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Abstract. We investigate the minimal Riesz s-energy problem for positive
measures on the d-dimensional unit sphere S

d in the presence of an external
field induced by a point charge, and more generally by a line charge. The model
interaction is that of Riesz potentials |x−y|−s with d−2 ≤ s < d. For a given
axis-supported external field, the support and the density of the corresponding
extremal measure on S

d is determined. The special case s = d − 2 yields
interesting phenomena, which we investigate in detail. A weak∗ asymptotic
analysis is provided as s → (d − 2)+.

1. Introduction and results

1.1. Potential-theoretical preliminaries. Let Sd:={x ∈ Rd+1 : |x| = 1} be the
unit sphere in Rd+1, where |·| denotes the Euclidean norm, and let σ = σd be the
unit Lebesgue surface measure on Sd. Recall that, using cylindrical coordinates

(1.1) x = (
√

1 − u2 x, u), −1 ≤ u ≤ 1, x ∈ Sd−1,

we can write the decomposition

(1.2) dσd(x) =
ωd−1

ωd

(

1 − u2
)d/2−1

d u d σd−1(x).

Here ωd is the surface area of Sd, and the ratio of these areas can be evaluated as

(1.3)
ωd

ωd−1
=

∫ 1

−1

(

1 − u2
)d/2−1

d u =

√
π Γ(d/2)

Γ((d + 1)/2)
= 2d−1 [Γ(d/2)]2

Γ(d)
.

Given a compact set E ⊂ Sd, consider the class M(E) of unit positive Borel
measures supported on E. For 0 < s < d, the Riesz s-potential and Riesz s-energy
of a measure µ ∈ M(E) are given, respectively, by

Uµ
s (x):=

∫

ks(x,y) d µ(y), Is(µ):=

∫ ∫

ks(x,y) d µ(x) d µ(y),

where ks(x,y):=|x−y|−s is the so-called Riesz kernel (for s = 0 we use the logarith-
mic kernel k0(x,y):= log(1/|x−y|) instead). The s-energy of E is Ws(E):= inf{Is(µ) :
µ ∈ M(E)} and if Ws(E) is finite, there is a unique measure µE,s achieving this
minimal energy, which is called the s-extremal measure on E. The s-capacity of E
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is defined as caps(E):=1/Ws(E) for s > 0. (In the logarithmic case s = 0 we define
cap0(E):= exp{−W0(E)}, cf. (1.27).) A property is said to hold quasi-everywhere
(q.e.) if the exceptional set has s-capacity zero. For more details see [15, Chapter
II]. We remind the reader that the s-energy of Sd is given by

(1.4) Ws(S
d) =

Γ(d) Γ((d − s)/2)

2s Γ(d/2) Γ(d − s/2)
, 0 < s < d.

The weighted s-energy IQ(µ) associated with a non-negative lower semi-continuous
external field Q : E → [0,∞] and its extremal value VQ are given by

IQ(µ):=Is(µ) + 2

∫

Q(x) d µ(x), VQ:= inf {IQ(µ) : µ ∈ M(E)} .

A measure µQ ∈ M(E) such that IQ(µQ) = VQ is called an extremal (or positive
equilibrium) measure on E associated with Q(x). The measure µQ is characterized
by the Gauss variational inequalities

UµQ

s (x) + Q(x) ≥ FQ q.e. on E,(1.5)

UµQ

s (x) + Q(x) ≤ FQ everywhere on supp(µQ),(1.6)

where

FQ:=VQ −
∫

Q(x) d µQ(x).

For simplicity, we suppressed in some of the above notation the dependency on s;
that is, IQ = IQ,s, µQ = µQ,s, etc. We note that for suitable external fields (e.g.
continuous on E = Sd), the inequality in (1.5) holds everywhere, which implies that
equality holds in (1.6).

The existence, uniqueness, and characterization-related questions concerning
equilibrium potentials with external fields in the most general setting can be found
in [24]–[26]. We remark that the logarithmic potential with external fields is treated
in depth in [22].

When Q ≡ 0 and caps(E) > 0, the extremal measure µQ is the same as the
measure µE = µE,s.

In [5] Riesz external fields

(1.7) Qa,q(x):=Qa,q,s(x):=q |x − a|−s
on E = Sd, d − 2 < s < d,

were considered, where q > 0 and a is a fixed point on Sd. 1 The motivation for
that investigation was to obtain new separation results for minimal s-energy points
on the sphere. In the current work we extend that investigation to Riesz external
fields Qa,q with a 6∈ Sd and develop a technique for finding the extremal measure
associated with more general axis-supported external fields.

1.2. Signed Equilibrium. We note that for d = 2 and s = 1 it is a standard
electrostatic problem to find the charge density (signed measure) on a charged,
insulated, conducting sphere in the presence of a point charge q placed off the
sphere (see [10, Chapter 2]). This motivates us to give the following definition (see
[4]).

1The case d = 1, s = 0, where a is a point on the unit circle was investigated in [16].
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Definition 1.1. Given a compact subset E ⊂ Rp (p ≥ 3) and an external field
Q, we call a signed measure ηE,Q = ηE,Q,s supported on E and of total charge
ηE,Q(E) = 1 a signed s-equilibrium on E associated with Q if its weighted Riesz
s-potential is constant on E, that is

(1.8) UηE,Q

s (x) + Q(x) = FE,Q for all x ∈ E.

The choice of the normalization ηE,Q(E) = 1 is just for convenience in the
applications here. Lemma 2.1 below establishes that if a signed equilibrium ηE,Q

exists, then it is unique.
In [7] Fabrikant et al give a derivation of certain signed Riesz equilibria on

suitably parametrized surfaces in R3, including spherical caps when Q(x) ≡ 0. We
remark that the determination of signed equilibria is a substantially easier problem
than that of finding non-negative extremal measures, which is the goal of this paper.
However, the solution to the former problem is useful in solving the latter problem.

Our first result establishes existence of the signed s-equilibrium associated with
the Riesz external field Qa,q, a 6∈ Sd, defined in (1.7). We assume that a lies above
the North Pole p := (0, 1), that is a = (0, R) and R > 1 (the case R < 1 is handled
by inversion).

Throughout, 2F1

(

a, b
c ; z

)

and 2F̃1

(

a, b
c ; z

)

denote the Gauss hypergeometric

function and its regularized form 2 with series expansions

(1.9) 2F1

(

a, b
c ; z

)

:=

∞
∑

n=0

(a)n(b)n

(c)n

zn

n!
, 2F̃1

(

a, b
c ; z

)

:=

∞
∑

n=0

(a)n(b)n

Γ(n + c)

zn

n!
, |z| < 1,

where (a)0:=1 and (a)n:=a(a + 1) · · · (a + n − 1) for n ≥ 1 is the Pochhammer
symbol. The incomplete Beta function and the Beta function are defined as

(1.10) B(x; α, β):=

∫ x

0

vα−1 (1 − v)
β−1

d v, B(α, β):= B(1; α, β),

whereas the regularized incomplete Beta function is given by

(1.11) I(x; a, b):= B(x; a, b)
/

B(a, b).

Theorem 1.2. Let 0 < s < d and R > 1. The signed s-equilibrium ηa = ηSd,Qa,q,s

on Sd associated with the Riesz external field Qa,q, a = Rp, is given by

(1.12) d ηa(x) = η′
a
(x) d σ(x), η′

a
(x):=1 +

qUσ
s (a)

Ws(Sd)
− q

(

R2 − 1
)d−s

Ws(Sd) |x − a|2d−s
.

Furthermore, Uσ
s (a) =

∫

ks(a,y) d σ(y) has the following representation:

(1.13) Uσ
s (a) = (R + 1)

−s
2F1

(

s/2, d/2
d

; 4R
/

(R + 1)
2
)

.

We remark that in the Coulomb case d = 2 and s = 1, the representation (1.12)
is well-known from elementary physics (cf. [10, p. 61]).

The next result explicitly shows the relationship between q and R so that µQa,q

coincides with the signed equilibrium and has as support the entire sphere.

2which is well-defined even for c a negative integer
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Corollary 1.3. Let 0 < s < d, R = |a| > 1. Then supp(µQa,q
) = Sd if and only if

Ws(Sd)

q
≥ (R + 1)d−s

(R − 1)d
− Uσ

s (a) =
∞
∑

k=0

[

1 − (s/2)k
(d)k

]

(d/2)k
k!

(4R)k

(R + 1)s+2k
.(1.14)

In such a case, µQa,q
= ηa.

Remark 1.4. Observe that the right-most part of (1.14) is a strictly decreasing
function of R for R > 1. Thus, for any fixed charge q there is a critical Rq given by
equality in (1.14), such that for R ≥ Rq the extremal support is the entire sphere.

1.3. The Newtonian case s = d − 1. The following example deals with the
classical case of a Newtonian potential (relative to the manifold dimension). The
example answers a question of A. A. Gonchar; namely, how far from the unit sphere
should a unit point charge be placed so that the support of the extremal measure
associated with the external field exerted by the charge be the entire sphere?

Example 1.5. Let d ≥ 2, s = d − 1, q = 1 and a = (0, R). Then Ws(Sd) = 1 (cf.
(1.4)) and from the mean-value property for harmonic functions we can write

Uσ
s (a) =

1

Rd−1
for R ≥ 1.

Thus (1.14) in this case is equivalent to the inequality

1 ≥ (R + 1) (R − 1)
−d − R1−d or 1 ≥ (ρ + 2)ρ−d − (ρ + 1)

1−d
,

where ρ measures the distance between the unit charge and the surface of the
sphere. Equality holds if ρ is an algebraic number satisfying

P (d; ρ):=
(

ρd − 2 − ρ
)

(ρ + 1)
d−1

+ ρd = 0,

or on expanding the polynomial P (d; ρ),

d−1
∑

m=0

(

d − 1

m

)

ρm+d −
d−1
∑

m=0

[(

d

m

)

+

(

d − 1

m

)]

ρm = 0.

The monic polynomial3 P (d; ρ) with integer coefficients has odd degree 2d − 1.
Furthermore, P (d; 1) < 0 and hence P (d; ρ) has at least one positive root; but, by
Descartes’ Sign Rule, this is the only positive root. This simple root ρ+ must be in
the interval (1, 2], since P (d; ρ) > 0 for ρ > 2. Asymptotic analysis shows that

ρ+ = 1 + (log 3) /d + O(1/d2) as d → ∞.

Of particular interest is the case when d = 2. Then one easily computes that the
distance between the point charge and the surface of the sphere is given precisely
by the golden ratio ρ+ = (1 +

√
5)/2. We note that the fact that the inequality

R−1 ≥ ρ+ implies supp(µQa,1
) = S2 follows from an elementary physics argument.

3Properties of these polynomials will be investigated in a future publication.
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1.4. The Mhaskar-Saff Fs-functional and the extremal support. An impor-
tant tool in our analysis is the Riesz analog of the Mhaskar-Saff F -functional from
classical logarithmic potential in the plane (see [17] and [22, Chapter IV, p. 194]).

Definition 1.6. The Fs-functional of a compact subset K ⊂ Sd of positive s-
capacity is defined as

(1.15) Fs(K):=Ws(K) +

∫

Q(x) d µK(x),

where Ws(K) is the s-energy of K and µK is the s-extremal measure (without
external field) on K.

Remark 1.7. We caution the reader that (1.15) is the negative of the F -functional
defined in [17] and [22].

Remark 1.8. When d − 2 < s < d, there is a remarkable relationship between the
signed s-equilibrium and the Fs-functional. Namely, if the signed s-equilibrium on
a compact set K associated with Q exists, then Fs(K) = FK,Q, where FK,Q is the
constant from (1.8). Indeed, if ηK,Q exists, we integrate (1.8) with respect to µK

and interchange the order of integration to obtain the asserted equality.

The following optimization property is the main motivation for introducing the
Fs-functional.

Theorem 1.9. Let d − 2 ≤ s < d with s > 0 and Q be an external field on Sd.
Then the Fs-functional is minimized for SQ:= supp(µQ).

The next theorem provides sufficient conditions on a general external field Q
that guarantee that the extremal support SQ is a spherical zone or a spherical cap.

Theorem 1.10. Let d−2 ≤ s < d with s > 0 and the external field Q : Sd → [0,∞]
be rotationally invariant about the polar axis; that is, Q(z) = f(ξ), where ξ is the

altitude of z = (
√

1 − ξ2 z, ξ) (see (1.1)). Suppose that f is a convex function on
[−1, 1]. Then the support of the s-extremal measure µQ on Sd is a spherical zone;
namely, there are numbers −1 ≤ t1 ≤ t2 ≤ 1 such that

(1.16) supp(µQ) = Σt1,t2 := {(
√

1 − u2 x, u) : t1 ≤ u ≤ t2, x ∈ Sd−1}.
Moreover, if additionally f is increasing, then t1 = −1 and the support of µQ is a
spherical cap centered at the South Pole.

It is easy to see that the external field Qa,q(z) = q|1−2Rξ+R2|−s/2 is rotationally
invariant about the polar axis and is an increasing and convex function of the
altitude ξ of z. Therefore, from Theorem 1.10 we conclude that the support of
the extremal measure µQa,q

on Sd is a spherical cap. In view of Theorem 1.9
we thus need only to minimize the Fs-functional over the collection of spherical
caps centered at the South Pole in order to determine SQ. For this purpose, in
consideration of Remark 1.8, we first seek an explicit representation for the signed
equilibria for these spherical caps.

Denote by Σt the spherical cap centered at the South Pole

(1.17) Σt:=Σ−1,t,

(cf. (1.16)), and let ηt be the signed s-equilibrium on Σt associated with Qa,q. Using
M. Riesz’s approach to s-balayage as presented in [15, Chapter IV], we introduce
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the following s-balayage measures onto Σt:

(1.18) ǫt = ǫt,s:=Bals(δa, Σt), νt = νt,s:=Bals(σ, Σt),

where δa is the unit Dirac-delta measure at a. Recall that given a measure ν and a
compact set K (of the sphere Sd), the balayage measure ν̂ := Bals(ν, K) preserves
the Riesz s-potential of ν onto the set K and diminishes it elsewhere (on the sphere
Sd). We remark that in what follows an important role is played by the function

(1.19) Φs(t):=Ws(S
d) (1 + q ‖ǫt‖)

/

‖νt‖ , d − 2 < s < d.

The next assertion is an immediate consequence of the definition of the balayage
measures in (1.18). In Lemmas 3.1 and 3.2 below we present explicit formulas for
their densities. Their norms are calculated in Lemmas 3.7 and 3.6, respectively.
Below we combine these formulas to give an explicit form for the density of the
signed equilibrium. The only statements requiring further proof is the formula for
the weighted s-potential (1.22) when ξ > t. We shall do this in Section 5.

Theorem 1.11. Let d − 2 < s < d. The signed s-equilibrium ηt on the spherical
cap Σt ⊂ Sd associated with Qa,q is given by

(1.20) ηt =
[

Φs(t)/Ws(S
d)
]

νt − qǫt.

It is absolutely continuous in the sense that for x = (
√

1 − u2 x, u) ∈ Σt,

d ηt(x) = η′
t(u)

ωd−1

ωd

(

1 − u2
)d/2−1

d u dσd−1(x),

where (with R = |a| and r =
√

R2 − 2Rt + 1)

η′
t(u) =

1

Ws(Sd)

Γ(d/2)

Γ(d − s/2)

(

1 − t

1 − u

)d/2(
t − u

1 − t

)(s−d)/2

×
{

Φs(t) 2F̃1

(

1, d/2
1 − (d − s)/2

;
t − u

1 − u

)

− q (R + 1)d−s

rd 2F̃1

(

1, d/2
1 − (d − s)/2

;
(R − 1)2

r2

t − u

1 − u

)}

.

(1.21)

Furthermore, if z = (
√

1 − ξ2 z, ξ) ∈ Sd, the weighted s-potential is given by

Uηt

s (z) + Qa,q(z) = Φs(t), z ∈ Σt,

Uηt

s (z) + Qa,q(z) = Φs(t) + q
1

ρs
I

(

(R + 1)2

r2

ξ − t

1 + ξ
;
d − s

2
,
s

2

)

− Φs(t)I

(

ξ − t

1 + ξ
;
d − s

2
,
s

2

)

, z ∈ Sd \ Σt,

(1.22)

where ρ =
√

R2 − 2Rξ + 1 and I(x; a, b) is the regularized incomplete Beta function.

The corresponding statement for the case s = d − 2 is given in Theorem 1.15.

Remark 1.12. According to Remark 1.8 we have from Theorem 1.11 that Fs(Σt) =
Φs(t). Concerning the minimization of this function, we derive the following result.
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Theorem 1.13. Let d − 2 < s < d. For the external field Qa,q(x), a = (0, R),
R > 1, the function Φs(t) has precisely one global minimum t0 ∈ (−1, 1]. This
minimum is either the unique solution t0 ∈ (−1, 1) of the equation

Φs(t) = q (R + 1)
d−s / (

R2 − 2Rt + 1
)d/2

,

or t0 = 1 when such a solution does not exist. Moreover, t0 = max{t : ηt ≥ 0}. The
extremal measure µQa,q

on Sd is given by ηt0 (see (1.20)), and supp(µQa,q
) = Σt0 .

Note that, in view of formulas (3.11) and (3.12) for ‖ǫt‖ and ‖νt‖ given below,
then equation in Theorem 1.13 can be written in terms of hypergeometric functions.

Remark 1.14. The restriction on the parameter s arises in the process of applying
the balayage method and the principle of domination. It is a topic for further
investigation to extend the range of s for which the conclusion of Theorem 1.13
remains true.

Figure 1 gives an overview of the qualitative behavior of the weighted s-potential
of ηt on Sd associated with Q and its density with respect to σd|Σt

for s in the range
d−2 < s < d and the choices t < t0, t = t0 and t > t0. We remark that the tangent
line to the graph of the weighted s-potential becomes vertical as ξ → t+ for t 6= t0
and is horizontal for t = t0 < 1 (cf. Remark 5.1).

1.5. The exceptional case s = d − 2. In this case M. Riesz’s approach [15,
Chapter IV] has to be modified. Somewhat surprisingly it turns out, as shown in
Lemmas 6.2 and 6.5, that the s-balayage measures from (1.18)

(1.23) ǫt:=ǫt,d−2 = Bald−2(δa, Σt), νt:=νt,d−2 = Bald−2(σ, Σt)

exist and both have a component that is uniformly distributed on the boundary of
Σt. Moreover, unlike the case d− 2 < s < d, the density for µQa,q

, where s = d− 2,
does not vanish on the boundary of its support. We introduce the measure

βt(x):=δt(u) · σd−1(x), x = (
√

1 − u2 x, u).

Theorem 1.15. Let d ≥ 3. The signed s-equilibrium ηt on the spherical cap Σt

associated with Q
a,q(x) = q |x − a|2−d is given by

ηt =
[

Φd−2(t)/Wd−2(S
d)
]

νt − qǫt, Φd−2(t):=Wd−2(S
d) (1 + q ‖ǫt‖) / ‖νt‖ ,

where νt and ǫt are given in (1.23). More explicitly, for x = (
√

1 − u2 x, u) ∈ Sd

d ηt(x) =
1

Wd−2(Sd)

[

Φd−2(t) −
q
(

R2 − 1
)2

(R2 − 2Ru + 1)
d/2+1

]

d σd

∣

∣

Σt
(x)

+
1 − t

2

(

1 − t2
)d/2−1

[

Φd−2(t) −
q (R + 1)

2

(R2 − 2Rt + 1)
d/2

]

d βt(x).

(1.24)

Furthermore, for any fixed t ∈ (−1, 1), the following weak∗ convergence holds:

(1.25) νt,s
∗−→ νt, ǫt,s

∗−→ ǫt, as s → (d − 2)+.

The function Φd−2(t) has precisely one global minimum t0 ∈ (−1, 1]. This min-
imum is either the unique solution t0 ∈ (−1, 1) of the equation

Φd−2(t) = q (R + 1)2
/ (

R2 − 2Rt + 1
)d/2

,

or t0 = 1 when such a solution does not exist. Moreover, t0 = max{t : ηt ≥ 0}.
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Figure 1. The weighted s-potential of ηt for t > t0, t = t0, and
t < t0 versus altitude ξ of z for d = 2, s = 1/2, q = 1, and R = 3/2,
cf. Theorems 1.11 and 1.13. Insets show the respective density η′

t.

The extremal measure µQ
a,q

on Sd with supp(µQ
a,q

) = Σt0 is given by

(1.26)

d µQ
a,q

(x) = d ηt0(x) =
Φd−2(t0)

Wd−2(Sd)

[

1 − (R − 1)
2 (

R2 − 2Rt0 + 1
)d/2

(R2 − 2Ru + 1)
d/2+1

]

d σd

∣

∣

Σt0

(x).

In Lemmas 6.2 and 6.5 we give the s-potentials of the balayage measures νt and
ǫt from which the weighted s-potential of ηt at every z ∈ Sd can be easily obtained.

Remark 1.16. As can be seen from (1.24), depending on the sign of the coefficient
of βt, the signed equilibrium ηt has positive or negative charge on ∂Σt unless t = t0,
in which case the charge on the boundary disappears (see Figure 2).
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Next, we describe the results when d = 2 and s = 0. The external field in this
case is Q(x) = Q

a,q(x) = q log(1/|x − a|). The balayage process for logarithmic
kernels preserves the mass of the measures, but changes the potentials by a constant.
Hence, ‖νt,0‖ = ‖ǫt,0‖ = 1, and thus Φd−2(t) = 1 + q. However, the Mhaskar-Saff

functional F0(Σt) from (1.15) is no longer equal to Φd−2(t) (cf. Remark 1.12 and
Lemma 6.9). The logarithmic energy satisfies

(1.27) W0(K) = lim
s→0+

d Ws(K)/ d s
∣

∣

s=0
.

For K = S2 we have W0(S2) = 1/2 − log 2 < 0. Since Theorem 1.10 can be
extended to s = 0 if d = 2, we deduce that SQ:= supp(µQ) will be a spherical cap
Σt0 . Direct calculations show that the Mhaskar-Saff functional F0 for spherical caps
is still minimized for SQ. Figure 2 shows the qualitative behavior for the weighted

potential in the logarithmic case. (Note, that for t 6= t0 the tangent line to the
graph of the weighted logarithmic potential at ξ → t+ is not vertical like in the
case d − 2 < s < d (cf. Figure 1), but it becomes horizontal if t = t0 < 1.)

Theorem 1.17. Let d = 2 and s = 0. The signed s-equilibrium ηt,0 on the spherical

cap Σt associated with Q
a,q(x) = q log(1/|x− a|) is given by

ηt,0 = (1 + q) νt,0 − qǫt,0,

where νt,0 = Bal0(σ2, Σt) and ǫt,0 = Bal0(δa, Σt). For x = (
√

1 − u2 x, u) ∈ S1

d ηt,0(x) =

[

1 + q − q
(

R2 − 1
)2

(R2 − 2Ru + 1)
2

]

d σ2

∣

∣

Σt
(x) +

1 − t

2

[

1 + q − q (R + 1)2

R2 − 2Rt + 1

]

d βt(x).

For z = (
√

1 − ξ2 z, ξ) ∈ S1 the weighted logarithmic potential of ηt,0 satisfies

U
ηt,0

0 (z) + Q
a,q(z) = F0(Σt), z ∈ Σt,

U
ηt,0

0 (z) + Q
a,q(z) = F0(Σt) +

1

2
log

1 + t

1 + ξ
+

q

2
log

R2 − 2Rt + 1

R2 − 2Rξ + 1
, z ∈ S2 \ Σt,

where F0(Σt) is given below in Lemma 6.9.
The Mhaskar-Saff functional F0 is minimized for Σt0 , where

t0 = min

{

1,
(R + 1)

2

2R (1 + q)
− 1

}

= min

{

1, 1 − 4qR − (R − 1)
2

2R (1 + q)

}

.

Moreover, t0 = max{t : ηt,0 ≥ 0}.
The logarithmic extremal measure µQ

a,q
on S2 with supp(µQ

a,q
) = Σt0 is

(1.28) dµQ
a,q

(x) = d ηt0,0(x) =

[

1 + q − q
(

R2 − 1
)2

(R2 − 2Ru + 1)2

]

d σ2

∣

∣

Σt0

(x).

Remark 1.18. In general, the density η′
t0,0(u) in (1.28) does not vanish on the

boundary of Σt0 . In fact, if t0 ∈ (−1, 1), then

lim
u→t0

η′
t0,0(u) = [(1 + q) /q]

[

4qR − (R − 1)
2
]

/ (R + 1)
2

> 0.
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0 (z) + Q(z) = F0(Σt), on Σt,

η
′

t,0 ≥ 0, on Σt.

Figure 2. The weighted logarithmic potential of ηt,0 for t > t0,
t = t0, and t < t0 versus altitude ξ of z for d = 2, s = 0, q = 1,
and R = 2, cf. Theorem 1.17. Insets show the respective density
η′

t,0. The dot indicates the component on the boundary of Σt.

1.6. Axis-supported external fields. It is well known that the balayage of a
measure can be represented as a superposition of balayages of Dirac-delta mea-
sures. Using this, we extend our results to external fields that are axis-supported
s-potentials.

Definition 1.19. We call an external field Q positive-axis supported, if

(1.29) Q(x) =

∫

|x− Rp|−s d λ(R), x ∈ Sd,

for some finite positive measure λ supported on a compact subset of (0,∞).

Remark 1.20. Since Bals(δ(1/R)p, Sd) = Rs Bals(δRp, Sd), we can restrict ourselves
to measures λ with support in [1,∞). It is possible to generalize the setting to fields
supported on both the negative and positive polar axis as well. This generalization
shall be reserved for a later occasion.
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We begin with a result, which generalizes Theorem 1.2 and Corollary 1.3 to
axis-supported external fields Q.

Theorem 1.21. Let 0 < s < d and Q be as in (1.29) with supp(λ) ⊂ [1,∞). Then

d η̃λ(x) =
1

Ws(Sd)

{

Fs(S
d) −

∫

(

R2 − 1
)d−s (

R2 − 2Ru + 1
)s/2−d

d λ(R)

}

d σ(x).

Moreover, supp(µQ) = Sd (that is µQ = η̃λ) if and only if

Fs(S
d) ≥

∫

(R + 1)
d−s

(R − 1)
−d

d λ(R).

The next assertion deals with the signed equilibrium measure η̃t on spherical
caps Σt ⊂ Sd associated with the axis-supported external field Q.

Theorem 1.22. Let d − 2 < s < d and Q be as in (1.29) with supp(λ) ⊂ [1,∞).
The signed s-equilibrium η̃t on the spherical cap Σt associated with Q is given by

η̃t =
[

Φ̃s(t)/Ws(S
d)
]

νt − ǫ̃t, Φ̃s(t):=Ws(S
d) (1 + ‖ǫ̃t‖) / ‖νt‖ ,

where νt is defined in (1.18) and ǫ̃t:=Bals(λ, Σt) =
∫

Bals(δRp, Σt) d λ(R). For

x = (
√

1 − u2 x, u) ∈ Σt the signed s-equilibrium η̃t can be written as

d η̃t(x) = η̃′
t(u, R)

ωd−1

ωd
(1 − u2)d/2−1 d u d σd−1(x),

where

η̃′
t(u, R) =

1

Ws(Sd)

Γ(d/2)

Γ(d − s/2)

(

1 − t

1 − u

)d/2(
t − u

1 − t

)(s−d)/2

×
{

Φ̃s(t) 2F̃1

(

1, d/2
1 − (d − s)/2

;
t − u

1 − u

)

−
∫

(R + 1)
d−s

(R2 − 2Rt + 1)
d/2 2F̃1

(

1, d/2
1 − (d − s)/2

;
(R − 1)

2

R2 − 2Rt + 1

t − u

1 − u

)

d λ(R)

}

.

Furthermore, the function Φ̃s(t) has precisely one global minimum in (−1, 1]. This
minimum is either the unique solution tλ ∈ (−1, 1) of the equation

Φ̃s(t) =

∫

(R + 1)
d−s (

R2 − 2Rt + 1
)−d/2

dλ(R),

or tλ = 1 when such a solution does not exist. Moreover, tλ = max{t : η̃t ≥ 0},
µQ = η̃tλ

, and supp(µQ) = Σtλ
, where µQ is the extremal measure on Sd.

Theorem 1.22 can be also extended to the case s = d − 2 when d ≥ 3 and also
to the logarithmic case s = 0 for d = 2. For details, we refer the reader to [2].

The remainder of this paper is structured as follows. In Section 2 we show the
uniqueness of the signed equilibrium and prove Theorem 1.2 and Corollary 1.3. In
Section 3 a suitable Kelvin transformation of points and measures is considered and
explicit formulas for the densities of the measures in (1.20) are found in Lemmas
3.1 and 3.2. Furthermore, the norms of these measures are computed. The proofs
of Theorems 1.9, 1.10, and 1.13 are given in Section 4. The weighted s-potential
of the signed equilibrium is given in Section 5. Section 6 considers the special case
s = d−2 and the proofs of Theorems 1.15 and 1.17 are provided. Finally, in Section
7 we prove the generalization of the results to axis-supported external fields.
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2. Signed equilibrium associated with an external field

First, we consider some preliminaries on the Kelvin transformation (spherical
inversion) of points and measures. Inversion in a sphere is a basic technique in
electrostatics (method of electrical images, cf. Jackson [10]) and in general in
potential theory (cf. Kellog [11] and Landkof [15]). Kelvin transformation (of
a function) is linear, preserves harmonicity (in the classical case), and preserves
positivity. We shall make use of this method and of balayage to conveniently infer
representations of the signed equilibrium associated with an external field from
known results.

2.1. The Kelvin transformation. Let us denote by KR the Kelvin transforma-
tion (stereographic projection) with center a = (0, R) and radius

√
R2 − 1, that is

for any point x ∈ Rd+1 the image x∗:=KR(x) lies on a ray stemming from a, and
passing through x such that

(2.1) |x − a| · |x∗ − a| = R2 − 1.

Thus, the transformation of the distance is given by the formula

(2.2) |x∗ − y∗| =
(

R2 − 1
) |x − y|
|x − a| |y − a| , x,y ∈ Sd.

It is easy to see that KR(Sd) = Sd, where KR sends the spherical cap

AR:={(
√

1 − u2 x, u) : 1/R ≤ u ≤ 1,x ∈ Sd−1} to BR:={(
√

1 − u2 x, u) : −1 ≤
u ≤ 1/R,x ∈ Sd−1} and vice versa, with the points on the boundary being fixed.
In particular, the North Pole p = (0, 1) goes to the South Pole q:=(0,−1). The

image of x = (
√

1 − u2 x, u) is x∗ = (
√

1 − (u∗)2 x, u∗), where

(2.3) 1 + u∗ =
(R + 1)

2

R2 − 2Ru + 1
(1 − u) .

The last equation is derived from the similar triangles proportion

|x∗ − q|
/

|q − a| = |x − p|
/

|x − a|

and the formulas |x∗ − q|2 = 2 (1 + u∗), |x − p|2 = 2 (1 − u), |q − a| = R + 1, and

|x − a|2 = R2 − 2Ru + 1. Finally, we point out that

(2.4) |x∗ − a|−d d σ(x∗) = |x − a|−d d σ(x),

which can be easily seen from the relation (x∗ − a)
/

|x∗ − a| = (x− a)
/

|x − a|.
Next, we recall that given a measure λ with no point mass at a, its Kelvin

transformation (associated with a fixed s) λ∗ = KR,s(λ) is a measure defined by

(2.5) dλ∗(x∗):=
(

R2 − 1
)s/2 |x − a|−s d λ(x).

The s-potentials of the two measures are related as follows (e.g. [5, Eq. (5.1)])

(2.6) Uλ∗

s (x∗) =

∫

d λ∗(y∗)

|x∗ − y∗|s =

∫ |x− a|s d λ(y)

(R2 − 1)
s/2 |x− y|s

=
|x − a|s

(R2 − 1)
s/2

Uλ
s (x).

Note that the Kelvin transformation has the duality property KR,s(λ
∗(x∗)) = λ(x).
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2.2. Signed equilibrium. We first establish the uniqueness of the signed equilib-
rium, provided it exists.

Lemma 2.1. Let 0 ≤ s < d. If a signed equilibrium ηE,Q exists, then it is unique.

Proof. The lemma follows from the positivity of the s-energy of signed measures.
Indeed, suppose η1 and η2 are two signed equilibria on E associated with Q. Then

Uη1

s (x) + Q(x) = F1, Uη2

s (x) + Q(x) = F2 for all x ∈ E.

Subtracting the two equations and integrating with respect to η1 − η2 we obtain

Is(η1 − η2) =

∫

[Uη1

s (x) − Uη2

s (x)] d(η1 − η2)(x) = 0,

and from [15, Theorem 1.15] we conclude that η1 = η2 (see also [8, Section 5]).
When d = 2 and s = 0 instead of [15, Theorem 1.15] we could use [23, Theorem 4.1]
to prove the assertion of the Lemma. When d > 2 and s = 0 we could use [20, p. 6].
Note that η1 − η2 is the difference of two signed measures with total charge 1. �

We are now in a position to find the signed equilibrium for the external field
Qa,q defined by a point charge q at a (see (1.7)).

Proof of Theorem 1.2. We apply the Kelvin transformation (2.1) to the s-potential

U ǫa
s (z) =

∫

Sd

d ǫa(x)

|z − x|s , d ǫa(x):=

(

R2 − 1
)d−s

Ws(Sd) |x − a|2d−s
d σ(x), σ = σd.

From (2.2) and (2.4) (recall that KR(Sd) = Sd) we obtain

U ǫa
s (z) = |z− a|−s

∫

Sd

1

Ws(Sd) |z∗ − x∗|s d σ(x∗) =
1

|z − a|s ,

where we used that Uσ
s (z∗) = Ws(Sd) for all z∗ ∈ Sd. Hence, ǫa = ǫ1 (see (1.18)).

For ηa defined in (1.12), we therefore derive

Uηa

s (z) + Qa,q(z) = Ws(S
d) + qUσ

s (a), for all z ∈ Sd.

In addition, one similarly finds
∫

Sd

(

R2 − 1
)d−s |x − a|s−2d

d σ(x) =

∫

Sd

|x∗ − a|−s
d σ(x∗) = Uσ

s (a),

and consequently ηa(Sd) = 1. Therefore, ηa is the required signed equilibrium.
Finally, to derive (1.13), using (1.2) and (1.3), we evaluate

Uσ
s (a) =

∫

Sd

|x − a|−s
d σd(x) =

ωd−1

ωd

∫ 1

−1

(

1 − u2
)d/2−1 (

R2 − 2Ru + 1
)−s/2

d u

= (R + 1)
−s

2F1

(

s/2, d/2
d

; 4R/ (R + 1)
2
)

.

In the last step we used the standard substitution 2v = 1 + u and the integral
representation of the hypergeometric function [1, Eq. 15.3.1]. �

The proof of Corollary 1.3 is an easy consequence of the uniqueness of the ex-
tremal measure associated with an external field.
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Proof of Corollary 1.3. The (strictly decreasing) density η′
a
(x) in (1.12) attains its

minimum value at the North Pole p. So, non-negativity there implies that ηa > 0
everywhere else on Sd, in which case it coincides with the extremal measure on Sd.
On the other hand, if supp(µQa,q

) = Sd, then the variational inequalities (1.5) and
(1.6) yield µQa,q

= ηa; and η′
a
(x) is again non-negative at p. What remains to show

is that the inequality in (1.14) is equivalent to η′
a
(x) ≥ 0, which can be seen by

using |p− a| = R − 1. Finally, using the series expansion of (1.13) and

(R + 1)
d
/ (R − 1)

d
=
{

1 −
[

4R/ (R + 1)
2
]}−d/2

=

∞
∑

k=0

(d/2)k

k!

(4R)
k

(R + 1)
2k

,

we derive the second part of (1.14). �

3. The s-balayage measures νt and ǫt

In this section we show that for s in the range d−2 < s < d, the measures νt and
ǫt are absolutely continuous with respect to the normalized area surface measure
σd (restricted to the spherical cap Σt) and we find their densities.

3.1. The balayage measures. We now focus on the two balayage measures in
(1.18). The second one, νt, has already been found in [5, Eq.s (3.19) and (4.6)]. 4

It is absolutely continuous in the following sense:

(3.1) d νt(x) = (1 + Jt(x))
ωd−1

ωd

(

1 − u2
)d/2−1

d u dσd−1(x), x ∈ Σt,

where Σt is the spherical cap centered at the South Pole (see (1.17)) and

Jt(x):=
sin(π (d − s) /2)

π

(1 − t)d−s/2

(t − u)
(d−s)/2

∫ 1

0

vd/2−1 (1 − v)(d−s)/2

1 − u − (1 − t) v
d v.

It is convenient to obtain a closed form for Jt(x) in terms of (regularized) hyper-
geometric functions (cf. (1.9)). By [1, Eq. 15.3.1]

Jt(x):=
Γ(d/2) (d − s) /2

Γ(1 − (d − s)/2)

(

1 − t

1 − u

)d/2(
t − u

1 − t

)(s−d)/2

2F̃1

(

1, d/2
1 + d − s/2

;
1 − t

1 − u

)

.

The application of [1, Eq. 15.3.6] yields an expansion near u = t,

Jt(x) = −1 +
Γ(d/2)

Γ(d − s/2)

(

1 − t

1 − u

)d/2(
t − u

1 − t

)(s−d)/2

2F̃1

(

1, d/2
1 − (d − s)/2

;
t − u

1 − u

)

.

Substituting the last relation into (3.1) and simplifying we get the following lemma.

Lemma 3.1. Let d − 2 < s < d. The measure νt = Bals(σ, Σt) is given by

(3.2) d νt(x) = ν′
t(u)

ωd−1

ωd

(

1 − u2
)d/2−1

d u dσd−1(x), x ∈ Σt,

where the density ν′
t(u) is given by

ν′
t(u):=

Γ(d/2)

Γ(d − s/2)

(

1 − t

1 − u

)d/2(
t − u

1 − t

)(s−d)/2

2F̃1

(

1, d/2
1 − (d − s)/2

;
t − u

1 − u

)

.(3.3)

4Here, we use normalized surface area measure.
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To determine the s-balayage ǫt, we recall the formulas for the Kelvin transfor-
mation of measures and the relation of the corresponding potentials (see (2.5) and
(2.6)). Let λ∗ be the extremal measure on Σ∗

t := KR(Σt), normalized so that its

potential Uλ∗

s (x∗) = 1 on Σ∗
t . Then, using (2.1) and (2.6) we derive just as in [5,

Section 3, Eq. (3.7)] that

(3.4) ǫt(x) =
(

R2 − 1
)−s/2 KR,s(λ

∗(x∗)).

Since the image Σ∗
t of Σt is also a spherical cap, this time centered at the North

Pole, we can utilize a formula similar to (3.2) for its extremal measure. If Σt = {x :
−1 ≤ u ≤ t}, then Σ∗

t = {x : 1 ≥ u∗ ≥ t∗}, where u∗ and t∗ are related to u and t
by (2.3). If we set ν∗

t :=Bal(σ, Σ∗
t ), then λ∗ = ν∗

t /Ws(Sd); hence we get

(3.5) dλ∗(x∗) = (λ∗)′(u∗)
ωd−1

ωd

[

1 − (u∗)2
]d/2−1

d u∗ d σd−1(x
∗),

where the density is given by

(λ∗)′(u∗):=
Γ(d/2)/Ws(Sd)

Γ(d − s/2)

(

1 + t∗

1 + u∗

)d/2(
u∗ − t∗

1 + t∗

)(s−d)/2

2F̃1

(

1, d/2
1 − (d − s)/2

;
u∗ − t∗

1 + u∗

)

.

(We remark that the last formula (up to a normalization constant) for the special
case d = 2 was first derived by Fabrikant et al [7].) From (2.3) we get

(3.6)
1 + u∗

1 + t∗
=

R2 − 2Rt + 1

R2 − 2Ru + 1
· 1 − u

1 − t
,

from which it follows that

(3.7)
[

1 − (u∗)2
]d/2−1

d u∗ =

(

R2 − 1

R2 − 2Ru + 1

)d
(

1 − u2
)d/2−1

d u.

Substituting (3.6) and (3.7) in (3.5) and using (3.4) and (2.5) we obtain:

Lemma 3.2. Let d − 2 < s < d. The measure ǫt = Bals(δa, Σt) is given by

(3.8) d ǫt(x) = ǫ′t(u)
ωd−1

ωd

(

1 − u2
)d/2−1

d u dσd−1(x), x ∈ Σt,

and setting r2:=R2 − 2Rt + 1, the density is given by

ǫ′t(u):=
1

Ws(Sd)

Γ(d/2)

Γ(d − s/2)

(R + 1)
d−s

rd

(

1 − t

1 − u

)d/2

×
(

t − u

1 − t

)(s−d)/2

2F̃1

(

1, d/2
1 − (d − s)/2

;
(R − 1)

2

r2

t − u

1 − u

)

.

(3.9)

3.2. Positivity of the signed equilibrium of a spherical cap. The following
lemma establishes a condition for positivity of the signed equilibrium

d ηt(x) = η′
t(u)

ωd−1

ωd

(

1 − u2
)d/2−1

d u dσd−1(x).

Lemma 3.3. Let d − 2 < s < d. If for some γ > 0 we have η′
t(u) ≥ 0 for

u ∈ (t − γ, t), then

(3.10) Φs(t) ≥ q (R + 1)
d−s /

rd, r2 = R2 − 2Rt + 1,

and, consequently, η′
t(u) > 0 for all −1 ≤ u < t < 1.
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Proof. Using (1.21) and the non-negativity hypothesis for η′
t(u), we get

lim
u→t−

[

(t − u)
(d−s)/2

η′
t(u)

]

=
Γ(d/2) (1 − t)

(d−s)/2
{

Φs(t) − q (R + 1)
d−s

/rd
}

Ws(Sd) Γ(d − s/2) Γ(1 − (d − s)/2)
> 0.

In particular, the expression in braces is non-negative for d − 2 < s < d.
For R 6= 1 we have (R − 1)2 < r2. Thus, the first hypergeometric function in

(1.21) is strictly larger than the second one for all −1 ≤ u < t and d − 2 < s < d.
Hence, using Φs(t) ≥ q(R + 1)d−s/rd, we have

η′
t(u) >

1

Ws(Sd)

Γ(d/2)

Γ(d − s/2)

(

1 − t

1 − u

)d/2(
t − u

1 − t

)(s−d)/2

× 2F̃1

(

1, d/2
1 − (d − s)/2

;
t − u

1 − u

)

{

Φs(t) −
q (R + 1)

d−s

rd

}

≥ 0,

which shows that η′
t(u) > 0 for all −1 ≤ u < t. �

Remark 3.4. We note that in the limit R → 1 relation (3.10) becomes the same
as in [5, Eq. (5.9)]. It also follows from the proof of Lemma 3.3 that the sign of
the difference Φs(t) − q(R + 1)d−s/rd is determined by the sign of η′

t(u) near the
boundary of the spherical cap Σt, that is for u near t−, and vice versa.

Remark 3.5. Equality in relation (3.10) yields limu→t− η′
t(u) = 0. This follows from

(1.21) and series expansion (1.9).

3.3. Norms of the measures in (1.20).

Lemma 3.6. Let d − 2 < s < d. Then

‖ǫt‖ =
21−d Γ(d)

Γ(d − s/2) Γ(s/2)

(R + 1)
d−s

Ws(Sd)

∫ t

−1

(1 + u)
s/2−1

(1 − u)
d−s/2−1

(R2 − 2Ru + 1)
d/2

d u.(3.11)

Proof. Substitution of (3.8) and (3.9) into ‖ǫt‖ =
ωd−1

ωd

∫ t

−1 ǫ′t(u)
(

1 − u2
)d/2−1

d u

and further simplifications (see [2, Appendix] for details) yield

‖ǫt‖ = 2(d−s)/2−1 Γ(d/2)

Γ(d − s/2)

Γ(d/2)

Γ(s/2)

ωd−1

ωd

(R + 1)
d−s

Ws(Sd)rd
(1 − t)

d/2
(1 + t)

s/2

× (1 − xy)
−d/2

∫ 1

0

vs/2−1 (1 − xv)
d−s/2−1

(

1 − x (1 − y)

1 − xy
v

)−d/2

d v,

where x = (1 + t)/2 and y = (R − 1)2/r2. Substituting

1 − xy =
(R + 1)

2

r2

1 − t

2
,

x (1 − y)

1 − xy
=

4R

(R + 1)2
1 + t

2
,

and (1.3) we get the Euler-type integral of an Appell function [6, Eq. 5.8(5)]

‖ǫt‖ =
2−s/2 Γ(d)

Γ(d − s/2) Γ(s/2)

1

Ws(Sd)
(R + 1)

−s
(1 + t)

s/2

×
∫ 1

0

us/2−1

(

1 − 1 + t

2
u

)d−s/2−1
(

1 − 4R

(R + 1)2
1 + t

2
u

)−d/2

d u.

A change of variables 1 + v = (1 + t)u yields (3.11). �
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Lemma 3.7. Let d − 2 < s < d. Then

‖νt‖ =
21−d Γ(d)

Γ(d − s/2) Γ(s/2)

∫ t

−1

(1 + u)
s/2−1

(1 − u)
d−s/2−1

d u(3.12)

= 1 − I ((1 − t)/2; d − s/2, s/2) .(3.13)

Proof. We proceed as in the proof of Lemma 3.6. In fact, the densities ǫ′t and ν′
t

differ by a multiplicative factor (R + 1)
d−s

/[Ws(Sd)rd] and a factor (R− 1)2/r2 in
the argument of the hypergeometric function. From (3.2) and (3.3)

‖νt‖ =
Γ(d)

Γ(d − s/2) Γ(s/2)

(

1 + t

2

)s/2 ∫ 1

0

vs/2−1

(

1 − 1 + t

2
v

)d−s/2−1

d v.

A change of variable 1 + u = (1 + t)v yields (3.12).
A manipulation of the integral (extending the integral over the complete interval

[−1, 1] and using the standard substitution 2v = 1 − u) yields (3.13). �

4. The extremal support and measure: Proofs of Theorems 1.9, 1.10,

and 1.13.

Our first proof deals with the minimization property of SQ.

Proof of Theorem 1.9. Let K be any compact subset of Sd with positive s-capacity.
For the considered range of the parameter s, we have that the potential of the
extremal measure µK = µK,s satisfies the following (in)equalities

(4.1) UµK

s (x) = Ws(K) q.e. on K, UµK

s (x) ≤ Ws(K) on Sd.

This follows trivially from the general theory (see [15, Chapter II]) for
d − 1 ≤ s < d, with the inequality holding on the entire space Rd+1. To derive
(4.1) for the extended range, we observe that for K = Sd this is obvious (µK = σd).
If Sd\K is non-empty, there is a spherical cap Σ that contains K. The s-potential of
µΣ equals Ws(Σ) everywhere on Σ (see [5]), so the measure ν:=[Ws(K)/Ws(Σ)]µK

has a potential that equals Ws(K) on Σ. Since UµK
s (x) ≤ Ws(K) on supp(µK) (see

[15, p. 136(b)]), we could derive the inequality in (4.1) by comparing the potentials
of µK and ν and applying the restricted version of the Principle of Domination as
given in [5, Lemma 5.1] (for s = d − 2 we adapt the argument in Lemma 5.1 using
[15, Theorem 1.27]). Since UµK

s (x) ≥ Ws(K) q.e. on K (see [15, p. 136(a)]), we
conclude the equality in (4.1) as well.

Clearly, Fs(SQ) = FQ (see (1.5) and (1.6)). We now show that for any compact
set K ⊂ Sd with positive s-capacity we have Fs(K) ≥ Fs(SQ). Indeed, let us
integrate (1.5) with respect to µK . Since µK has finite energy, the inequality holds
also µK-a.e. and, using the inequality in (4.1), we conclude that

Ws(K) ≥
∫

UµK

s (x) d µQ(x) =

∫

UµQ

s (x) d µK(x) ≥ FQ −
∫

Q(x) d µK(x),

which proves our claim. �

Next, we prove sufficient conditions on Q, that guarantee that the extremal
support is a spherical zone (cap).

Proof of Theorem 1.10. Convexity of f(ξ) implies that Q(z) is continuous and the
existence and uniqueness of the extremal measure µQ follows from standard potential-
theoretical arguments (see [24], [25]). The rotational invariance of Q(z) implies that
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the extremal support is also rotationally invariant. Hence, there is a compact set
A ⊂ [−1, 1] and an integrable function g : A → R+, such that the extremal measure
and its support are given by

d µQ(x) = g(u) du dσd−1(x), supp(µQ) =
{

(
√

1 − u2 x, u) : u ∈ A,x ∈ Sd−1
}

.

We show that A is connected. For this purpose we adapt the argument given in
[17]. Suppose A is not connected. Then there is an interval [α, β] ⊂ (−1, 1), such
that [α, β] ∩ A = {α, β}. Let A−:=A ∩ [−1, α] and A+:=A ∩ [β, 1]. For

x = (
√

1 − u2 x, u), u ∈ A− ∪ A+, x ∈ Sd−1,

z = (
√

1 − ξ2 z, ξ), ξ ∈ (α, β), z ∈ Sd−1,

we represent the weighted s-potential of µQ as follows:

UµQ

s (z) + Q(z) =

∫

A

g(u)

(
∫

Sd−1

d σd−1(x)

|z − x|s
)

d u + Q(z)

=:

∫

A−

g(u)κ(u, ξ) d u +

∫

A+

g(u)κ(u, ξ) d u + f(ξ),

where κ(u, ξ) has been evaluated in [5, Section 4] for the case ξ > u (u ∈ A−) to be

κ(u, ξ):=

∫

Sd−1

d σd−1(x)

|z − x|s(4.2)

= (1 − u)
−s/2

(1 + ξ)
−s/2

2F1

(

s/2, 1 − (d − s)/2
d/2

;
1 + u

1 − u

1 − ξ

1 + ξ

)

(4.3)

=
∞
∑

k=0

(s/2)k(1 − (d − s)/2)k (1 + u)
k

(d/2)kk! (1 − u)
k+s/2

(1 − ξ)k

(1 + ξ)
k+s/2

.(4.4)

By symmetry we derive that when ξ < u (u ∈ A+)

(4.5) κ(u, ξ) =

∞
∑

k=0

(s/2)k(1 − (d − s)/2)k (1 − u)k

(d/2)kk! (1 + u)
k+s/2

(1 + ξ)
k

(1 − ξ)
k+s/2

.

It is easy to verify that the functions

(1 − ξ)
k
/ (1 + ξ)

k+s/2
, (1 + ξ)

k
/ (1 − ξ)

k+s/2
, k = 0, 1, 2, . . . ,

are strictly convex for ξ ∈ (−1, 1). Hence, from (4.4) and (4.5) we derive that κ(u, ξ)
is a convex function in ξ on (α, β) for any fixed u ∈ A− ∪ A+. Therefore, using
the convexity of f(ξ) we deduce that the weighted s-potential is strictly convex on
[α, β]. This clearly contradicts the inequalities (1.5) and (1.6), which proves (1.16).

Now suppose that, in addition, f(ξ) is also increasing. If t1 > −1, for u ∈ [t1, t2]
and ξ ∈ (−1, t1), the kernel is calculated using (4.5), in which case we easily obtain
that ∂κ(u, ξ)/∂ξ > 0. This yields that the weighted s-potential is strictly increasing
on [−1, t1], which contradicts (1.5) and (1.6) similarly. �

Proof of Theorem 1.13. The external field is given by

Qa,q(z) = q
/

|a − z|s = q
∣

∣R2 − 2Rξ + 1
∣

∣

−s/2
=:f(ξ), z = (

√

1 − ξ2 z, ξ) ∈ Sd,

where f ′(ξ) > 0 and f ′′(ξ) > 0 for ξ ∈ [−1, 1]. By Theorem 1.10, supp(µQa,q
) is a

spherical cap centered at the South Pole. So, by Theorem 1.9 we have to minimize
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the Fs-functional over all such caps. Recall that (see (1.19) and Remark 1.12)

Fs(Σt) = Φs(t) = Ws(S
d) (1 + q ‖ǫt‖)

/

‖νt‖ .

Applying the Quotient Rule and using (3.11), (3.12), and the Fundamental Theorem
of Calculus, we get (note that ‖νt‖ > 0 for t > −1 and ‖νt‖′ > 0 for −1 < t < 1)

d Φs

d t
=

q ‖ǫt‖′ ‖νt‖ − (1 + q ‖ǫt‖) ‖νt‖′

‖νt‖2
/Ws(Sd)

= −‖νt‖′
‖νt‖

[

Φs(t) − q Ws(S
d)

‖ǫt‖′

‖νt‖′
]

= −‖νt‖′
‖νt‖

[

Φs(t) −
q (R + 1)

d−s

rd

]

=: − ‖νt‖′
‖νt‖

∆(t),(4.6)

where r = r(t) =
√

R2 − 2Rt + 1. Observe, that ∆(t) → ∞ as t → −1. Hence,
there is a largest t0 ∈ (−1, 1] such that ∆(t) > 0 on (−1, t0). If t0 = 1, then
Φs(t) is strictly decreasing on (−1, 1) and attains its minimum at t = 1. (We note
that ∆(1) ≥ 0 is equivalent to the condition in Corollary 1.3.) If t0 < 1, then by
continuity ∆(t0) = 0. Clearly, Φ′

s(t) < 0 on (−1, t0) and Φ′
s(t0) = 0. Suppose,

Φ′
s(τ) = 0 for some τ ∈ (−1, 1). Then ∆(τ) = 0. Applying the product rule we get

d2 Φs

d t2
(τ) = −‖νt‖′

‖νt‖

[

Φ′
s(t) −

d q (R + 1)
d−s

R

rd+2

] ∣

∣

∣

∣

∣

t=τ

=
‖νt‖′
‖νt‖

d q (R + 1)
d−s

R

rd+2

∣

∣

∣

∣

∣

t=τ

> 0.

Hence, any zero of Φ′
s is a minimum of Φs. Since Φs is twice continuously differen-

tiable on (−1, 1) (see Lemmas 3.6 and 3.7), the latter observation implies that Φs

has only one local minimum in (−1, 1), namely t0, which has to be also a global
minimum. Observe, that Φ′

s(t) < 0 for t ∈ (−1, t0) and Φ′
s(t) > 0 for t ∈ (t0, 1).

From (4.6) we conclude that ∆(t) > 0 on (−1, t0) and ∆(t) < 0 on (t0, 1). This
shows that Φs(t) has precisely one global minimum in (−1, 1], which is either the
unique solution t0 ∈ (−1, 1) of the equation ∆(t) = 0 if it exists, or t0 = 1. More-
over, ∆(t) ≥ 0 if and only if t ≤ t0. By Lemma 3.3 and Remark 3.4 we have
t0 = max{t : ηt ≥ 0}. Clearly, SQa,q

= Σt0 , from the minimization property.
Since the signed equilibrium for Σt0 is a positive measure, by the uniqueness of the
extremal measure we derive that µQa,q

= ηt0 . �

5. The weighted s-potential of ηt on Sd \ Σt: Alternative proof of

Theorem 1.13

In this section we complete the proof of Theorem 1.11, namely formula (1.22)

on Sd \ Σt. For z = (
√

1 − ξ2 z, ξ) with ξ > t the s-potential of ηt is given by

Uηt

s (z) =

∫

d ηt(x)

|z − x|s =
ωd−1

ωd

∫ t

−1

κ(u, ξ) η′
t(u)

(

1 − u2
)d/2−1

d u,

where κ(u, ξ) is given in (4.3). Using appropriately chosen constants C and ct the
densities of ǫt and νt in (1.20) both can be written as (cf. Lemmas 3.1 and 3.2)

γ′
t(u) = C

(

1 − t

1 − u

)d/2(
t − u

1 − t

)(s−d)/2 ∞
∑

n=0

(d/2)n

Γ(n + 1 − (d − s)/2)

(

c2
t

t − u

1 − u

)n

.

Hence, it is sufficient to study the s-potential of dγt = γ′
t d σd|Σt

.
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Using the series representation (4.4) of κ(u, ξ) and integrating term-wise we get

Uγt

s (z) =
C ωd−1/ωd

(1 + ξ)
s/2

∞
∑

m=0

∞
∑

n=0

(s/2)m(1 − (d − s)/2)m(d/2)n

m!(d/2)m Γ(n + 1 − (d − s)/2)

[

1 − ξ

1 + ξ

]m

c2n
t Hm,n(t; u),

where Hm,n(t; u) is the integral (the second step follows from [18, Eq. 2.2.6(9)])

Hm,n(t; u) = (1 − t)
d−s/2

∫ t

−1

(t − u)
n−(d−s)/2

(1 + u)
m+d/2−1

(1 − u)m+n+1+s/2
d u

=
Γ(m + d/2) Γ(n + 1 − (d − s)/2)

Γ(m + n + 1 + s/2)

(1 − t)
d−s/2

(1 + t)
m+n+s/2

(1 − t)
m+d/2

(1 + t)
n+1−(d−s)/2

.

Putting everything together, we arrive at

Uγt

s (z) = 2d−s−1C
ωd−1

ωd

Γ(d/2)

Γ(1 + s/2)

(

1 − t

2

)(d−s)/2(
1 + t

1 + ξ

)s/2

×
∞
∑

m=0

∞
∑

n=0

(s/2)m(1)n(1 − (d − s)/2)m(d/2)n
(1 + s/2)m+nm!n!

(

1 − ξ

1 + ξ

1 + t

1 − t

)m(

c2
t

1 + t

2

)n

.

The double sum in the last expression is, in fact, the series expansion of the gener-
alized F3-hypergeometric function (cf. [19, Eq. 7.2.4(3)])

F3

(

a, a′, b, b′
c

; w, z
)

:=

∞
∑

m=0

∞
∑

n=0

(a)m(a′)n(b)m(b′)n

(c)m+nm!n!
wmzn, |w|, |z| < 1.

Moreover, the F3-function in question is of the form [19, Eq. 7.2.4(76)]

F3

(

a, c − a, b, c − b
c ; w, z

)

= (1 − z)a+b−c
2F1

(

a, b
c ; w + z − wz

)

.

Let r =
√

R2 − 2Rt + 1 and ρ = |z − a| =
√

R2 − 2Rξ + 1. For ct = 1, C =
Γ(d/2)/ Γ(d − s/2), and using (1.3), we have

Uνt

s (z) = Ws(S
d)As,d

(

1 + t

1 + ξ

)s/2

2F1

(

s/2, 1 − (d − s)/2
1 + s/2

;
1 + t

1 + ξ

)

.

For c2
t = (R− 1)2/r2 and C = (1/Ws(Sd)) Γ(d/2)/ Γ(d− s/2)(R + 1)d−s/rd, we get

U ǫt

s (z) = As,d
1

rs

(

1 + t

1 + ξ

)s/2

2F1

(

s/2, 1 − (d − s)/2
1 + s/2

;
ρ2

r2

1 + t

1 + ξ

)

.

The normalization constant As,d is given by

As,d:=
Γ(d/2)

Γ((d − s)/2) Γ(1 + s/2)
= 1
/

2F1

(

s/2, 1 − (d − s)/2
1 + s/2

; 1

)

.

(The last relation holds by [1, Eq. 15.1.20].) Note that the hypergeometric functions
above can be expressed in terms of (incomplete) beta functions (see (1.10)). Thus

(5.1) Uνt
s (z) = Ws(S

d)I(
1 + t

1 + ξ
;
s

2
,
d − s

2
), U ǫt

s (z) =
1

ρs
I(

ρ2

r2

1 + t

1 + ξ
;
s

2
,
d − s

2
),

which are valid for z ∈ Sd \ Σt. Hence, using (1.20), we obtain

Uηt
s (z) = Φs(t) I

(

1 + t

1 + ξ
;
s

2
,
d − s

2

)

− q

ρs
I

(

ρ2

r2

1 + t

1 + ξ
;
s

2
,
d − s

2

)

.

Application of the functional equation I(x; a, b) = 1 − I(1 − x; b, a) gives (1.22).
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Next, we provide an alternative proof of Theorem 1.13. The (series) expansion

I(z; a, b) = [Γ(a + b)/ Γ(b)] za (1 − z)
b

2F̃1

(

1, a + b
a + 1

; z
)

,

applied to (1.22) yields for ξ > t > −1

Uηt
s (z) + Q(z) = Φs(t) +

Γ(d/2)

Γ(s/2)

(

ξ − t

1 + ξ

)(d−s)/2(
1 + t

1 + ξ

)s/2

×
∞
∑

n=0

(d/2)n
Γ(n + 1 + (d − s)/2)

(

ξ − t

1 + ξ

)n
{

q (R + 1)
d−s

rd

[

R2 + 2R + 1

R2 − 2Rt + 1

]n

− Φs(t)

}

.

If q(R + 1)d−s/rd ≥ Φs(t), then the above infinite series is a positive function for
1 ≥ ξ > t. An immediate consequence in such a case is the inequality

Uηt

s (z) + Q(z) > Φs(t), z ∈ Sd \ Σt.

In particular, the last relation holds when t = t0 is a solution of q(R + 1)d−s/rd =
Φs(t). But then from Lemma 3.3 we have that the signed equilibrium is a positive
measure. Since it satisfies the Gauss variational (in)equalities (1.5) and (1.6), it is
the extremal measure µQ on Sd. Easily, we derive that t0 = max{t : ηt ≥ 0}.

Remark 5.1. An interesting observation is that for t = t0 we could factor (ξ −
t)/(1 + ξ) (to get [(ξ − t)/(1 + ξ)]1+(d−s)/2) and using product rule, it follows that

∂ {Uηt

s (z) + Q(z)} /∂ξ
∣

∣

ξ→t+
= 0.

It can be also shown that for q(R + 1)d−s/rd 6= Φs(t) one has

∂

∂ξ
{Uηt

s (z) + Q(z)} =
Γ(d/2)

Γ((d − s)/2) Γ(s/2)

{[

q (R + 1)
d−s

/rd
]

− Φs(t)
}

× (1 + t)(s−d)/2 (ξ − t)(d−s)/2−1 + O((ξ − t)(d−s)/2) as ξ → t+.

Thus, the partial derivative with respect to ξ of the weighted s-potential of the
signed s-equilibrium ηt is singular at the boundary of Σt when approaching it from
the “outside” if t is not a solution of the equilibrium condition. The sign of this
partial derivative is determined by the difference in curly braces, see Figure 1.

6. The exceptional case s = d − 2: Proof of Theorems 1.15 and 1.17

The proof of Theorem 1.15 will be split into several Lemmas. We first find the
s-balayage of a point charge y = (

√
1 − v2 y, v) ∈ Sd \ Σt onto Σt. Set

ǫy = ǫy,t,d−2:=Bald−2(δy, Σt).

To determine ǫy we proceed as in [5, Section 3] (see also [15, Chapter IV]). We

apply an inversion (stereographical projection) with center y and radius
√

2. The
image of Sd is a hyperplane passing through the origin. The image of Σt is a
hyperdisc of radius τ =

√
1 − t2/(v − t). The (d − 2)-extremal measure on this

d-dimensional hyperdisc is the normalized (unit) uniform surface measure on its
boundary dλ∗(x∗) = τd−1 d σd−1((x

∗ − b∗)/τ), where b∗ is the center of this hy-
perdisc. The potential of λ∗ is found to be

Uλ∗

d−2(x
∗) = τ

∫

Sd−1

d σd−1((x
∗ − b∗)/τ)

|(z∗ − b∗) /τ − (x∗ − b∗) /τ |d−2
= τ Wd−2(S

d−1) = τ.
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Using the Kelvin transformation of this measure as given in Section 2.1 (cf. (2.5)
and (2.6) with R2 − 1 = 2), we compute that

d ǫy(x) = 2 (v − t)
(

1 − t2
)d/2−1 |x − y|−d d σd−1(x), x ∈ ∂Σt.

The corresponding balayage for d − 2 < s < d was found in [5, Eq. (3.12)]:

d ǫy,s(x) =
2 sin(π(d − s)/2)

π

(

v − t

t − u

)(d−s)/2
(

1 − u2
)d/2−1 d u d σd−1(x)

|x − y|d
, x ∈ Σt.

The following lemma establishes the relationship between ǫy,s and ǫy.

Lemma 6.1. Let d ≥ 3. Let d γs:=
sin(π(d − s)/2)

π(t − u)(d−s)/2
d u, −1 ≤ u ≤ t. Then ‖γs‖ →

1 and γs
∗→ δt, as s → (d − 2)+. Consequently, ǫy,s

∗→ ǫy, as s → (d − 2)+.

Proof. We compute

‖γs‖ =

∫ t

−1

sin(π(d − s)/2)

π(t − u)(d−s)/2
du =

sin(π (1 − (d − s)/2))

π(1 − (d − s)/2)
(1 + t)1−(d−s)/2.

Clearly, ‖γs‖ ≤ 2 and ‖γs‖ → 1 as s → (d − 2)+. Let f be a continuous function
on [−1, t]. Then what we have to prove is that

lim
s→(d−2)+

∫ t

−1

sin(π(d − s)/2)

π(t − u)(d−s)/2
f(u) du = f(t).

By ‖γs‖ → 1 as s → (d − 2)+, this is equivalent to

lim
s→(d−2)+

∫ t

−1

sin(π(d − s)/2)

π(t − u)(d−s)/2
[f(u) − f(t)] du = 0.

Suppose now that f(x), where x = (
√

1 − u2 x, u), is a continuous function on
Sd. Then as s → (d − 2)+ we have

lim

∫

Σt

f d ǫy,s = lim

∫ t

−1

(

∫

Sd−1

f(x)
d σd−1(x)

|x − y|d

)

2 (v − t)
(d−s)/2 (

1 − u2
)d/2−1

d γs(u)

= 2 (v − t)
(

1 − t2
)d/2−1

(

∫

Sd−1

f(x)
d σd−1(x)

|x − y|d

) ∣

∣

∣

∣

∣

u=t

=

∫

Σt

f d ǫy,

which completes the proof of the lemma. �

Next, we determine the balayage measures in (1.23). We shall use that βt, which
is the unit charge uniformly distributed on the boundary of Σt, has (d−2)-potential

(6.1) Uβt

d−2(z) =

∫

Sd−1,u=t

d σd−1(x)

|z− x|d−2
=

{

(1 − t)1−d/2 (1 + ξ)1−d/2 if ξ ≥ t,

(1 + t)1−d/2 (1 − ξ)1−d/2 if ξ < t,

where z = (
√

1 − ξ2 z, u) ∈ Sd. This follows from (4.4) and (4.5).

Lemma 6.2. Let d ≥ 3. The measure νt = Bald−2(σd, Σt) is given by

(6.2) d νt(x) = dσd

∣

∣

Σt
(x) + Wd−2(S

d)
1 − t

2

(

1 − t2
)d/2−1

d δt(u) d σd−1(x).
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The (d − 2)-potential of νt is given by

Uνt

d−2(z) = Wd−2(S
d), z ∈ Σt,(6.3)

Uνt

d−2(z) = Wd−2(S
d) (1 + t)

d/2−1
(1 + ξ)

1−d/2
< Wd−2(S

d), z ∈ Sd \ Σt.(6.4)

Remark 6.3. It is interesting that the (d−2)-potential of νt can be expressed using
the potential of βt (cf. (6.1))

Uνt

d−2(z) = Wd−2(S
d)
(

1 − t2
)d/2−1

Uβt

d−2(z), z ∈ Sd \ Σt.

Remark 6.4. In the proof of Lemma 6.2 and Lemma 6.5 below we shall obtain
the balayage measures constructively. Alternatively, one could get this from the
potential (in)equalities (6.3), (6.4) and (6.7), (6.8).

Proof of Lemma 6.2. It is well-known that

(6.5) Bald−2(σd, Σt) = σd

∣

∣

Σt
+ Bald−2(σd

∣

∣

Sd\Σt
, Σt).

By the principle of superposition we have for x ∈ ∂Σt

Bald−2(σd

∣

∣

Sd\Σt
, Σt) =

∫

Sd\Σt

ǫy(x) d σd(y)

= 2
ωd−1

ωd

(

1 − t2
)d/2−1

(

∫ 1

t

(

1 − v2
)d/2−1

(v − t)

∫

Sd−1

d σd−1(y)

|x − y|d
d v

)

σd−1(x).

The inner integral can be computed using (4.5) with s = d

(6.6)

∫

Sd−1

|x − y|−d
d σd−1(y) = 1

/

[

2 (v − t) (1 + v)
d/2−1

(1 − t)
d/2−1

]

.

Hence,

Bald−2(σd

∣

∣

Sd\Σt
, Σt) =

ωd−1

ωd
(1 + t)d/2−1

(
∫ 1

t

(1 − v)d/2−1 d v

)

σd−1(x)

=
2

d

ωd−1

ωd
(1 + t)

d/2−1
(1 − t)

d/2
σd−1(x)=:qνt

σd−1(x), x ∈ ∂Σt.

Using Wd−2(Sd) = (4/d)(ωd−1/ωd) and (6.5) we derive (6.2).
Relation (6.3) holds because of the balayage properties. Using (6.1) we have

Uνt

d−2(z) =

∫

Σt

|z − x|2−d
d σd(x) + qνt

Uβt

d−2(z)

= Wd−2(S
d)

1 + t

2

(1 + t)d/2−1

(1 + ξ)
d/2−1

+ Wd−2(S
d)

1 − t

2

(1 + t)d/2−1

(1 + ξ)
d/2−1

,

from which follows (6.4) �

Lemma 6.5. Let d ≥ 3. The measure ǫt = Bald−2(δa, Σt) is given by

d ǫt(x) = ǫ′t(u) d σd

∣

∣

Σt
(x) + qǫt

d δt(u) d σd−1(x),

where the density ǫ′t(u) and the constant qǫt
are given by

ǫ′t(u):=

(

R2 − 1
)2

/Wd−2(Sd)

(R2 − 2Ru + 1)
d/2+1

, qǫt
=

1 − t

2

(R + 1)
2

rd

(

1 − t2
)d/2−1

.
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The (d − 2)-potential of ǫt is given by

U ǫt

d−2(z) = |z − a|2−d
= U δa

d−2(z), z ∈ Σt,(6.7)

U ǫt

d−2(z) = r2−d (1 + t)
d/2−1

(1 + ξ)
1−d/2

< U δa
d−2(z), z ∈ Sd \ Σt.(6.8)

Proof. As in the proof of Theorem 1.2 we evaluate

ǫa:=Bald−2(δa, S
d), d ǫa(x) = ǫ′t(u) d σd(x).

Using balayage in steps and (6.5) we get

Bald−2(δa, Σt) = ǫa
∣

∣

Σt
+ Bald−2(ǫa

∣

∣

Sd\Σt
, Σt).

By the principle of superposition we have for x ∈ ∂Σt

Bald−2(ǫa
∣

∣

Sd\Σt
, Σt) =

∫

Sd\Σt

ǫ′t(v)ǫy(x) d σd(y)

=
2

d

ωd−1

ωd

(

R2 − 1
)2

Wd−2(Sd)
(1 + t)

d/2−1 (1 − t)d/2

(R2 − 2Rt + 1)
d/2

σd−1(x) = qǫt
σd−1(x),

where we applied (6.6) and used the change of variable w = (R− 1)2/(1− v) + 2R.
Similar computations with the substitution w = (R + 1)2/(1 + u)− 2R (see also

(6.1)) lead to (6.8). That is, for z ∈ Sd \ Σt one has

U ǫt

d−2(z) =

∫

Σt

ǫ′t(u) d σd(x)

|z − x|d−2
+ qǫt

Uβt

d−2(z) =
2

d

ωd−1

ωd

(R − 1)
2

Wd−2(Sd)rd

(1 + t)
d/2

(1 + ξ)
d/2−1

+
1 − t

2

(R + 1)2

rd

(1 + t)d/2−1

(1 + ξ)
d/2−1

=
1

rd−2

(1 + t)d/2−1

(1 + ξ)
d/2−1

.

As in the proof of Lemma 6.2 the balayage properties imply equation (6.7). �

The weak∗ convergence in (1.25) is shown next.

Lemma 6.6. Let t ∈ (−1, 1) be fixed. Then

νt,s
∗−→ νt, ǫt,s

∗−→ ǫt, as s → (d − 2)+.

Proof. The result follows easily from the following representation

Bals(µ, Σt)(x) = µ
∣

∣

Σt
(x) +

∫

Sd\Σt

ǫy,s(x) d µ(y), µ ∈ M(Sd),

and the weak∗ convergence ǫy,s
∗−→ ǫy as s → (d − 2)+. �

The norms ‖νt‖ and ‖ǫt‖ are obtained from Lemmas 3.6 and 3.7 by taking the
limit s → (d − 2)+, which is justified by weak∗ convergence shown in Lemma 6.1.

Lemma 6.7. Let d ≥ 3. Then

‖ǫt‖ =
d − 2

4
(R + 1)

2
∫ t

−1

(1 + u)d/2−2 (1 − u)d/2

(R2 − 2Ru + 1)
d/2

d u,

‖νt‖ =
d − 2

4
Wd−2(S

d)

∫ t

−1

(1 + u)
d/2−2

(1 − u)
d/2

d u.
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Completion of the proof of Theorem 1.15. Proceeding as in the proof of Theorem
1.13, but using now (r = r(t) =

√
R2 − 2Rt + 1)

Φ
′

d−2(t) = −‖νt‖′
/

‖νt‖
[

Φd−2(t) − q (R + 1)
2
/rd
]

=: − ‖νt‖′ / ‖νt‖∆(t),

it follows that the global minimum of Φd−2 is either the unique solution t0 ∈ (−1, 1)
of the equation ∆(t) = 0, or t0 = 1. In particular, ∆(t) ≥ 0 if and only if t ≤ t0.

The explicit form (1.24) follows from Lemmas 6.2 and 6.5. If ηt ≥ 0 then
∆(t) ≥ 0, so t ≤ t0. On the other hand, it is easy to see that if t = t0, then ηt0

given in (1.26) is ≥ 0 because of (R−1)2 < R2−2Rt0+1 < R2−2Ru+1. Therefore,
we have that t0 = max{t : ηt ≥ 0}, µQ

a,q
= ηt0 , and supp(µQ

a,q
) = Σt0 . �

The proof of Theorem 1.17 is also split into several lemmas. We must check that
Theorem 1.10 also holds in the case d = 2 and s = 0. Then we can make use of the
fact that the support SQ

a,q
of the extremal measure on S2 is a spherical cap.

Adaption of the proof of Theorem 1.10 for d = 2 and s = 0. The kernel

κ0(u, ξ):=

∫

S1

log
1

|z − x| d σ1(x) = −1

2

1

π

∫ 1

−1

log
(

2 − 2uξ − 2
√

1 − u2
√

1 − ξ2 τ
)

√
1 − τ2

d τ

= −1

2
log (1 − uξ + |ξ − u|) =

{

− 1
2 log (1 + ξ) − 1

2 log (1 − u) ξ ≥ u,

− 1
2 log (1 − ξ) − 1

2 log (1 + u) ξ ≤ u,

(6.9)

replaces κ(u, ξ) in (4.2). (For the computation we used [22, Lemma 1.15].) It is
easy to verify that the kernel κ0(u, ξ) is strictly convex for ξ ∈ (−1, 1) for any
fixed u ∈ (−1, 1). Hence, we may use the arguments of the proof of Theorem 1.10
appropriately adapted for d = 2 and s = 0. �

It should be emphasized that in the logarithmic case balayage preserves mass,
and that the logarithmic potentials of a measure and its logarithmic balayage onto
a compact set K differ by a constant on K.

Lemma 6.8. Let d = 2 and s = 0. The measure νt,0 = Bal0(σ2, Σt) is given by

(6.10) d νt,0(x) = dσ2

∣

∣

Σt
(x) +

1 − t

2
d δt(u) dσ1(x)

and ‖νt,0(x)‖ = 1. The logarithmic potential of νt,0 is given by

U
νt,0

0 (z) =
1 + t

4
− log 2

2
− 1

2
log (1 + t) = W0(Σt), z ∈ Σt,(6.11)

U
νt,0

0 (z) =
1 + t

4
− log 2

2
− 1

2
log (1 + ξ) , z ∈ Sd \ Σt.

The measure νt,0 is the logarithmic extremal measure on Σt.

Proof. Using (6.9) we show that (6.10) satisfies the balayage properties. For z ∈ Σt

U
νt,0

0 (z) = Uσ2

0 (z)−U
σ2|S2\Σt

0 (z)+
1 − t

2
U

σ1|u=t

0 (z) =
1 + t

4
− log 2

2
−1

2
log (1 + t) = W0(Σt).
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For z ∈ S2 \ Σt

U
νt,0

0 (z) =
ω1

ω2

∫ t

−1

(
∫

S1

log
1

|z− x| d σ1(x)

)

d u +
1 − t

2

∫

S1

log
1

|z − x|
∣

∣

∣

u=t
d σ1(x)

=
1 + t

4
− log 2

2
− 1

2
log (1 + ξ) = W0(Σt) +

1

2
log

1 + t

1 + ξ
< W0(Σt).

Since it can be easily verified that ‖νt,0‖ = 1, it follows that νt,0 is a probability
measure on Σt with constant logarithmic potential on Σt. By uniqueness of the
logarithmic extremal measure µΣt

on Σt one has µΣt
= νt,0. �

Lemma 6.9. Let d = 2 and s = 0. Then the Mhaskar-Saff functional F0 for
spherical caps Σt is given by

F0(Σt) = (1 + q)
1 + t

4
+ q

(R − 1)
2
log
(

R2 − 2Rt + 1
)

8R
− 1

2
log (1 + t)

− log 2

2
− q

(R + 1)
2
log (R + 1)

2

8R
.

(6.12)

It has precisely one global minimum t0 ∈ (−1, 1]. This minimum is given by

t0 = min
{

1,
(

R2 − 2Rq + 1
)

/ [2R (1 + q)]
}

.

Proof. By Lemma 6.8 and |x− a|2 = R2 − 2Ru + 1 we obtain (with µΣt,0 = νt,0)
∫

Q
a,q d µΣt,0 = q

∫

Σt

log
1

|x− a| d σ2(x) + q
1 − t

2

∫

S1

log
1

|x − a|
∣

∣

∣

u=t
d σ1(x)

= q
1 + t

4
− q

(R + 1)2 log (R + 1)2

8R
+ q

(R − 1)
2
log
(

R2 − 2Rt + 1
)

8R
.

Substitution of the last expression and W0(Σt) from (6.11) into

F0(t):=F0(Σt) = W0(Σt) +

∫

Q
a,q d µΣt,0,

yields (6.12). Observe, that F0(t) → ∞ as t → −1. Furthermore,

F ′
0(t) =

R (1 + q) (1 − t)

2 (1 + t) (R2 − 2Rt + 1)

[

1 + t − (R + 1)2

2R (1 + q)

]

.

If −1 < t < 1, then the sign of F ′
0(t) is given by the sign of the linear function in

the brackets, which is negative at t = −1. If (R + 1)2 ≥ 4R(1 + q), then F ′
0(t) < 0

everywhere on (−1, 1), and F0(Σt) is strictly monotonically decreasing on (−1, 1)
and has a global minimum at t = 1. Otherwise, if (R +1)2 < 4R(1+ q), then F ′

0(t)
has exactly one zero t0:=(R2 − 2Rq + 1)/[2R(1 + q)] on (−1, 1), and is negative on
(−1, t0) and positive on (t0, 1). Clearly, F0(t) achieves global minimum on (−1, 1]
at t0. This completes the proof. �

Lemma 6.10. Let d = 2 and s = 0. The measure ǫt,0 = Bal0(δa, Σt) is given by

d ǫt,0(x) =

(

R2 − 1
)2

(R2 − 2Ru + 1)
2 d σ2

∣

∣

Σt
(x) +

1 − t

2

(R + 1)
2

R2 − 2Rt + 1
d δt(u) d σ1(x)
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and ‖ǫt,0‖ = 1. The logarithmic potential of ǫt,0 is given by

U
ǫt,0

0 (z) = U δa
0 (z) +

1

2
log

R2 − 2Rt + 1

2 (1 + t)
+

(R + 1)
2

8R
log

(R + 1)
2

R2 − 2Rt + 1
, z ∈ Σt,

U
ǫt,0

d−2(z) = U δa
0 (z) +

1

2
log

R2 − 2Rξ + 1

2 (1 + ξ)
+

(R + 1)
2

8R
log

(R + 1)
2

R2 − 2Rt + 1
, z ∈ Sd \ Σt.

Proof. Let z ∈ Σt. We write

U
ǫt,0

0 (z) =
ω1

ω2

(

∫ ξ

−1

+

∫ t

ξ

)

(

R2 − 1
)2

(R2 − 2Ru + 1)2

(
∫

S1

log
1

|z − x| d σ1(x)

)

d u

+
1 − t

2

(R + 1)2

R2 − 2Rt + 1

∫

S1

log
1

|z − x|
∣

∣

∣

u=t
d σ1(x).

Using relation (6.9) we arrive at

U
ǫt,0

0 (z) = −1

2
log
(

R2 − 2Rξ + 1
)

+ C(R; t),

where

C(R, t):=
1

2
log

R2 − 2Rt + 1

2 (1 + t)
+

(R + 1)2

8R
log

(R + 1)2

R2 − 2Rt + 1
.

Let z ∈ S2 \ Σt. Then

U
ǫt,0

0 (z) =
ω1

ω2

∫ t

−1

(

R2 − 1
)2

(R2 − 2Ru + 1)
2

(
∫

S1

log
1

|z − x| d σ1(x)

)

d u

+
1 − t

2

(R + 1)
2

R2 − 2Rt + 1

∫

S1

log
1

|z − x|
∣

∣

∣

u=t
d σ1(x).

Using relation (6.9) and evaluating the integral one gets after some simplifications

U
ǫt,0

0 (z) = −1

2
log [2 (1 + ξ)] +

(R + 1)2

8R
log

(R + 1)2

R2 − 2Rt + 1
,

which yields the representation outside of Σt. For z ∈ S2 \ Σt

U
ǫt,0

0 (z) = U δa
0 (z) + C(R, t) +

1

2
log

[

R2 − 2Rξ + 1

R2 − 2Rt + 1

1 + t

1 + ξ

]

< U δa
0 (z) + C(R, t),

since the logarithmic term is negative for ξ > t. Hence, ǫt,0 has the properties of a
logarithmic balayage measure. Finally, it can be easily verified that ‖ǫt,0‖ = 1 (for
details cf. [2]). This completes the proof. �

Proof of Theorem 1.17. Lemmas 6.8 and 6.10 imply that ηt,0 = (1 + q)νt,0 − qǫt,0

is, indeed, the logarithmic signed equilibrium on Σt associated with Q
a,q as can

be seen from its weighted logarithmic potential given in the Theorem. Using r =√
R2 − 2Rt + 1 and ρ =

√
R2 − 2Ru + 1, we can write

d ηt,0(x) =

[

1 + q − q
(

R2 − 1
)2

ρ4

]

d σ2

∣

∣

Σt
(x) +

1 − t

2

[

1 + q − q (R + 1)2

r2

]

d βt(x),

where x ∈ Σt. If ηt,0 ≥ 0, then 1+q−q(R+1)2/(R2−2Rt+1) ≥ 0, so t ≤ t0. On the
other hand, it is easy to see that if t = t0, then ηt0,0 given in (1.28) is ≥ 0 because
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ρ ≤ ρ and (R−1)2 < R2−2Ru+1. Therefore, we have that t0 = max{t : ηt0,0 ≥ 0},
µQ

a,q
= ηt0,0, and supp(µQ

a,q
) = Σt0 . �

7. Axis-supported Riesz external fields

In this section we shall prove Theorems 1.21 and 1.22.

Proof of Theorem 1.21. Direct calculation shows that

U η̃λ
s (z) =

Fs(Sd)

Ws(Sd)
Uσd

s (z) −
∫

(

∫

Sd

(

R2 − 1
)d−s

d σd(x)

|z − x|s |x − a|2d−s

)

d λ(R)

=
Fs(Sd)

Ws(Sd)
Ws(S

d) −
∫

d λ(R)

|z − Rp|s = Fs(S
d) − Q(z),

where we used the Kelvin transformation for points (cf. proof of Theorem 1.2).
The second part follows from the uniqueness of the s-extremal measure on Sd

associated with Q and the fact that the density is minimal at the North Pole. �

Proof of Theorem 1.22. By construction η̃t is of total charge one. From

U ǫ̃t
s (x) =

∫

UBals(δRp,Σt)
s (x) d λ(R) =

∫

|x − Rp|−s
d λ(R) = Q(x), x ∈ Σt,

and Uνt
s (z) = Ws(Sd) on Σt, we get U η̃t

s (z) = Φ̃s(t) = Fs(Σt) on Σt (Remark 1.8).
By definition of νt, ǫ̃t, and Bals(δRp, Σt) = εt,R we can write

η̃t =
Φ̃s(t)

Ws(Sd)

1

‖λ‖

∫

νt d λ(R) −
∫

ǫt,R d λ(R) =

∫

[

Φ̃s(t)

Ws(Sd)

1

‖λ‖νt − ǫt,R

]

d λ(R),

where subscript R indicates the dependence on the parameter R. Thus

d η̃t(x) =

[
∫

η̃′′
t (u, R) d λ(R)

]

ωd−1

ωd
(1 − u2)d/2−1 d u dσd−1(x), x ∈ Σt,

where, when using Lemmas 3.1 and 3.2 and letting y = (t − u)/(1 − u), we have

η̃′′
t (u, R) =

1

Ws(Sd)

1

‖λ‖
Γ(d/2)

Γ(d − s/2)

(

1 − t

1 − u

)d/2(
t − u

1 − t

)(s−d)/2

×
{

Φ̃s(t) 2F̃1

(

1, d/2
1 − (d − s)/2

; y

)

− ‖λ‖ (R + 1)d−s

rd 2F̃1

(

1, d/2
1 − (d − s)/2

;
(R − 1)2

r2
y

)}

.

We claim that the density (the integral in square brackets) is either positive for
all u ∈ [−1, t], or is positive on some interval [−1, tc) and negative on (tc, t]. It
suffices to consider the function h(u) obtained by integrating the above expression
in braces against dλ(R). Using series expansions we get

h(u) =

∞
∑

k=0

(d/2)k yk

Γ(k + 1 − (d − s)/2)

{

∫

[

Φ̃s(t) −
‖λ‖ (R + 1)d−s

rd

(

R − 1

r

)2k
]

d λ(R)

}

.

The coefficients in braces form an increasing sequence with positive limit as k → ∞.
Hence, either all coefficients are positive, or the first n are negative and then all
others are positive. So, for y ∈ At:=[0, (1 + t)/2] we obtain

g(y) =

∞
∑

k=0

ak

k!
yk, ak < 0 for k < n and ak ≥ 0 for k ≥ n.



RIESZ EXTREMAL MEASURES ON THE SPHERE 29

We have that g(n)(y) > 0 on At, so g(n−1)(y) is strictly increasing on At. Since
g(n−1)(0) = an−1 < 0, there is a γn−1 in At such that g(n−1)(y) is negative on
[0, γn−1) and positive on (γn−1, (1+ t)/2]. Indeed, if such a γn−1 does not exist, we
get a contradiction, because g(n−1)(y) will be negative on At, which would imply
that g(n−2)(y) is decreasing and negative on At, and so on. This argument yields
g(y) < 0 on At, which is impossible because the total charge of η̃t is one.

By iteration one can show a sequence γ0 > γ1 > · · · > γn−1 such that g(m)(y)
is negative on [0, γm) and positive on (γm, (1 + t)/2] for every m = 0, 1, . . . , n − 1.
This establishes our claim (tc = γ0).

We now can complete the proof of the theorem as follows. If η̃1 is not a positive
measure, then there is a t1 such that the density of η̃1 is positive on [−1, t1) and
negative on (t1, 1]. Then the signed equilibrium for Σt1 is given by

η̃t1 = η̃+
1 − Bals(η̃

−
1 , Σt1) −

(∥

∥η̃−
1

∥

∥−
∥

∥Bals(η̃
−
1 , Σt1)

∥

∥

)

νt1

/

‖νt1‖ .

If it is still not a positive measure, then there exists a t2 such that η̃t1 has positive
density on [−1, t2) and negative one on (t2, t1]. Continuing the argument we derive
a decreasing sequence {tk} with the property that η̃tk

is positive on [−1, tk+1)
and negative on (tk+1, tk]. The limit of this sequence is the number tλ defined in
Theorem 1.22. Thus, tλ = max{t : η̃t ≥ 0}, µQ = η̃tλ

, and supp(µQ) = Σtλ
.

The Mhaskar-Saff functional Fs is minimized for Σtλ
. Since Fs(Σt) = Φ̃s(t) (cf.

Remark 1.8 and beginning of this proof), we will show similar as in the proof of
Theorem 1.13 above that tλ is, in fact, the unique solution in (−1, 1] of the relation

(7.1) ∆(t):=Φ̃s(t) −
∫

(R + 1)
d−s (

R2 − 2Rt + 1
)−d/2

d λ(R) = 0,

or tλ = 1 when such a solution does not exist.
Using Quotient Rule and ‖ε̃t‖′ = d ‖ε̃t‖/ d t =

∫

‖εt,R‖′ d λ(R), we obtain

Φ̃′
s(t) = −‖νt‖′

/

‖νt‖ ∆(t).

Observe that ∆(t) → ∞ as t → −1+. Hence, by the above relation, Φ̃s(t) is strictly
monotonically decreasing on (−1, t′) for some maximal t′ ∈ (−1, 1] (cf. (3.12)). If

t′ = 1, then tλ = 1. Otherwise, t′ < 1 and Φ̃s(t
′) = 0 meaning that t′ is a solution

of (7.1). Arguing as in the proof of Theorem 1.13 we have that every solution

t0 ∈ (−1, 1) of (7.1) is actually a local minimum of Φ̃s(t) because of Φ̃′′
s (t0) > 0.

We conclude that Φ̃s(t) can have at most one minimum in (−1, 1). Consequently
tλ = t′. We also infer that ∆(t) > 0 on (−1, tλ) and ∆(t) < 0 on (tλ, 1]. �
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