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Abstract: For a symmetric kernel k : X × X → R ∪ {+∞} on a locally com-

pact metric space X, we investigate the asymptotic behavior of greedy k-energy

points {ai}∞1 for a compact subset A ⊂ X that are defined inductively by selecting

a1 ∈ A arbitrarily and an+1 so that
∑n

i=1
k(an+1, ai) = infx∈A

∑n
i=1

k(x, ai). We

give sufficient conditions under which these points (also known as Leja points) are

asymptotically energy minimizing (i.e. have energy
∑N

i6=j k(ai, aj) as N → ∞ that

is asymptotically the same as E(A,N) := min{∑i6=j k(xi, xj) : x1, . . . , xN ∈ A}),
and have asymptotic distribution equal to the equilibrium measure for A. For the

case of Riesz kernels ks(x, y) := |x− y|−s, s > 0, we show that if A is a rectifiable

Jordan arc or closed curve in R
p and s > 1, then greedy ks-energy points are not

asymptotically energy minimizing, in contrast to the case s < 1. (In fact we show

that no sequence of points can be asymptotically energy minimizing for s > 1.)

Additional results are obtained for greedy ks-energy points on a sphere, for greedy

best-packing points (the case s = ∞), and for weighted Riesz kernels. For greedy

best-packing points we provide a simple counterexample to a conjecture attributed

to L. Bos.
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1. Introduction, background results and notation

The aim of this paper is to study asymptotic properties of special types
of extremal point configurations which we shall call greedy energy points. As
the name suggests, these configurations are generated by a greedy algorithm
which is, in fact, an energy minimizing construction. The notion of energy
that we refer to will be specified shortly. We focus on two aspects: the
asymptotic behavior of their energy and their limiting distributions, as their
cardinality approaches infinity. In many aspects they are similar to minimal
(non-greedy) energy configurations, which are those with smallest possible
energy. But we will also show that in some situations the behavior of greedy
points differs significantly from that of minimal energy points.

Part of the results in this paper are presented in the abstract setting
of locally compact metric spaces. Potential theory on more general spaces
(such as locally compact Hausdorff spaces) was developed by Choquet [9],

1The results of this paper form a part of this author’s Ph.D. dissertation at Vanderbilt
University.

2The research of this author was supported, in part, by National Science Foundation
grants DMS-0603828 and DMS-0808093.
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[10], Fuglede [17] and Ohtsuka [27]. Recently Zorii [31], [32] has studied
properties of potentials with external fields in this context.

We also investigate greedy configurations in R
p, interacting through the

so-called Riesz potential V = 1/rs, where s > 0 and r denotes Euclidean
distance, as well as greedy ‘best-packing’ points that are chosen to maximize
the minimum distance to previously selected points.

We next introduce the basic notions necessary to describe our results. We
will also present in this section some background material.

Let X denote a locally compact metric space containing infinitely many
points. A kernel in X is, by definition, a lower semicontinuous function
(l.s.c.) k : X × X → R ∪ {+∞}. It is called positive if k(x, y) ≥ 0 for all
x, y ∈ X.

For a set ωN = {x1, . . . , xN} of N (N ≥ 2) points in X, not necessarily
distinct, we write card(ωN ) = N and define the discrete energy of ωN by

E(ωN ) :=
∑

1≤i6=j≤N

k(xi, xj) =
N∑

i=1

N∑

j=1,j 6=i

k(xi, xj) .

If the kernel is symmetric, i.e., k(x, y) = k(y, x) for all x, y ∈ X, we may
also write

E(ωN ) = 2
∑

1≤i<j≤N

k(xi, xj) .

For a set A ⊂ X, the N -point energy of A is given by

(1) E(A,N) := inf{E(ωN ) : ωN ⊂ A, card(ωN ) = N} .
We say that ω∗

N ⊂ A is an optimal N -point configuration on A if

E(ω∗
N ) = E(A,N) .

When A is compact, such a configuration always exists by the lower semi-
continuity of k. In order to study the asymptotic behavior of the sequence
E(ω∗

N ) we need to introduce the continuous counterparts of the above no-
tions.

Let M(A) denote the linear space of all real-valued Radon measures that
are compactly supported on A, and let M+(A) := {µ ∈ M(A) : µ ≥ 0}.
We also introduce the class M1(A) := {µ ∈ M+(A) : µ(X) = 1}. Given a
measure µ ∈ M(A), the continuous energy of µ is the double integral

(2) W (µ) :=

∫ ∫
k(x, y) dµ(x) dµ(y) .

The function

(3) Uµ(x) :=

∫
k(x, y) dµ(y)

is called the potential of µ. Since any l.s.c. function is bounded below on
compact sets, the above integrals are well-defined, although they may attain
the value +∞.
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We say that k satisfies the maximum principle if for every measure µ ∈
M1(A),

(4) sup
x∈supp(µ)

Uµ(x) = sup
x∈X

Uµ(x) .

The quantity w(A) := inf{W (µ) : µ ∈ M1(A)} plays an important role in
potential theory and is called the Wiener energy of A. The capacity of A is
defined as capk(A) := w(A)−1 if k is positive, and otherwise, it is defined as
capk(A) := exp(−w(A)). A property is said to hold quasi-everywhere (q.e.),
if the exceptional set has Wiener energy +∞.

Given a net {µα} ⊂ M(A), we say that {µα} converges in the weak-star

topology to a measure µ ∈ M(A) when

lim
α

∫
f dµα =

∫
f dµ , for all f ∈ Cc(A) ,

where Cc(A) denotes the space of compactly supported continuous functions
on A. We will use the notation

µα
∗−→ µ

to denote the weak-star convergence of measures. If A is compact, we know
by the Banach-Alaoglu theorem that M1(A) equipped with the weak-star
topology is compact.

If A is compact and w(A) < ∞, a measure µ ∈ M1(A) satisfying the
property W (µ) = w(A) is called an equilibrium measure. The existence
of such a measure is guaranteed by the lower semicontinuity of k and the
compactness of M1(A) (see Theorem 2.3 in [17]). However, uniqueness does
not always hold.

The following result is due to G. Choquet [10], and it is central in this
theory.

Theorem 1.1. Let k be an arbitrary kernel and A ⊂ X be a compact set.

If {ω∗
N} is a sequence of optimal N -point configurations on A, then

(5) lim
N→∞

E(ω∗
N )

N2
= w(A) .

The following variation of Theorem 1.1 was obtained by Farkas and Nagy
[16].

Theorem 1.2. Assume that the kernel k is positive and is finite on the

diagonal, i.e., k(x, x) < +∞ for all x ∈ X. Then for arbitrary sets A ⊂ X,

lim
N→∞

E(A,N)

N2
= w(A) ,

where E(A,N) is the N -point energy of A (see (1)).

In this paper we study an alternative construction of points obtained by
means of a “greedy” algorithm.
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Definition 1.3. Let k : X × X → R ∪ {+∞} be a symmetric kernel on
a locally compact metric space X, and let A ⊂ X be a compact set. A
sequence (an)∞n=1 ⊂ A is called a greedy k-energy sequence on A if it is
generated in the following way:

• a1 is selected arbitrarily on A.
• Assuming that a1, . . . , an have been selected, an+1 is chosen to satisfy

(6)
n∑

i=1

k(an+1, ai) = inf
x∈A

n∑

i=1

k(x, ai) ,

for every n ≥ 1.

We remark that the choice of an+1 is not unique in general. We will use
the notation

αN,k := {a1, . . . , aN}
to denote the set of the first N points of this sequence. It is significantly
easier to obtain numerically these configurations rather than optimal N -
point configurations, since in order to obtain the former we have to minimize
a functional of one variable instead of N variables.

It was shown by Fuglede (see Theorem 2.4 in [17]) that if k is symmetric
and A ⊂ X is compact, every µ ∈ M1(A) that has minimal energy satisfies
the inequality Uµ(x) ≤ w(A) for all x ∈ supp(µ). The essential support of
µ is the set

(7) S∗
µ := {x ∈ A : Uµ(x) ≤ w(A)} .

Hence supp(µ) ⊂ S∗
µ.

The following is a restricted version of Definition 1.3.

Definition 1.4. Under the same assumptions as in Definition 1.3, assume
that w(A) <∞, and let µ ∈ M1(A) be an equilibrium measure. A sequence
(an = an,k,µ)∞n=1 ⊂ A is called a greedy (k, µ)-energy sequence on A if it is
generated in the following way:

• a1 is selected arbitrarily on S∗
µ.

• Assuming that a1, . . . , an have been selected, an+1 is chosen to satisfy
an+1 ∈ S∗

µ and

n∑

i=1

k(an+1, ai) = inf
x∈S∗

µ

n∑

i=1

k(x, ai)

for every n ≥ 1.

The set of the first N points of this sequence is denoted by αN,k,µ.

Albert Edrei [14] was probably the first person who studied the point
configurations αN,k in the particular caseX = C and k(x, y) = − log(|x−y|).
However, in the literature these configurations are often called Leja points,
in recognition of Leja’s article [23]. When the kernel employed is the Green
function or the Newtonian kernel k(x, y) = 1/|x − y| in the unit sphere
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S2, the configurations αN,k are also referred to as Leja-Górski points (see
[19] and references therein). In [1], certain configurations known as fast

Leja points are introduced, and an algorithm is presented to compute them.
These configurations are defined over discretizations of planar sets and the
kernel employed is the logarithmic kernel. In [11] a constrained energy
problem for this kernel is considered and associated constrained Leja points

are introduced. We remark that Leja points are important in interpolation
theory because they provide a Newton-type interpolation point scheme on
the real line or complex plane.

A very relevant class of kernels is the so-called M. Riesz kernels inX = R
p,

which depend on a parameter s in [0,+∞). It is defined as follows:

ks(x, y) := K(|x− y|; s) , x, y ∈ R
p ,

where | · | denotes the Euclidean norm and

(8) K(t; s) :=

{
t−s, if s > 0 ,

− log(t), if s = 0 .

We shall use the notations Is(µ) and Uµ
s to denote the energy (2) and po-

tential (3) of a measure µ ∈ M(A) with respect to the Riesz s-kernel, and
ws(A) to denote the Wiener energy of a set A in this new setting. We will
also use Es(ωN ) to represent the discrete energy of an N -point configuration
ωN ⊂ R

p, and

(9) Es(A,N) := inf{Es(ωN ) : ωN ⊂ A, card(ωN ) = N}
to denote the N -point Riesz s-energy of a compact set A ⊂ R

p. Additionally,
greedy ks-energy configurations will be denoted by αN,s.

A few words about Riesz s-kernels are needed at this point. Let A ⊂ R
p

be compact, and 0 ≤ s <dimH(A), where dimH(A) denotes the Hausdorff
dimension of A (which will be denoted by d throughout the rest of this
section). Then there is a unique equilibrium measure λA,s ∈ M1(A) with
finite energy, i.e., Is(λA,s) = ws(A) < +∞. On the other hand, if s ≥ d,
then Is(µ) = +∞ for all µ ∈ M1(A). We refer the reader to Theorems 8.5
and 8.9 in [26] for justifications of these facts.

For s < d, Theorem 1.1 asserts that

(10) lim
N→∞

Es(ω
∗
N,s)

N2
= Is(λA,s) ,

where {ω∗
N,s} denotes any sequence of optimal N -point configurations on A

with respect to the Riesz s-kernel. In addition (see [22]),

1

N

∑

x∈ω∗

N,s

δx
∗−→ λA,s , N → ∞ ,

where δx is the Dirac unit measure concentrated at x. If s ≥ d, then Theorem
1.1 tells us that

lim
N→∞

Es(ω
∗
N,s)

N2
= +∞ ,
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so the order of growth of Es(ω
∗
N,s) is greater than N2.

Throughout the rest of the paper we denote by Vol(Bd) the volume of the
unit ball Bd in R

d, and Hd represents d-dimensional Hausdorff measure in
R

p (normalized by the condition Hd([0, 1]d) = 1, where [0, 1]d denotes here
the embedding of the d-dimensional unit cube in R

p). Regarding the case
s ≥ d, in [20] and [4] geometric measure theoretic tools were employed to
obtain the following result.

Theorem 1.5. Let A be a compact subset of a d-dimensional C1-manifold

in R
p. If {ω∗

N,d} is any sequence of optimal N -point configurations on A for

s = d, then

(11) lim
N→∞

Ed(ω
∗
N,d)

N2 logN
=

Vol(Bd)

Hd(A)
.

Furthermore, if Hd(A) > 0, any sequence {ω̃N} of configurations on A whose

energies satisfy (11) is uniformly distributed with respect to Hd in the sense

that

(12)
1

N

∑

x∈ eωN

δx
∗−→ Hd|A

Hd(A)
, N → ∞ .

Assume now that A ⊂ R
p is a d-rectifiable compact set, i.e., A is the

image of a bounded set in R
d under a Lipschitz mapping. If {ω∗

N,s} is any

sequence of optimal N -point configurations on A for s > d, there holds

(13) lim
N→∞

Es(ω
∗
N,s)

N1+s/d
=

Cs,d

Hd(A)s/d
,

where Cs,d > 0 is a constant independent of A and p. In addition, if

Hd(A) > 0, any sequence of configurations on A whose energies satisfy (13)
is uniformly distributed with respect to Hd.

We remark that the constant Cs,d equals 2ζ(s) when d = 1, where ζ(s) is
the classical Riemann zeta function (cf. [25]).

Definition 1.6. Let A be a compact set of Hausdorff dimension d. A se-
quence of point sets ωN ⊂ A, is said to be asymptotically s-energy minimiz-

ing on A, and we shall write {ωN}N ∈AEM(A; s), if it satisfies, with ω∗
N,s

replaced by ωN , the limit relation (10), (11) or (13), according to whether
s < d, s = d, or s > d.

We conclude this section by illustrating in Figures 1-4 the first 200 points
of four approximate greedy ks-energy sequences on the unit square A =
[0, 1]2 for four different values of s (for better visualization we have deleted
the coordinate axes). The initial point is always selected to be the origin.
The points in Figures 2-4 were obtained by minimizing over a discretization
of [0, 1]2 formed by the set

{(i/100, j/100) : 0 ≤ i, j ≤ 100} ,



7

whereas, in the case of Figure 1, the points were obtained using a discretiza-
tion of the boundary of [0, 1]2 consisting of 4000 equally spaced points. We
remark that if s = 0, it follows from the maximum modulus principle that
all greedy energy points will lie on the boundary of the square and thus only
the boundary was discretized in this case.

Figure 1. s = 0. Figure 2. s = 1.

Figure 3. s = 2. Figure 4. s = 4.

In Section 2 we state and discuss our main results. Their proofs are given
in subsequent sections.

2. main results

2.1. The Potential theoretic case: Sets of positive capacity. Let

Un(x) :=
n−1∑

j=1

k(x, aj) , n ≥ 2 .

Our first result on the asymptotic behavior of greedy sequences is the fol-
lowing.

Theorem 2.1. Let k : X×X → R∪{+∞} be a symmetric kernel on a locally

compact metric space X that satisfies the maximum principle. Assume A ⊂
X is a compact set and {αN,k} is a greedy k-energy sequence on A. Then
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(i) the following limit holds:

(14) lim
N→∞

E(αN,k)

N2
= w(A) ;

(ii) if w(A) < ∞ and the equilibrium measure µ ∈ M1(A) is unique, it

follows that

(15)
1

N

∑

a∈αN,k

δa
∗−→ µ , N → ∞ ;

(iii) if w(A) <∞, there holds

(16) lim
n→∞

Un(an)

n
= w(A) ,

where an is the n-th element of the greedy k-energy sequence.

Furthermore, if w(A) <∞, the analogues of assertions (i), (ii), and (iii)
hold for any greedy (k, µ)-energy sequence on A without assuming the max-

imum principle.

Theorem 2.1 generalizes a result due to Siciak [30] (see Lemma 3.1) stated
for Riesz potentials. For sets of positive capacity, his result asserts that if
A ⊂ R

p is a compact set, p − 2 ≤ s < p, p ≥ 2, and {αN,s} is a greedy
ks-energy sequence on A, then (16) holds for k = ks.

As a consequence of Theorem 2.1, we deduce the following corollaries
for Riesz kernels. Throughout this paper we denote the d-dimensional unit
sphere in R

d+1 by Sd.

Corollary 2.2. Let d be a positive integer and s ∈ [0, d). Then any greedy

ks-energy sequence αN,s ⊂ Sd is AEM(Sd; s) and the asymptotic formula 3

(17) lim
N→∞

Es(αN,s)

N2
=





Γ((d+1)/2)Γ(d−s)
Γ((d−s+1)/2)Γ(d−s/2) , if 0 < s < d ,

− log(2) + 1
2(ψ(d) − ψ(d/2)), if s = 0 ,

holds, where ψ(x) := Γ′(x)/Γ(x) denotes the digamma function. In addition,

(18)
1

N

∑

a∈αN,s

δa
∗−→ σd , N → ∞ ,

where σd is the normalized Lebesgue measure on Sd.

Corollary 2.3. Let αN,s be any greedy ks-energy sequence on [−1, 1]. For

s ∈ [0, 1), this sequence is AEM([−1, 1]; s), which means that

(19) lim
N→∞

Es(αN,s)

N2
=





√
π Γ(1+s/2)

cos(πs/2)Γ((1+s)/2) , if 0 < s < 1 ,

log(2), if s = 0 .

3We remark that for d = 1 and s = 0 we have E0(S
1, N) = −N log(N), N ≥ 2, (cf.

[6]).
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Furthermore,

1

N

∑

a∈αN,s

δa
∗−→ cs

(1 − x2)(1−s)/2
dx , x ∈ [−1, 1] , N → ∞ ,

where cs is a normalizing constant.

Our next result concerns second-order asymptotics for Riesz energy on
the unit circle. It is known that if s ∈ (0, 1), then the following limit holds
(see [6]).

(20) lim
N→∞

Es(S
1, N) − Is(σ)N2

N1+s
=

2ζ(s)

(2π)s
,

where Es(S
1, N) denotes (see (9)) the N -point minimal Riesz s-energy of S1,

and ζ(s) is the analytic extension of the classical Riemann zeta function. We
know by Corollary 2.2 that all greedy ks-energy sequences are AEM(S1; s)
when s ∈ (0, 1). Nevertheless, the expression (21) below shows that in
terms of second-order asymptotics greedy ks-energy sequences and optimal
N -point configurations for s ∈ (0, 1) behave differently.

Proposition 2.4. Let s ∈ (0, 1) and consider an arbitrary greedy ks-energy

sequence {αN,s}N on S1. Then the following next order asymptotics holds:

(21) lim
n→∞

Es(α3·2n,s) − Is(σ)(3 · 2n)2

(3 · 2n)1+s
= f(s)

2ζ(s)

(2π)s
,

where f(s) = 1
2(4

3)1+s + (1
3)1+s < 1 for s ∈ (0, 1), ζ(s) is the analytic

extension of the classical Riemann zeta function, and σ is the normalized

arclength measure on S1.

If s ∈ (0, 1), then ζ(s) < 0, and therefore f(s) 2ζ(s)
(2π)s > 2ζ(s)

(2π)s . Hence we

obtain the following

Corollary 2.5. For all s ∈ (0, 1) and for any greedy ks-energy sequence

{αN,s}N on S1, the sequence

Es(αN,s) − Is(σ)N2

N1+s

is not convergent.

Remark: It is well-known that on S1 the minimal N -point Riesz s-energy
Es(S

1, N) is attained only by configurations consisting of N equally spaced
points, and this property holds for every s ≥ 0. We will show (see Lemma
4.2) that for such s greedy configurations α2n,s on S1 are formed by 2n

equally spaced points.

2.2. Sets of Capacity Zero.
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2.2.1. Greedy ks-energy sequences on S1. In this subsection we present some
results about the asymptotic behavior of Es(αN,s) for greedy ks-energy se-
quences on S1 when s ≥ 1. As we shall see in Theorem 2.6, greedy ks-energy
sequences on S1 are not AEM(S1; s) for s > 1, which is perhaps a surprising
result. We conclude that the behavior of Es(αN,s) exhibits a transition at
s = 1, the Hausdorff dimension of S1, since as we saw in the previous section
greedy ks-energy sequences are AEM(S1; s) for s < 1.

Remark: It follows from the geometric lemmas proved in Section 4 that
greedy ks-energy sequences αN,s on S1 are independent of s, i.e., once the
points a1, . . . , an have been selected, the choice of an+1 is independent of
the value of s and depends only on the position of the first n points of the
sequence. As a consequence we will denote greedy ks-energy sequences on
S1 by αN instead of αN,s.

In [25] (see Theorem 3.1) it was proved that if Γ is a rectifiable Jordan
arc, then for s > 1,

(22) lim
N→∞

Es(ω
∗
N,s)

N1+s
=

2ζ(s)

H1(Γ)s
,

and if s = 1,

(23) lim
N→∞

E1(ω
∗
N,1)

N2 logN
=

2

H1(Γ)
,

where {ω∗
N,s}N is any sequence of optimal N -point configurations with re-

spect to the Riesz s-kernel.
We remind the reader that by Es(S

1, N) we denote the N -point Riesz
s-energy of S1 (see (9)). As it was observed previously, optimal N -point
configurations on S1 consist precisely of N equally spaced points, and this
property holds for all values of s ∈ [0,∞). From (22) we have

(24) lim
N→∞

Es(S
1, N)

N1+s
=

2ζ(s)

(2π)s
.

By Corollary 2.2 and Theorem 2.18 (see Subsection 2.2.3) we know that if
s ∈ [0, d], then any greedy ks-energy sequence {αN,s} on Sd is AEM(Sd; s).
However the situation changes when s > 1 on S1.

Proposition 2.6. For s > 1, any greedy ks-energy sequence {αN,s}N on S1

is not asymptotically s-energy minimizing. In fact, the subsequence α3·2n,s

satisfies

lim
n→∞

Es(α3·2n,s)

(3 · 2n)1+s
= f(s)

2ζ(s)

(2π)s
,

where f(s) = 1
2(4

3)1+s + (1
3)1+s > 1 for all s > 1.

As in the previous section, we want to describe the difference in terms of
second-order asymptotics between greedy ks-energy sequences and optimal
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N -point configurations when s = 1. The following formula holds (see [6]):

(25) lim
N→∞

E1(S
1, N) − 1

πN
2 logN

N2
=

1

π
(γ − log(π/2)) ,

where γ = limM→∞(1+ 1
2 + · · ·+ 1

M − logM) denotes the Euler-Mascheroni
constant.

Proposition 2.7. For any greedy k1-energy sequence {αN}N on S1 we have

(26) lim
n→∞

E1(α3·2n) − 1
π (3 · 2n)2 log(3 · 2n)

(3 · 2n)2
=

1

π
(γ−log(π/2)+log(2

16

9 /3)) .

Corollary 2.8. For any greedy k1-energy sequence {αN}N on S1, the se-

quence

E1(αN ) − 1
πN

2 logN

N2

is not convergent.

2.2.2. ks-Energy of sequences on Jordan arcs or curves in R
p for s ≥ 1

and best-packing. Throughout this subsection, by a Jordan arc in R
p we

understand a set homeomorphic to a closed segment. A closed Jordan curve
refers to a set homeomorphic to a circle.

Our main result states that for s > 1 it is not possible to find any se-
quence of points on a Jordan arc or curve that is asymptotically s-energy
minimizing.

Theorem 2.9. Let {xk}∞k=0 ⊂ Γ be an arbitrary sequence of distinct points,

where Γ is a rectifiable Jordan arc or closed Jordan curve in R
p. Set Xn :=

{xk}n
k=0. Then {Xn}n /∈ AEM(Γ; s) for all s > 1. In particular, {αN,s} /∈

AEM(Γ; s) for any greedy ks-energy sequence on Γ when s > 1.

The next result shows that, in contrast to the case s > 1, for s = 1 greedy
k1-energy sequences on S1 are AEM(S1; 1). More generally, we shall prove
this fact for smooth Jordan arcs or curves Γ by which we mean that the
natural parametrization Φ : [0, L] −→ Γ, where L = H1(Γ), is of class C1

and Φ′(t) 6= 0 for all t ∈ [0, L].

Theorem 2.10. Let Γ ⊂ R
p be a smooth Jordan arc or closed curve, and let

s = d = 1. Then any greedy k1-energy sequence {αN,1} on Γ is AEM(Γ; 1),
i.e.

(27) lim
N→∞

E1(αN,1)

N2 logN
=

2

H1(Γ)
.

Furthermore,

(28)
1

N

∑

a∈αN,1

δa
∗−→ H1|Γ

H1(Γ)
, N → ∞ .
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For the analogous result for greedy kd-energy on the unit sphere Sd ⊂
R

d+1, see Theorem 2.18.
We next consider best-packing configurations. For a collection of N dis-

tinct points ωN = {x1, . . . , xN} ⊂ R
p we set

δ(ωN ) := min
1≤i6=j≤N

|xi − xj | ,

and for an infinite set A ⊂ R
p, we let

δN (A) := sup{δ(ωN ) : ωN ⊂ A, card(ωN ) = N}
be the best-packing distance of N -point configurations on A. In [5] it is
shown (see Theorem 2.2) that if A = Γ is a rectifiable Jordan curve or arc
in R

p,

lim
N→∞

NδN (Γ) = H1(Γ) .

This fact leads us to the following.

Definition 2.11. Let Γ ⊂ R
p be a Jordan arc or curve, and let ωN ⊂ Γ be

a sequence of N -point configurations. We say that {ωN} ∈ AEM(Γ,∞) if

lim
N→∞

Nδ(ωN ) = H1(Γ) .

Theorem 2.12. Let Γ ⊂ R
p be a rectifiable Jordan arc or curve with length

L = H1(Γ), and let {xk}∞k=0 ⊂ Γ be an arbitrary infinite sequence such that

xi 6= xj if i 6= j. Set Xn := {x0, . . . , xn}. Then {Xn} /∈ AEM(Γ,∞). In

fact,

(29) lim inf
n→∞

n δ(Xn) ≤ 4 + 3
√

2

4 + 4
√

2
L < L .

Moreover, if c := lim supn→∞ n δ(Xn) > 2+
√

2
4 L, then

(30) lim inf
n→∞

n δ(Xn) ≤ L

2
+

√
c (L− c) < c .

In particular, if lim supn→∞ n δ(Xn) = L, then lim infn→∞ n δ(Xn) ≤ L/2.

In analogy with finite s, we define greedy best-packing configurations on a
compact set A ⊂ R

p by selecting a0 ∈ A and choosing an ∈ A so that

min
0≤i≤n−1

|an − ai| = max
x∈A

min
0≤i≤n−1

|x− ai| .

Such points are referred to in [12] as Leja-Bos points. Theorem 2.12 shows
that such points are not asymptotically optimal on rectifiable Jordan arcs
or curves.

In [12] there appears a conjecture attributed to L. Bos stating that if
A is a compact domain of C, every Leja-Bos sequence {an}∞n=0 on A with
|a0| = max{|x| : x ∈ A} is asymptotically uniformly distributed. We wish
to point out that this conjecture is false as the following result asserts (see
also Figure 1 in Section 5).
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Proposition 2.13. There exist greedy best-packing sequences on [0, 1] and

[0, 1]2 that are not asymptotically uniformly distributed.

It is obvious, however, that greedy best-packing sequences are dense in
A.

2.2.3. Weighted Riesz potentials. In this subsection we will consider the no-
tion of weighted discrete Riesz energy introduced in [4]. We reproduce here
the main definitions.

Definition 2.14. LetA ⊂ R
p be an infinite compact set whose d-dimensional

Hausdorff measure Hd(A) is finite. A symmetric function w : A × A −→
[0,∞] is called a CPD-weight function on A×A if

• w is continuous (as a function on A × A) at Hd-almost every point
of the diagonal D(A) := {(x, x) : x ∈ A},

• there is some neighborhood G of D(A) (relative to A×A) such that
infGw > 0, and

• w is bounded on any closed subsetB ⊂ A×A such thatB∩D(A) = ∅.
The term CPD stands for (almost) continuous and positive on the diag-

onal.

Definition 2.15. Let s > 0. Given a collection of N (N ≥ 2) points
ωN := {x1, . . . , xN} ⊂ A, the weighted Riesz s-energy of ωN is defined by

Ew
s (ωN ) :=

∑

1≤i6=j≤N

w(xi, xj)

|xi − xj |s
,

while the N -point weighted Riesz s-energy of A is given by

Ew
s (A,N) := inf{Ew

s (ωN ) : ωN ⊂ A, card(ωN ) = N} .
The weighted Hausdorff measure Hs,w

d on Borel sets B ⊂ A is defined by

Hs,w
d (B) :=

∫

B
(w(x, x))−d/sdHd(x) .

The following result about the asymptotic behavior of {Ew
s (A,N)}N was

obtained in [4].

Theorem 2.16. Let A be a compact subset of a d-dimensional C1-manifold

in R
p and assume that w : A × A → [0,∞] is a CPD-weight function on

A×A. Then

(31) lim
N→∞

Ew
d (A,N)

N2 logN
=

Vol(Bd)

Hd,w
d (A)

,

Furthermore, if Hd(A) > 0 and {ω̃N} is a sequence of configurations on A
satisfying (31), with Ew

d (A,N) replaced by Ew
d (ω̃N ), then

(32)
1

N

N∑

x∈ eωN

δx
∗−→ Hd,w

d |A
Hd,w

d (A)
, N → ∞ .
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Assume now that A ⊂ R
p is a d-rectifiable set. Then for s > d,

(33) lim
N→∞

Ew
s (A,N)

N1+s/d
=

Cs,d

[Hs,w
d (A)]s/d

,

where Cs,d is the same positive constant that appears in Theorem 1.5. In

addition, if Hd(A) > 0, any sequence {ω̃N} of configurations on A satisfying

(33) with Ew
s (A,N) replaced by Ew

s (ω̃N ) also satisfies (32).

Definition 2.17. Let w be a lower semicontinuous CPD-weight function
on A×A. A sequence (an)∞n=1 ⊂ A is called a greedy (w, s)-energy sequence

on A if it is generated in the same way as generated in Definition 1.3, with
k(x, y) := w(x, y)/|x− y|s.

The next result concerns greedy (w, d)-energy points on the unit sphere
Sd ⊂ R

d+1.

Theorem 2.18. Assume that w : Sd×Sd → [0,∞) is a continuous function

such that w(x, x) > 0 for all x ∈ Sd. Let {αw
N,d}N be an arbitrary greedy

(w, d)-energy sequence on Sd, d ≥ 1. Then

(34) lim
N→∞

Ew
d (αw

N,d)

N2 logN
=

Vol(Bd)

Hd,w
d (Sd)

,

and therefore

1

N

∑

a∈αw
N,d

δa
∗−→ Hd,w

d |Sd

Hd,w
d (Sd)

, N → ∞ .

In particular, any greedy kd-energy sequence {αN,d}N on Sd is AEM(Sd, d)
and satisfies (18) for s = d.

In the following result we consider greedy (w, p)-energy sequences on sets
in R

p with positive Lebesgue measure.

Theorem 2.19. Let A ⊂ R
p be a compact set such that Hp(A) > 0, and let

{αw
N,p}N be an arbitrary greedy (w, p)-energy sequence on A. Assume that

w : A × A → [0,∞) is a continuous function such that w(x, x) > 0 for all

x ∈ A. Then

(35) lim
N→∞

Ew
p (αw

N,p)

N2 logN
=

Vol(Bp)

Hp,w
p (A)

,

and therefore

(36)
1

N

∑

a∈αw
N,p

δa
∗−→ Hp,w

p |A
Hp,w

p (A)
, N → ∞ .

In particular, any greedy kp-energy sequence {αN,p}N on A is AEM(A; p)
and is asymptotically uniformly distributed with respect to Hp.
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In view of Proposition 2.6, it is not in general possible to extend Theorem
2.18 to s > d. However, for any compact set A ⊂ R

p with Hδ(A) > 0 (where
δ > 0 is arbitrary, not necessarily an integer), we can show that the order of

growth of Ew
s (αw

N,s) when s > δ (s = δ) is at most N1+s/δ (N2 logN). Let

H∞
δ (A) := inf{

∑

i

(diamGi)
δ : A ⊂

⋃

i

Gi} , δ > 0 .

Theorem 2.20. Let 0 < δ ≤ p. Assume that A ⊂ R
p is a compact set such

that Hδ(A) > 0. Let w be a bounded lower semicontinuous CPD-weight

function on A × A. Consider an arbitrary greedy (w, s)-energy sequence

{αw
N,s}N ⊂ A, for s ≥ δ. Then, for N ≥ 2

Ew
s (αw

N,s) ≤





Ms,δ,A ‖w‖H∞
δ (A)−s/δN1+s/δ, if s > δ ,

Mδ,A ‖w‖H∞
δ (A)−1N2 logN, if s = δ ,

where the constants Ms,δ,A > 0 and Mδ,A > 0 are independent of w and N ,

and ‖w‖ := sup{w(x, y) : x, y ∈ A}.
Corollary 2.21. Let A ⊂ R

p be a d-rectifiable set. Suppose s > d and w is

a bounded lower semicontinuous CPD-weight function on A× A. Consider

an arbitrary greedy (w, s)-energy sequence {αw
N,s}N ⊂ A. Then there are

constants C1, C2 > 0 such that

(37) C1N
1+s/d ≤ Ew

s (αw
N,s) ≤ C2N

1+s/d .

If s = d and A is assumed to be a compact subset of a d-dimensional C1-

manifold, then there are constants C3, C4 > 0 such that

(38) C3N
2 logN ≤ Ew

d (αw
N,d) ≤ C4N

2 logN ,

for any greedy (w, d)-energy sequence {αw
N,d}N ⊂ A.

Corollary 2.22. Let A ⊂ R
p be a d-rectifiable set. Suppose s > d and w is

a bounded lower semicontinuous CPD-weight function on A× A. Consider

an arbitrary greedy (w, s)-energy sequence {an}∞n=1 ⊂ A. Then {an}∞n=1 is

dense in A. If s = d and A is assumed to be a compact subset of a d-
dimensional C1-manifold, the same conclusion holds for any greedy (w, d)-
energy sequence. Taking w ≡ 1 the result is applicable to greedy ks-energy

sequences.

We can slightly improve the density result in certain cases like a real
interval.

Proposition 2.23. Let [a, b] ⊂ R and s > 1. Assume that w is a bounded

lower semicontinuous CPD-weight function on [a, b] × [a, b], and (an)∞n=1 is

a greedy (w, s)-energy sequence on [a, b]. If I is any closed subinterval of

[a, b], then

(39) lim inf
N→∞

(card{1 ≤ n ≤ N : an ∈ I})1+ 1

s

N
> 0 .
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We conclude this section by remarking that some results about greedy
sequences in the context of external fields have been obtained by the first
author and will appear in a separate work.

3. Proofs of results from Section 2.1

Proof of Theorem 2.1. Assume first that w(A) < ∞, µ ∈ M1(A) is
an equilibrium measure, and {αN,k,µ} is an arbitrary greedy (k, µ)-energy
sequence on A. If an is the n-th element of this sequence, it follows by
definition that

Un(an) ≤ Un(x) , for all x ∈ S∗
µ , n ≥ 2 .

Hence, for any x ∈ S∗
µ,

E(αN,k,µ) =
∑

1≤i6=j≤N

k(ai, aj) = 2
N∑

j=2

j−1∑

i=1

k(ai, aj)

= 2
N∑

j=2

Uj(aj) ≤ 2
N∑

j=2

Uj(x) = 2
N∑

j=2

j−1∑

i=1

k(x, ai) .

We now integrate the above inequality with respect to µ to obtain

E(αN,k,µ) ≤ 2
N∑

j=2

j−1∑

i=1

Uµ(ai) .

Taking into account that Uµ(ai) ≤ w(A) for all i (ai ∈ S∗
µ) it follows that

(40) E(αN,k,µ) ≤ N(N − 1)w(A) .

Now, if {ω∗
N} is a sequence of optimal N -point configurations on A, then

E(ω∗
N ) ≤ E(αN,k,µ) for all N . Therefore (14) for αN,k,µ is a consequence of

(40) and (5).
Consider the sequence of normalized counting measures

νN :=
1

N

∑

a∈αN,k,µ

δa ,

and assume that the equilibrium measure µ is unique. Let gn : A×A→ R be
a non-decreasing sequence of continuous functions that converges pointwise
to k on A×A (recall that k is lower semicontinuous and hence lower bounded
on A×A). We have

∫ ∫
gn(x, y) dνN (x)dνN (y) =

1

N2

N∑

i=1

N∑

j=1

gn(ai, aj)

=
1

N2

( N∑

i=1

gn(ai, ai) +
∑

1≤i6=j≤N

gn(ai, aj)
)
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≤ 1

N2

( N∑

i=1

gn(ai, ai) +
∑

1≤i6=j≤N

k(ai, aj)
)

;

hence

(41)

∫ ∫
gn(x, y)dνN (x)dνN (y) ≤

∑N
i=1 gn(ai, ai) + E(αN,k,µ)

N2
.

By the compactness of A and the continuity of gn, there exists a constant
Mn > 0 such that

N∑

i=1

|gn(ai, ai)| ≤ N Mn .

Therefore, for each fixed n we have

(42) lim
N→∞

∑N
i=1 gn(ai, ai) + E(αN,k,µ)

N2
= w(A) .

Now let {νN}N∈N be a subsequence that converges in the weak-star topol-
ogy to a measure λ ∈ M1(A). Since νN × νN converges weak-star to λ× λ,
we have

lim
N→∞

∫ ∫
gn(x, y)dνN (x)dνN (y) =

∫ ∫
gn(x, y)dλ(x)dλ(y) .

Thus from (41) and (42) we conclude that
∫ ∫

gn(x, y)dλ(x)dλ(y) ≤ w(A) ,

and letting n→ ∞ we obtain

W (λ) =

∫ ∫
k(x, y)dλ(x)dλ(y) ≤ w(A) .

It follows that λ is an equilibrium measure. By hypothesis there is only one
equilibrium measure. Thus λ = µ and (15) is proved for αN,k,µ.

We next show (16) for αN,k,µ. It is not assumed now that the equilibrium
measure is unique, and αN,k,µ denotes a greedy (k, µ)-energy sequence asso-
ciated with a certain equilibrium measure µ. We know from the first part
of the proof that

(43) lim
N→∞

E(αN,k,µ)

N2
= lim

N→∞
2

∑N
i=2 Ui(ai)

N2
= w(A) .

For every n ≥ 1,

Un+1(an+1)

n
= inf

x∈S∗

µ

1

n

n∑

i=1

k(x, ai) .

Integrating this equality with respect to µ and recalling that ai ∈ S∗
µ, we

get

(44)
Un+1(an+1)

n
≤ 1

n

n∑

i=1

∫
k(x, ai) dµ(x) =

1

n

n∑

i=1

Uµ(ai) ≤ w(A) .
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On the other hand, for every n ≥ 2,

(45) Un+1(an+1) ≥ Un(an) + L ,

where L := inf{k(x, y) : x, y ∈ S∗
µ}. By rescaling k we may assume that

L ≤ −1.
Let ǫ ∈ (0, 1). Assume that m is an integer such that

(46)
Um+1(am+1)

m
< w(A) − ǫ .

We shall show that this inequality can hold only for finitely many integers
m. Applying (45) repeatedly we obtain for (1 + ǫ/(3L))m ≤ i ≤ m,

Ui+1(ai+1)

m
≤ w(A) − ǫ− (m− i)L

m
≤ w(A) − ǫ+

ǫ/3

1 + ǫ/(3L)
≤ w(A) − ǫ

2
,

and so
Ui+1(ai+1)

i
≤ m

i
(w(A) − ǫ/2) ≤ m

i
w(A) − ǫ

2
.

Taking into account (44) and the last inequality,

(47)
2

(m+ 1)m

m∑

i=1

Ui+1(ai+1) ≤
2

(m+ 1)m

∑

1≤i<(1+ǫ/(3L))m

i w(A)

+
2

(m+ 1)m

∑

(1+ǫ/(3L))m≤i≤m

mw(A) − ǫ

2

2

(m+ 1)m

∑

(1+ǫ/(3L))m≤i≤m

i .

Furthermore, it is easy to see that

(48) − ǫ
2

2

(m+ 1)m

∑

(1+ǫ/(3L))m≤i≤m

i ≤ ǫ2

6L(m+ 1)

(
1 + 2m+

mǫ

3L

)

≤ ǫ2(1 + ǫ/(3L))

6L
.

If w(A) ≤ 0, then

2

(m+ 1)m

{ ∑

1≤i<(1+ǫ/(3L))m

i w(A) +
∑

(1+ǫ/(3L))m≤i≤m

mw(A)
}
≤ w(A)

and hence it follows from (47) and (48) that

(49)
2

(m+ 1)m

m∑

i=1

Ui+1(ai+1) ≤ w(A) +
ǫ2(1 + ǫ/(3L))

6L
.

Since the right-hand side of (49) is a constant strictly less than w(A), by
(43) it follows that there are only finitely many integers m satisfying (46).
This implies with (44) that (16) holds.

Now assume that w(A) > 0. It is easy to verify that

2

(m+ 1)m

{ ∑

1≤i<(1+ǫ/(3L))m

i w(A) +
∑

(1+ǫ/(3L))m≤i≤m

mw(A)
}
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≤
(
1 +

2

m+ 1
+

ǫ

3L(m+ 1)
+

ǫ2m

9(m+ 1)L2

)
w(A) ,

and so, from (47) and (48), we deduce that

2

(m+ 1)m

m∑

i=1

Ui+1(ai+1) ≤
(
1 +

2

m+ 1
+

ǫ

3L(m+ 1)
+

ǫ2m

9(m+ 1)L2

)
w(A)

+
ǫ2(1 + ǫ/(3L))

6L
.

If we assume that there are infinitely many integers m satisfying (46), then
applying the last inequality we obtain

(50) lim sup
N→∞

2
∑N

i=2 Ui(ai)

N2
≤ w(A) +

ǫ2w(A)

9L2
+
ǫ2(1 + ǫ/(3L))

6L
.

We may assume without loss of generality that L ≤ −1 also satisfies L <
−(1 + 2w(A))/3. Then the right-hand side of (50) is a constant strictly less
than w(A), which contradicts (43). This concludes the proof of (16) for
αN,k,µ.

If k satisfies the maximum principle, we know by Fuglede’s result (see
paragraph after Definition 1.3) and (4) that Uµ(x) ≤ w(A) for all x ∈ A.
Therefore the assertions (14)-(16) follow (replacing S∗

µ by A) for any greedy
k-energy sequence {αN,k} on A by using the argument presented above. �

Proof of Corollary 2.2. It is well-known (see for example [22]) that for
any s < d the equilibrium measure associated with the Riesz kernel ks is
unique and coincides with σd. Since supp(σd) = Sd, any greedy ks-energy
sequence {αN,s}N ⊂ Sd is a greedy (ks, σd)-energy sequence. Therefore by

(14) we obtain that {αN,s}N ∈ AEM(Sd; s). The values on the right-hand
side of (17) are the values of Is(σd). The case s > 0 follows from formula
(1.2) of [21] and the case s = 0 from formula (2.26) of [8]. Finally (18)
follows from (15). �

Proof of Corollary 2.3. It is shown in [22] that for s < 1 the equilibrium
measure associated with the Riesz kernel ks is

cs

(1 − x2)(1−s)/2
dx , x ∈ (−1, 1) ,

and its energy is given by the value on the right-hand side of (19). �

Proof of Proposition 2.4. We have
(51)
Es(α3·2n,s) − Is(σ)(3 · 2n)2

(3 · 2n)1+s
=

1

31+s

Es(α3·2n,s) − Is(σ)(2n)2 − Is(σ)22n+3

(2n)1+s
.

As will be justified in Section 4 (see Lemma 4.3), the relation

Es(α3·2n,s) =
1

2
Es(S

1, 2n+2) + Es(S
1, 2n)



20

holds. Therefore, from (51), it follows that

Es(α3·2n,s) − Is(σ)(3 · 2n)2

(3 · 2n)1+s

=
1

31+s

(Es(S
1, 2n) − Is(σ)(2n)2

(2n)1+s
+

41+s

2

Es(S
1, 2n+2) − Is(σ)(2n+2)2

(2n+2)1+s

)
.

Applying now (20) we get

lim
n→∞

Es(α3·2n,s) − Is(σ)(3 · 2n)2

(3 · 2n)1+s
=

(1

2

(4

3

)1+s
+

(1

3

)1+s)2ζ(s)

(2π)s
.

Finally, it is easy to check that f(s) = 1
2(4

3)1+s +(1
3)1+s < 1 for all s ∈ (0, 1).

�

Proof of Corollary 2.5. Since α2n,s consists of 2n equally spaced points
(see Lemma 4.2 below), Es(α2n,s) = Es(S

1, 2n), and therefore

lim
n→∞

Es(α2n,s) − Is(σ)22n

2n(1+s)
=

2ζ(s)

(2π)s
,

but the subsequence {α3·2n,s}n provides a different limit value, given by (21).
�

4. Proofs of results from Subsection 2.2.1

In order to prove Proposition 2.6 we need some auxiliary lemmas that give
a geometric description of greedy ks-energy sequences on S1. The proofs of
Lemmas 4.1 and 4.2 below are straightforward; cf. [24] for the details.

Lemma 4.1. Let s ≥ 0 and consider two points x1, x2 ∈ S1. Set

f(x) := K(|x− x1|; s) +K(|x− x2|; s) , x ∈ S1 ,

where K is defined in (8). Then on each arc determined by x1 and x2 the

function f has only one minimum and it is attained at the midpoint of the

arc.

Lemma 4.2. Let s ≥ 0 and assume that (an)∞n=1 is an arbitrary greedy

ks-energy sequence on S1. Then

(i) for every positive integer m, the set α2m,s consists of 2m equally

spaced points, that is,

α2m,s = {a1e
i 2πn

2m }2m

n=1 ;

(ii) for every positive integer m, the set α3·2m can be written as

(52) α3·2m = S2m+2 \ S2m ,

where S2m+2 and S2m are formed, respectively, by 2m+2 and 2m

equally spaced points, and S2m ⊂ S2m+2 ;
(iii) the choice of any point an is independent of s.

Since greedy ks-energy sequences {αN,s} on the unit circle S1 are inde-
pendent of s, we will denote them simply by αN .
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Lemma 4.3. Let s ≥ 0. Then given any greedy ks-energy sequence {αN}N

on S1 the following relation holds for every n ≥ 1:

(53) Es(α3·2n) =
1

2
Es(S

1, 2n+2) + Es(S
1, 2n) .

Proof. If {xk}N
k=1 ⊂ S1 is an arbitrary collection of N equally spaced points,

then using the simple equality |eiξ − eiθ| = 2| sin( ξ−θ
2 )|, we conclude that for

s > 0,

(54) Es(S
1, N) = Es({xk}N

k=1) = 2−sN
N−1∑

n=1

sin
(πn
N

)−s
.

Consider any greedy ks-energy sequence (αN )∞N=1 on S1. We claim that

Es(α3·2n) = Es(S2n+2) − 2n+1 · 2−s
2n+2−1∑

k=1

sin
( πk

2n+2

)−s
+ Es(S2n) ,

where α3·2n = S2n+2 \ S2n is as in (52). To see this, notice that Es(α3·2n)
is obtained by removing twice from Es(S2n+2) all terms |eiξ − eiθ|−s where
either eiξ ∈ S2n or eiθ ∈ S2n .

Since

Es(S2n+2) = Es(S
1, 2n+2) , Es(S2n) = Es(S

1, 2n) ,

(53) follows by applying (54). The case s = 0 is proved similarly. �

Proof of Proposition 2.6. Using (53) we obtain

Es(α3·2n)

31+s2n(1+s)
=

1

31+s

1

2

2(n+2)(1+s)

2n(1+s)

Es(S
1, 2n+2)

2(n+2)(1+s)
+

1

31+s

Es(S
1, 2n)

2n(1+s)
.

Simplifying the above expression and applying (24) we conclude that

lim
n→∞

Es(α3·2n)

(3 · 2n)1+s
=

(1

2

(4

3

)1+s
+

(1

3

)1+s)2ζ(s)

(2π)s
.

It is straightforward to check that f(s) = 1
2

(
4
3

)1+s
+

(
1
3

)1+s
> 1 for all s > 1.

�

Proof of Proposition 2.7. First observe that

E1(α3·2n) − 1
π (3 · 2n)2 log(3 · 2n)

(3 · 2n)2

=
1

9

((1/2) E1(S
1, 2n+2) + E1(S

1, 2n) − 1
π (3 · 2n)2 log(3 · 2n)

22n

)
.

We add and subtract (1/π)22n log(2n) to obtain

(55)
E1(α3·2n) − 1

π (3 · 2n)2 log(3 · 2n)

(3 · 2n)2

=
1

9

(E1(S
1, 2n) − 1

π22n log(2n)

22n
+ 16

(1/2) E1(S
1, 2n+2) − 1

πΛn

22(n+2)

)
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where Λn = (3 · 2n)2 log(3 · 2n) − 22n log(2n). Taking into account that

Λn =
22(n+2)

2
log(2n+2) + log(3)(3 · 2n)2 − 8 log(4)22n

it follows that

(56) 16
(1/2) E1(S

1, 2n+2) − 1
πΛn

22(n+2)

= 8
E1(S

1, 2n+2) − 1
π22(n+2) log(2n+2)

22(n+2)
+

1

π
(8 log(4) − 9 log(3)) .

Applying (25), (55) and (56) we conclude that

lim
n→∞

E1(α3·2n) − 1
π (3 · 2n)2 log(3 · 2n)

(3 · 2n)2

=
1

π
(γ − log(π/2)) +

1

π
(
8

9
log(4) − log(3)) =

1

π
(γ − log(π/2) + log(2

16

9 /3)) .

�

Proof of Corollary 2.8. Since E1(α2n) = E1(S
1, 2n) for all n, the result

follows from (25) and (26). �

5. Proofs of results from subsection 2.2.2

Proof of Theorem 2.9. Assume first that Γ is a Jordan arc. If x1, x2 ∈ Γ,
we denote by (x1, x2) the subarc joining x1 and x2, and by l(x1, x2) its
length.

Let Xn := {xk,n}n
k=0 be a sequence of configurations on Γ, where we

assume that the points xk,n are located in successive order. Set

(57) dk,n := l(xk−1,n, xk,n) , k = 1, . . . , n .

In [25] the following result was proved:

Theorem 5.1. Let Γ be a rectifiable Jordan arc in R
p. If s > 1 and {Xn}n ∈

AEM(Γ; s), then

(58) lim
n→∞

n∑

k=1

∣∣∣dk,n − L

n

∣∣∣ = 0 , L := H1(Γ) .

We prove Theorem 2.9 by contradiction. Let {xk}∞k=0 ⊂ Γ be an arbitrary
sequence of distinct points and set Xn := {xk}n

k=0. We will use the notation
Xn = {x0,n, . . . , xn,n}. Assume that {Xn}n ∈ AEM(Γ; s). Let δ > 0 and
consider the sets

Aδ
n := {k :∈ {1, . . . , n} :

L− δ

n
< dk,n <

L+ δ

n
} , Bδ

n := {1, . . . , n}\Aδ
n .

Let ǫ > 0 be a fixed number. Then from (58) there exists N = N(ǫ) ∈ N

such that, if n ≥ N ,

(59)
n∑

k=1

∣∣∣dk,n − L

n

∣∣∣ ≤ ǫ .
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If k ∈ Bδ
n, then |dk,n − L/n| ≥ δ/n, and from (59) it follows that

card(Bδ
n)
δ

n
≤ ǫ , n ≥ N .

Therefore,

card(Aδ
n) = n− card(Bδ

n) ≥ n
(
1 − ǫ

δ

)
, n ≥ N .

There are exactly n subarcs (xk−1,n, xk,n), and when we add the next n/2
points (we may assume that n is even) to the configuration Xn, obviously
at most n/2 of these new points will lie in the subarcs (xk−1,n, xk,n) where

k ∈ Aδ
n. Setting

Cδ
n := {k ∈ Aδ

n : (xk−1,n, xk,n) does not contain a new point} ,
we have

card(Cδ
n) ≥ n

(
1 − ǫ

δ

)
− n

2
= n

(1

2
− ǫ

δ

)
.

Now since the intervals (xk−1,n, xk,n) with k ∈ Cδ
n do not contain a new

point, there are at least card(Cδ
n) values of k′ in {1, . . . , 3n/2} such that

dk′,3n/2 = dk,n for some k ∈ Cδ
n. For these values of k′ and the corresponding

values of k, we have
∣∣∣dk′,3n/2 −

L

3n/2

∣∣∣ =
∣∣∣dk,n − L

n
+

L

3n

∣∣∣ .

Now we choose δ to be any fixed value less than L/3, say δ := L/6. Then
for k ∈ Cδ

n,
∣∣∣dk,n − L

n
+

L

3n

∣∣∣ ≥
∣∣∣
L

3n
−

∣∣∣
L

n
− dk,n

∣∣∣
∣∣∣ =

L

3n
−

∣∣∣
L

n
− dk,n

∣∣∣ >
L

3n
− L

6n
=

L

6n
.

Finally,

3n/2∑

k′=1

∣∣∣ dk′,3n/2 −
L

3n/2

∣∣∣ ≥ n
(1

2
− ǫ

δ

) L

6n
=

(1

2
− 6 ǫ

L

)L
6
.

But the above estimate contradicts (59) since we can select ǫ sufficiently
small so that (1

2
− 6 ǫ

L

)L
6
> ǫ .

If Γ is a closed Jordan curve, we select an orientation for it. Then the
above reasoning used to prove the result in the case of Jordan arcs is also
applicable. We only have to define (xk−1,n, xk,n) as the subarc joining xk−1,n

and xk,n on which a particle moves from xk−1,n to xk,n following the orien-
tation prescribed. The details of the argument are left to the reader. �

Proof of Theorem 2.10. We first assume that Γ is a smooth Jordan arc
of length L. We will reduce the problem of asymptotics of αN,1 on Γ to a
weighted problem on [0, L] and then apply Theorem 2.19. Let Φ : [0, L] −→
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Γ be the natural parametrization of Γ and define w : [0, L]× [0, L] −→ [0,∞)
by

(60) w(x, y) :=
|x− y|

|Φ(x) − Φ(y)| .

Let Ψ = Φ−1 be the inverse function of Φ. If an is the n-th element of
the greedy k1-energy sequence on Γ, let bn := Ψ(an) ∈ [0, L] and βN :=
{b1, . . . , bN}. Since for t = Φ(x), x ∈ [0, L],

inf
t∈Γ

n−1∑

i=1

1

|t− ai|
= inf

x∈[0,L]

n−1∑

i=1

1

|Φ(x) − Φ(bi)|
= inf

x∈[0,L]

n−1∑

i=1

w(x, bi)

|x− bi|
,

it follows that {βN} is a greedy (w, 1)-energy sequence on [0, L] (see Defini-
tion 2.17) associated with the weight function (60). Notice that

H1,w
1 ([0, L]) =

∫ L

0
w(x, x)−1 dx =

∫ L

0
|Φ′(x)| dx = L .

Applying Theorem 2.19 we obtain that

lim
N→∞

E1(αN,1)

N2 logN
= lim

N→∞
Ew

1 (βN )

N2 logN
=

2

H1,w
1 ([0, L])

=
2

L
.

If Γ is a smooth Jordan closed curve and Φ : [0, L] −→ Γ is the natural
parametrization of Γ (Φ(0) = Φ(L),Φ′(0) = Φ′(L)), we set

w(z, ξ) :=
|z − ξ|

|Φ(x) − Φ(y)| , z = e2πix/L, ξ = e2πiy/L; x, y ∈ [0, L] ,

and apply (with the aid of Theorem 2.18) a similar argument as above on
the unit circle S1.

In both cases, (28) is a consequence of (27) and Theorem 1.5. �

Proof of Theorem 2.12. Let p > 1 be a rational number and let n ∈ Z+ be
such that n/p is an integer. We denote the first n+1 points of the sequence
{xk}∞k=0 by Xn = {x0,n, . . . , xn,n}, where as in the proof of Theorem 2.9 the
points xk,n are located on Γ in successive order. There are exactly n subarcs
(xi,n, xi+1,n). We add to Xn the next n/p points of the sequence {xk}. Then
there are at least (p−1)n/p subarcs (xi,n, xi+1,n) not containing a new point.
These subarcs have length at least δ(Xn). We select (p− 1)n/p of those.

On the other hand, there are 2n/p subarcs (xi,(p+1)n/p, xi+1,(p+1)n/p) re-
maining with length at least δ(X(p+1)n/p). Consequently,

(61)
(p− 1)n

p
δ(Xn) +

2n

p
δ(X(p+1)n/p) ≤ L .

Thus

(62) lim inf
n→∞

n δ(Xn) ≤ p2 + p

p2 + 2p− 1
L .
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Letting f(p) denote the right-hand side of (62), we see that for p > 1 the

function f attains its minimum when p = 1+
√

2, and f(1+
√

2) = 4+3
√

2
4+4

√
2
L,

which establishes (29).
Let Xnk

be a subsequence of configurations such that limk→∞ nk δ(Xnk
) =

c. Notice that we cannot apply (61) directly because we cannot assume that
nk/p is an integer. Let ⌊x⌋ denote the integral part of x and let {x} :=
x− ⌊x⌋. Then we get

(63)
(
nk −

⌊nk

p

⌋)
δ(Xnk

) + 2
⌊nk

p

⌋
δ(Xnk+⌊nk/p⌋) ≤ L .

Since
∣∣∣
(
nk −

⌊nk

p

⌋)
δ(Xnk

) − (p− 1)

p
nk δ(Xnk

)
∣∣∣ =

{nk

p

}
δ(Xnk

) ≤ δ(Xnk
) ,

it follows that

(64) lim
k→∞

(
nk −

⌊nk

p

⌋)
δ(Xnk

) =
(p− 1)

p
c .

Similarly,
∣∣∣(p+ 1)

⌊nk

p

⌋
δ(Xnk+⌊nk/p⌋) −

(
nk +

⌊nk

p

⌋)
δ(Xnk+⌊nk/p⌋)

∣∣∣ ≤ p δ(Xnk+⌊nk/p⌋)

and thus

(65) lim inf
k→∞

(
nk +

⌊nk

p

⌋)
δ(Xnk+⌊nk/p⌋) = lim inf

k→∞
(p+1)

⌊nk

p

⌋
δ(Xnk+⌊nk/p⌋) .

Since lim infn→∞ n δ(Xn) ≤ lim infk→∞(nk + ⌊nk/p⌋) δ(Xnk+⌊nk/p⌋), we ob-
tain from (63)-(65) that

2

p+ 1
lim inf
n→∞

n δ(Xn) ≤ L− p− 1

p
c .

Therefore

lim inf
n→∞

n δ(Xn) ≤ g(p) :=
(
1 +

1

p

)p (L− c) + c

2
.

If c = L we get immediately that lim infn→∞ n δ(Xn) ≤ L/2. The function g

attains a minimum for p =
√
c/(L− c) and takes the value L/2+

√
c (L− c)

at this point. This proves (30). �

Proof of Proposition 2.13. Consider the sequence {an}∞n=0 ⊂ [0, 1] de-
fined as follows:

• a0 := 1, a1 := 0, a2 := 1/2 .
• Assuming that the first 2n +1 points have been selected, let a2n+i :=

(2 i− 1)/2n+1, 1 ≤ i ≤ 2n.

Obviously {an}∞n=0 is a greedy best-packing sequence on [0, 1]. However,
the sequence of configurations SN := {an}N

n=0 is not uniformly distributed
since

lim
n→∞

card(S3·2n−1 ∩ [0, 1/2])

3 · 2n−1 + 1
= lim

n→∞
2n + 1

3 · 2n−1 + 1
=

2

3
6= 1

2
.
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Now we consider the sequence {bn}∞n=1 ⊂ [0, 1]2 formed in the following
way:

1) b1 := (1, 1), b2 := (0, 0), b3 := (0, 1), b4 := (1, 0) .

2) Assume that the first (2n−1 + 1)2, n ≥ 1, points have been selected.

2.1) We define the next 22(n−1) points as the centers of the 22(n−1)

squares of area 2−2(n−1) whose vertices are the first (2n−1 + 1)2

points b1, . . . , b(2n−1+1)2 . These 22(n−1) points are chosen in an
arbitrary order.

2.2) Now we select the next 2n(2n−1 + 1) points to be the middle

points of the edges of the 22(n−1) squares mentioned above. The
first group of points that we add consists of those points with
abscissa equal to 0. The second group is formed by those with
abscissa equal to 2−n. In general, the points from the i-th group
have abscissa (i− 1)/2n. We add exactly 2n + 1 groups, and in
each one of them, the points are selected in an arbitrary order.

Figure 5 illustrates the first 221 points of the sequence {bn}∞n=1.

Figure 5. Greedy best-packing points for square: a coun-
terexample to a conjecture of Bos.

Using Voronoi cell decompositions one can show that {bn}∞n=1 is a greedy
best-packing sequence on [0, 1]2. Indeed if we consider this Voronoi decom-
position of [0, 1]2 corresponding to the points {bi}N

1 , that is, [0, 1]2 = ∪N
i=1Vi

where

Vi = {x ∈ [0, 1]2 : |x− bi| ≤ |x− bj | for all j = 1, . . . , N},
then it is easy to see that each Vi is a convex polygon with 3, 4 or 5 sides and
that bN+1 corresponds to a vertex of the Vi’s that is of maximal distance
from the points {bi}N

i=1.
To show that the sequence of configurations TN := {bi}N

i=1 is not asymp-
totically uniformly distributed, we consider the subsequence of sets consist-
ing of N(n) = 3 · 22(n−1) + 7 · 2n−2 + 1 points. We have that

lim
n→∞

card(TN(n) ∩ [0, 1/2] × [0, 1])

N(n)
= lim

n→∞
(2n−1 + 1)(2n + 1)

N(n)
=

2

3
6= 1

2
.
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�

Using a similar argument it is possible to construct a greedy best-packing
sequence on [0, 1]p ⊂ R

p that is not asymptotically uniformly distributed.
We remark that it is still plausible that for any infinite compact A ⊂ R

p

there exists at least one greedy best-packing sequence that is asymptotically
uniformly distributed on A.

6. Proofs of results from subsection 2.2.3

Proof of Theorem 2.18. Given a point x ∈ Sd, we define C(x, r) := {y ∈
Sd : |y − x| ≤ r}. If σd denotes the normalized Lebesgue measure on Sd,
then the following estimates hold (see formulas (3.7) and (3.4) in [21]):

(66)

∫

Sd\C(x,r)

1

|x− y|ddσd(y) = γd log
(1

r

)
+ O(1) , r → 0 ,

(67) σd(C(x, r)) ≤ 1

d
γd r

d , d ≥ 2 ,

where

(68) γd :=
Γ((d+ 1)/2)

Γ(1/2)Γ(d/2)
.

If d = 1, inequality (67) is not valid since σ1(C(x, r)) = 2
π arcsin( r

2), but
instead we have

(69) σ1(C(x, r)) = γ1r + O(r3) , r → 0 .

For x ∈ Sd and r > 0,

Hd,w
d (C(x, r)) =

∫

C(x,r)
w(y, y)−1dHd(y) = Hd(S

d)

∫

C(x,r)
w(y, y)−1dσd(y) .

Thus

(70) Hd,w
d (C(x, r)) ≤ MHd(S

d) γd r
d

d
, d ≥ 2 ,

(71) H1,w
1 (C(x, r)) ≤MH1(S

1)γ1 r + O(r3) , r → 0 ,

where M := sup{w(y, y)−1 : y ∈ Sd} .
Let r ∈ (0, 1) be fixed and set

Di(r) := Sd \ C(ai, rN
− 1

d ) , DN (r) :=
N⋂

i=1

Di(r) ,

where ai is the i-th element of the greedy (w, d)-energy sequence. From (70)
and (71) we obtain that

(72) Hd,w
d (DN (r)) ≥ Hd,w

d (Sd) − MHd(S
d)γd r

d

d
, d ≥ 2 ,

(73) H1,w
1 (DN (r)) ≥ H1,w

1 (S1) −MH1(S
1)γ1 r + O

( r3

N2

)
, N → ∞ .
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We may assume that the expressions in the right-hand side of the above
inequalities are positive since we can take r sufficiently close to 0 and N
sufficiently large (we will eventually let r → 0 and N → ∞).

Let ǫ > 0. Since the function w(x, y)/w(x, x) is uniformly continuous on
Sd × Sd, there exists δ > 0 such that

∣∣∣
w(x, y)

w(x, x)
− 1

∣∣∣ < ǫ , for |x− y| < δ .

Consider the function

(74) Uw
n,d(x) :=

n−1∑

i=1

w(x, ai)

|x− ai|d
, x ∈ Sd, n ≥ 2 .

From the definition of a greedy (w, d)-energy sequence we know that Uw
n,d(an) ≤

Uw
n,d(x) for all x ∈ Sd. Let 2 ≤ n ≤ N and assume that r < δ. Then

C(ai, rN
− 1

d ) ⊂ C(ai, δ) for all 1 ≤ i ≤ n− 1 and so

∫

DN (r)
Uw

n,d(x) dHd,w
d (x) ≤

n−1∑

i=1

∫

Di(r)

w(x, ai)

w(x, x)

dHd(x)

|x− ai|d

≤
n−1∑

i=1

( ∫

C(ai,δ)\C(ai,rN−
1
d )

1 + ǫ

|x− ai|d
dHd(x) +

∫

Sd\C(ai,δ)

w(x, ai)

w(x, x)

dHd(x)

|x− ai|d
)

≤ (n− 1)
(
(1 + ǫ)Hd(S

d)

∫

Sd\C(ai,rN−
1
d )

1

|x− ai|d
dσd(x) + C(w, δ)

)
,

where C(w, δ) is some constant depending on δ and w. Using (66) it follows
that
(75)∫

DN (r)
Uw

n,d(x) dHd,w
d (x) ≤ (n−1)(1+ǫ)Hd(S

d)
(γd

d
logN−γd log r+O(1)

)
.

Therefore,

Ew
d (αw

N,d) = 2
N∑

n=2

Uw
n,d(an) ≤ 2

N∑

n=2

1

Hd,w
d (DN (r))

∫

DN (r)
Uw

n,d(x) dHd,w
d (x)

≤ N(N − 1)

Hd,w
d (DN (r))

(1 + ǫ)Hd(S
d)

(γd

d
logN − γd log r + O(1)

)
.

Consequently, from (72) and (73) we get that for d ≥ 1,

lim sup
N→∞

Ew
d (αw

N,d)

N2 logN
≤ 1

Hd,w
d (Sd) − MHd(Sd)γd rd

d

(1 + ǫ)Hd(S
d)
γd

d
.

After letting r → 0 and ǫ→ 0 we obtain that

lim sup
N→∞

Ew
d (αw

N,d)

N2 logN
≤ Hd(S

d) γd

Hd,w
d (Sd) d

=
Vol(Bd)

Hd,w
d (Sd)

.



29

Finally, since Ew
d (Sd, N) ≤ Ew

d (αw
N,d) for all N , applying (31) it follows that

lim
N→∞

Ew
d (αw

N,d)

N2 logN
=

Vol(Bd)

Hd,w
d (Sd)

.

The statement about the weak-star convergence of the normalized counting
measure associated with αw

N,d is also an application of Theorem 2.16. �

Remark: It is not difficult to see that greedy ks-energy sequences on Sd ⊂
R

d+1 satisfy the following property for any s ∈ [0,∞). If {an}∞n=1 denotes
such a sequence, then for each integer m ≥ 1, the choice of a2m is unique
and a2m = −a2m−1.

It is also easily seen that on S2 the configuration formed by the first
six points of any greedy ks-energy sequence does not depend on s and is a
rotation of the configuration {(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1),
(0, 0,−1)} (cf. [24]).

Proof of Theorem 2.19. If R := diam(A) is the diameter of A, r < R
and x ∈ A, then
(76)∫

A\B(x,r)

1

|x− y|p dy ≤
∫

B(x,R)\B(x,r)

1

|x− y|p dy = Hp−1(S
p−1) log(R/r) .

Defining

Di(r) := A \B(ai, rN
− 1

p ) , DN (r) :=
N⋂

i=1

Di(r) ,

where ai is the i-th element of the greedy (w, p)-energy sequence, the proof
of Theorem 2.18 is applicable here and yields the result. For instance, using
(76) the expression similar to (75) is
(77)∫

DN (r)
Uw

n,p(x)dHp,w
p (x) ≤ (n−1)(1+ǫ)Hp−1(S

p−1)
(1

p
logN−log r+O(1)

)
.

Since Vol(Bp) = p−1Hp−1(S
p−1), (35) follows from (77) and Theorem 2.16.

The limit (36) is a consequence of (35) and Theorem 2.16. �

Proof of Theorem 2.20. We follow closely the argument on page 20 of
[4]. The following result is known as Frostman’s lemma (see [26]).

Lemma 6.1. Let δ > 0 and A be a Borel set in R
p. Then Hδ(A) > 0 if and

only if there exists µ ∈ M+(A) such that µ(A) > 0 and

(78) µ(B(x, r)) ≤ rδ, x ∈ R
p, r > 0 ,

where B(x, r) denotes the open ball centered at x and radius r. Furthermore,

one can select µ so that µ(A) ≥ cp,δ H∞
δ (A), where cp,δ is independent of A.
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Let µ be a measure from Lemma 6.1, and set r0 := (µ(A)/ 2N)1/δ. Define
the sets

Dj := B(aj , r0) , DN := A \
N−1⋃

j=1

Dj ,

where aj denotes the j-th element of the greedy (w, s)-energy sequence.
Then, using (78),

(79) µ(DN ) ≥ µ(A) −
N−1∑

j=1

µ(Dj) ≥ µ(A) − (N − 1)rδ
0 >

µ(A)

2
> 0 .

Consider the function Uw
N,s defined in (74). From (79) we obtain

Uw
N,s(aN ) ≤ 1

µ(DN )

∫

DN

Uw
N,s(x)dµ(x) ≤ 2

µ(A)

N−1∑

j=1

∫

DN

w(x, aj)

|x− aj |s
dµ(x)

≤ 2‖w‖
µ(A)

N−1∑

j=1

∫

A\Dj

1

|x− aj |s
dµ(x) ,

where ‖w‖ := sup{w(x, y) : x, y ∈ A}. Set R := diam(A). Then µ(A) ≤ Rδ

by (78). If y ∈ A and r ∈ (0, R], then

∫

A\B(y,r)

1

|x− y|s dµ(x) ≤
∫ r−s

0
µ({x ∈ A :

1

|x− y|s > t})dt

≤ µ(A)

Rs
+

∫ r−s

R−s

µ(B(y, t−1/s))dt ≤ Rδ−s +

∫ r−s

R−s

t−δ/sdt

≤





Rδ−s + s
s−δ r

δ−s, if s > δ ,

1 + δ log
(

R
r

)
, if s = δ .

Therefore, for s > δ we obtain

(80) Uw
N,s(aN ) ≤ 2‖w‖

µ(A)
(N − 1)

(
Rδ−s +

s

s− δ
r
1−s/δ
0

)
≤ C1‖w‖

( N

µ(A)

)s/δ
,

where C1 > 0 is a constant independent of N and w. If s = δ, then

(81) Uw
N,δ(aN ) ≤ 2‖w‖

µ(A)
(N − 1)

(
1 + δ log

(R
r0

))
≤ C2‖w‖

(N logN

µ(A)

)
,

where C2 > 0 is also independent of N and w. The sequence {Uw
i,s(ai)}N is

non-decreasing since

Uw
i+1,s(ai+1) ≥ Uw

i,s(ai) +
w(ai+1, ai)

|ai+1 − ai|s
, i ≥ 1 .
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Therefore, applying µ(A) ≥ cp,δ H∞
δ (A) and (80)-(81), Theorem 2.20 readily

follows from

Ew
s (αw

N,s) = 2
N∑

i=2

Uw
i,s(ai) .

�

Proof of Corollary 2.21. Since Ew
s (αw

N,s) ≥ Ew
s (A,N) for everyN and s ≥

d, the lower bounds in (37) and (38) follow from (33) and (31), respectively.
The upper bounds follow from Theorem 2.20. �

Proof of Corollary 2.22. Assume the existence of a point a ∈ A and ǫ > 0
such that {an}∞n=1 ∩B(a, ǫ) = ∅. Let αw

N,s = {a1, . . . , aN}. Then

Ew
s (αw

N,s) = 2
∑

1≤i<j≤N

w(ai, aj)

|ai − aj |s
≤ 2

N∑

j=2

j−1∑

i=1

w(ai, x)

|ai − x|s ,

where the last inequality is valid for any x ∈ A. In particular, taking x = a
we get

Ew
s (αw

N,s) ≤
‖w‖
ǫs

N(N − 1) ,

where ‖w‖ = sup{w(x, y) : x, y ∈ A}. This inequality contradicts the first
inequalities in (37) and (38). �

Proof of Proposition 2.23. Assume that there exists a subinterval I =
[c, d] ⊂ [a, b] for which (39) is not satisfied. Let Nl be a subsequence such
that

lim
l→∞

(card{1 ≤ n ≤ Nl : an ∈ I})1+ 1

s

Nl
= 0 .

Select ǫ > 0 sufficiently small so that J = [c+ ǫ/2, d− ǫ/2] ⊂ I is not empty.
If we define νl := card{1 ≤ n ≤ Nl : an ∈ J}, then there exists a subinterval
of J of length at least (d − c − ǫ)/(νl + 1) not containing any point from
{an ∈ J : 1 ≤ n ≤ Nl}. Let xl be the center of such a subinterval. We have,
for αw

Nl,s
= {a1, . . . , aNl

},

(82) Ew
s (αw

Nl,s
) = 2

Nl∑

n=2

Uw
n,s(an) ≤ 2

Nl∑

n=2

Uw
n,s(xl) = 2

Nl∑

n=2

n−1∑

i=1

w(xl, ai)

|xl − ai|s

≤ 2‖w‖
[ Nl − 1

|xl − a1|s
+

Nl − 2

|xl − a2|s
+ · · · + 1

|xl − aNl−1|s
]

= 2‖w‖(SI,l + TI,l) ,

where ‖w‖ = sup{w(x, y) : x, y ∈ [a, b]} and

SI,l :=
∑

ai∈I, 1≤i≤Nl−1

Nl − i

|xl − ai|s
, TI,l :=

∑

ai /∈I, 1≤i≤Nl−1

Nl − i

|xl − ai|s
.

For each ai /∈ I, |ai − xl| ≥ ǫ/2; hence

(83) 2TI,l ≤ (2/ǫ)sN2
l .
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If ai ∈ I, 1 ≤ i ≤ Nl − 1, then |ai − xl| ≥ (d− c− ǫ)/2(νl + 1). Therefore, if
we define τl := card{1 ≤ i ≤ Nl − 1 : ai ∈ I}, it follows that

(84) 2SI,l ≤
2s+1

(d− c− ǫ)s
(νl + 1)s τlNl .

By hypothesis, τ1+s
l /N s

l → 0 as l → ∞. We deduce from (82)-(84) that

lim
l→∞

Ew
s (αw

Nl,s
)

N1+s
l

= 0 ,

which contradicts the fact that

lim inf
N→∞

Ew
s (αw

N,s)

N1+s
≥ lim

N→∞
Ew

s ([a, b], N)

N1+s
=

2ζ(s)

Hs,w
1 ([a, b])s

> 0 .

�
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