5]. Here we consider such problems for a
certain class A of functions f defined on all of R? for fixed N (see Theorem 1) as
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well as provide asymptotic results (as N — oo) in Corollaries[[land[2l For example,
for Gaussian weighted best-packing on R?, i.e, f(t) = texp(—t?), our results yield
in particular for N = 7 that do(7; f) = 27/3((1/3) log2)'/? and, furthermore,

N
AQ (A—271)/2 N 1/2 1 N 1/2

An important role in our investigation is played by the quantity

(3) Dg(N):= min {mfdx"#”f”i—ijI}’
1oy eRd | Mgy ||og — 2|

which is called the minimal N-point diameter for R¢. That the minimum of the
ratio in (@) is attained may be seen using a scaling argument. Clearly, D;(N) =
N —1 for each N > 2. For d = 2, the exact values of Dy(N) are known (cf. [I], [2])
for N up to 8, and asymptotically there holds

(4) Dy(N) = (N/A)Y? +0(1) as N — oo.

Furthermore, it is shown by A. Schiirmann in [I2] that for N sufficiently large,
optimal configurations for Do(N) are (somewhat surprisingly) always non-lattice
packings, as conjectured by P. Erdos.

In comparison with (), whose proof relies on results of [9] that are special for
the plane, we show in Theorem [2] that for all d > 1 we have

NVAATVY — 2 < Dy(N) < NYIATYE (N >2).

Our first theorem applies to the class A of functions f € C([0,00)) such that
f(0) =0, f(t) > 0 for t > 0, lim;_,o f(t) = 0, and such that there exist positive
numbers e, M (¢ < M) with the properties that f is strictly increasing on [0, €] and
is strictly decreasing on [M,00). We may assume, without loss of generality, that,
for f € A, the parameters € and M in the above definition further satisfy

5 e)=f(M)= mi t).

(5) &) = f(M) = min f(t)

Lemma 1. Suppose f € A with parameters e and M that satisfy @). If « > M/e,
then there is a unique positive solution t = 7(«) to the equation

(6) f(t) = flat).
Furthermore, T(a) € (Mo, €).

Proof. Consider g(t) := f(at) — f(t) for t > 0. Since M/a < g, f(at) is decreasing
for t € [M/a, 00). Furthermore, since f is increasing on [0, ¢], it easily follows that
g is (strictly) decreasing on [M/«, €] and that
g(M/a) = f(M) = f(M/a) = f(e) = f(M/a) > 0.
We also have
g(e) = flag) = f(e) < f(M) = f(e) =0

since f is decreasing on [M,c0) and ae > M. Hence, g has exactly one zero in
(M/a,¢) or, equivalently, (@) has exactly one solution t = 7(a) € (M/a,€).

If t > M, then f(at) < f(t) since f is increasing on [M,00). If e <t < M, then
f(t) > f(M) > f(at) since at > ae > M. Therefore, there are no values of ¢t > ¢

that satisfy (6). A similar analysis shows that (@) has no solutions in (0, M/«] and
so t = 7(«) is the unique solution of (@) for ¢ > 0. O

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



MINIMAL N-POINT DIAMETERS AND f-BEST-PACKING CONSTANTS 983

Our first main result is the following:

Theorem 1. Let f € A with parameters e and M that satisfy [{). Let Ny be such
that Dg(N) > M/e for N > Ny and ty = 7(Dq(N)) denote the unique value of
t > 0 such that

(7) f(t) = f(Da(N)t).
Then
(8) Sa(N; f) = f(tn), N > Np.

Moreover, a collection of N(> Ny) distinct points wy = {xi}_, C R? is an N-
point f-best-packing configuration if and only if
(9) mein |z —y|l = tn and diam(wy) = tyDg(N).
T,YCWwN
T#y
Proof. Let N > Ny and let wy = {xk}]kvzl be a collection of N points in R? such
that min,; ||z; — x| =ty and diam(wy) = txDg(N). Then

(10) tn <o —ajll <tnDa(N) (i 7 J)-
By Lemma [Il we have ¢ty < € and tyDg(N) > M. From (@), the definition of ¢y,
and the monotonicity properties of f, we have
tn) = min t),
fn) = min O
which, together with (I0)), implies that f(||z; — x;]|) > f(tn) for all 4,5 (i # 7).
Since ||z; — x;|| = tn for some pair 4,5 (i # j), we have

5N (f) = H;inf(llxi —zjl) = f(tn),
i#j

and so §4(N; f) > f(tn).

Let Oy = {yr | k = 1,..., N} denote an arbitrary N-point configuration in R?
and let ¢ := min,4; |ly; — y;||. Since f is increasing on [0,¢] and ty < e, we have
SN (f) < f(tn) if £ < ty; ie. the configuration @y is not optimal. On the other
hand, if ¢ > ¢y, then diam (@n) > Dg(N)t > D4(N)tyn, and so there must be
some i, j such that ||y; — y;|| > Dg(N)t. Hence, 65~ (f) < f(Da(N)tn) = f(tn)
with equality if and only if both ¢ = ¢ty and diam w} = Dg(N)tn. Therefore,
04(N; f) = f(tn) and a configuration is optimal if and only if the conditions in ()
hold. O

For the sake of illustration, consider the function f, , € A defined by f, ,(t) = t?
if 0 <t<1and f,q(t) =t"7if t > 1, where p,q > 0 satisfy 1/p+ 1/q = 1. The
unique solution of (@) is 7(a) = a~%®+9 for o > 1. Then f, ,(7(a)) = 1/a and,
by Theorem [I]

(11) 0a(N; fpq) =1/Da(N) =  max {mink?ﬁ‘ [k — ]| } .

z1,...,zny ERT | MAX £ ||.’E1 — $J||

On letting p — 1 and ¢ — o0, fp 4 tends to fi1,0 where fi oo(t) =t for 0 <t <1
and f1..(t) = 0 for t > 1, for which the equality in (II]) is apparent from the
definitions of these quantities.
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For the case d = 1, we have D1(IN) = N — 1, and any configuration of N points
that attains Dq(N) in @) for N > 2 must be of the form {ck+b|k =0,...,N—1}
for any fixed constants b and ¢ # 0. We thus obtain the following.

Corollary 1. Let f € A andd =1. Let Ty = 7(IN — 1) be the unique solution
of equation ([B) with « = N —1 > M/e. Then 61(N; f) = f(tn) and any f-best-
packing configuration is of the form {tnk+b|k =0,..., N — 1} for some constant
b.

For example, if f(t) = texp(—t?), B > 0, we can take e = M = /8 and we
deduce that for d =1 and N > 2,

ty = [ log(N —1) r/ﬁ
(N—1)F -1
and »
n(N;f) = [(}\(;g_(]\lf—);i)l] (N — 1)—1/[(1\’—1)‘*—1]
with an optimal configuration wy = {tNk}kN:_ol. (For N = 2, we find §1(2; f) =
B~1/8 exp(—1/B) with an optimal configuration being {0, 31/#}.)
We remark that for the Gaussian weighted problem mentioned earlier, the com-

putation of d(7; f) follows easily from Theorem [Il and the fact that Dy(7) = 2.
Next we present estimates for the minimal N-point diameter.

Theorem 2. Foralld>1 and N > 2,
(12) NYIATYT 9 < Dy(N) < NV

Proof. We say that a set of points in R? is 2-separated if the distance between any
two points in the set is greater than or equal to 2. For a bounded set K C R?, let
M(K) denote the maximum number of points that can be placed in K under the
constraint that the distance between any two points is greater than or equal to 2;
i.e., M(K) is the maximum cardinality of any 2-separated subset of K.

For a compact set K in R we let K denote the 2-neighborhood of K defined by

K = {y € K|dist(y, K) < 2},

and, for t € R%, we let K + ¢ denote the translate of K by t.

For p > 1, let X, denote a 2-separated collection of M (B(0, p)) points in B(0, p),
where B(0, p) denotes the open ball centered at 0 with radius p. Then it is known
(cf. [6]) that M(B(0,p)) = p?Ag + o(p?) as p — oo. Furthermore, for any fixed
a > 0 we have M (B(0,p) \ B(0,p —a)) = O(p?~1) as p — oo, which implies
(13) #(X, N B(0,p—a)) = p*Ag+0(p?) as p — oo,

where #A denotes the cardinality of a set A.

Let K be a compact convex set in R? that contains the origin 0 and let Y denote a
2-separated collection of M (K) points in K. If t € R? is such that [t| < p— diamK,
then K +t is contained in B(0, p) and X, =(X,\ K +t)U(Y +1) is a 2-separated
configuration in B(0, p) of #X, — # (Xp N(K + t)) + M(K) points, from which it
follows that

(14) # (X, N (K +1) = M(K).
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Let p, denote the discrete measure p, = > X, 0z, where J, denotes the unit
atomic mass at z € R?, and let A? denote Lebesgue measure on R?. As before,
suppose K is a compact convex set in R? that contains 0 and let yx denote the
characteristic function of K. We next consider the following convolution integral
which, by Tonelli’s theorem, can be written as

//B(O )x X X (@ + 1)dp (2)AX (1) = /B #(X, N (K — t))dp,(x)dA(t)
(15) P)X e

(0,0)
= [ NUBO.0) 0 (K — ) (o).
If |z| + diam(K') < p, then K —x C B(0, p), and so we have
NI, 0 BO,p = diamk)) < [ (X, 0 (K = 0)duy () (1)
B(0,p)
< MN(E)#(X,).

(16)

For N > 1, letting Ry := Nl/dAgl/d and choosing K = B(0, Ry), the first
inequality in (8] shows that

#(X, 1 B(0,p — 2Ry )X (B(0, Ry)) < X (B(0, p)) max #(B(—t, Ry) N X,),
and so, using ([I3]), we obtain as p — oo
#(X, N B(0, p — 2Rn))A*(B(0, Ry))

A(B(0, p))

Taking p — oo it then follows that M (B(0, Ry)) > N, and thus we have
< diam(B(0, Ry))
- 2

Next we derive the lower estimate for Dy(N). For N > 2, let Ky denote the
convex hull of a 2-separated configuration of N points such that diam(Kpy) =

2D4(N). Using the second inequality in (I6) with A = K and the inequality (1),
we obtain

M(Ky)

= R%Ad +o(1).

m?x#(B(—t, Ry)NX,) >

(17) Dy(N) — Ry = NYia M4,

£X, 1 / N J
> — # (X, N (Kn —t)) d\“(t)
Pt = % B0 p—diam(n) ( 2 )
N(B(0, p - diam(Ry)))
p? '
Recalling the isodiametric inequality ([13]; see also [4]) that A?(A) < B4(diam(A)/2)4
for any bounded measurable set A C R? and using (3] and taking p — oo, we have

(18)

> M(Kn)

- d
di K
(W) Ay > M(Ky) > N.
Since diam(Ky) = 4 + diam(Kx) = 4 4+ 2Dg(N), it follows that
(19) Dy(N) > A VINVE o, O

We remark that for the case d = 2, Bezdek and Fodor [2] have shown that

Dy(N) > A;l/le/Q —1, N > 2. We also note that at the conclusion of their article
[1], Bateman and Erdds briefly mention that for N — oo “there are asymptotic
relations of the form %Dd(N ) ~ caN 1/d» for some unknown constant ¢g and refer

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



986 A. V. BONDARENKO, D. P. HARDIN, AND E. B. SAFF

to a paper of Rankin [I1]. However, to the authors’ knowledge, there appears to
be no explicit proof of this fact for arbitrary d in [I1] or elsewhere.

Theorem [ together with equation () and Theorem 2l allows us to establish some
asymptotic estimates for the N-point f-best-packing constant d4(N; f) of a fixed
function f € A. For example, from (1) and (IZ) we have for d > 1,

84(N; fp.g) = 1/Da(N) = AYIN=VI L O(N=2/4) N = .

We now investigate how well ,(N; f) can be approximated by f(T(Nl/dAgl/d)),
as N — oo, where 7(«) is the unique solution of (B]). For this purpose the following
simple lemma is useful.

Lemma 2. Let f, M, and ¢ be as in Lemma [l and let A and A+ X both be greater
than M/e. If X < 0, we further assume that A < (A + \)2. Then the following
inequalities hold:

(20) FAT(A)/(A+ X)) < f(T(A+ X)) < f((A)), A =0,

(21) F((A+X7(A) < f(r(A+ ) < f(AT(A)), if A =0,

(22) f(r(A))Sf<T<A+A>>Sf(f‘47f‘A>>, rso 4 <

(23)  f(AT(A)) < f(T(A+ ) < F((A+N7(A)), if A <0, e <(A+AN)7(A).

Proof. The inequalities follow easily from the facts that 7(¢) is decreasing and t7(t)
is increasing for t > M/e. O

This lemma allows us to obtain asymptotic estimates on d4(N; f), d > 2, for

some subclasses of functions f € A. Set A := Nl/dA_l/d A:=Dgy(N)— A. Then
by applying Theorem 2] and Lemma [2] we 1mmed1ately obtain the following.

Corollary 2. Let f € A. If, for some B € (0,1), both of the following conditions
hold,

@) i TSR o1 for cachg(t) = 001, 1 - 0,
and

(25) Jim f(t;‘(g(t)) _ 1 for cach g(t) = O(5/0B). t oo,
then

(26) fm 0N

N—o0 f (T(Nl/d/Ad))

Proof. If 7(Dy(N)) > N=P/4 for some sequence of integers N, then (Z8) holds
by (@), @0), @), @4), while if 7(Dy(N)) < N-A/4 for infinitely many N,
then (26) holds by (I2), @I), @3), @3- 0
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For the Gaussian weighted best-packing problem in R? mentioned earlier, where
f(t) = texp(—t?), the above corollary readily yields the asymptotic result (2.

The following example illustrates the sharpness of Corollary Let f(z) =
exp{—1/xz?} for z € (0,1), and f(z) = exp{—2?} for z > 1. We have

1/4

52(N: f) = exp{—Da(N)} = Ofexp{— 2 NV2}), N = ox,

11/2

f(t+g(t)) = O(f(t)), for each g(t) = O(t?), t — 0,
and
ft+g(t) =O(f(t)), foreach g(t)=0(1/t), 1 — occ.

This example shows that Corollary 2lis optimal in the sense that it is not possible to
simultaneously increase the constant 1+ 1/ and reduce the constant —3/(1 — ).
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