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Abstract. We derive the complete asymptotic expansion in terms of
powers of N for the Riesz s-energy of N equally spaced points on the unit
circle as N →∞. For s ≥ −2, such points form optimal energy N -point
configurations with respect to the Riesz potential 1/rs, s 6= 0, where r
is the Euclidean distance between points. By analytic continuation we
deduce the expansion for all complex values of s. The Riemann zeta
function plays an essential role in this asymptotic expansion.

1. Introduction and statement of results

The Riesz s-energy (s 6= 0) of N points z1, . . . , zN of the complex plane
C is defined by

(1.1) Es(z1, . . . , zN ):=
∑
j 6=k

|zj − zk|−s :=
N∑

j=1

N∑
k=1
k 6=j

|zj − zk|−s .

The limiting case as s → 0 (of the derivative of Es) yields the logarithmic
energy:

(1.2) E0(z1, . . . , zN ):=
∑
j 6=k

log
1

|zj − zk|
.

For an infinite compact set A ⊂ C and real s, we define the optimal
N -point s-energy of A by

(1.3) Es(A,N):=

{
inf {Es(z1, . . . , zN ) | z1, . . . , zN ∈ A} if s ≥ 0,
sup {Es(z1, . . . , zN ) | z1, . . . , zN ∈ A} if s < 0.
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It can be shown using a convexity (concavity) argument that for s ≥ −1
and each N ≥ 2, the N -th roots of unity

zk,N := exp{2πi(k − 1)/N}, k = 1, . . . , N,

form optimal N -point s-energy configurations for the unit circle T := {z ∈
C | |z| = 1} (cf. [1], [7], and [8]). The optimality of the N -th roots of unity
for −2 < s < −1 (as well as all s ≥ −1) is a special case of a much more
general result [5, Theorem 1.2] of Cohn and Kumar. That is,

(1.4) Es(T, N) = Es(z1,N , . . . , zN,N ), s ≥ −2, N ≥ 2.

It follows from results of Björck [3] that for s < −2 and an even number
N = 2K of points, optimal energy configurations on T consist of K points
at each end of a diameter of T. The same configuration is optimal for N odd
in an asymptotic sense. Thus, N equally spaced points on T with N ≥ 3
are no longer optimal if s < −2. For s = −2, the N -th roots of unity are
optimal, but so is any configuration of N points on the circle whose centroid
is the origin ([3, Theorem 5]).

Of particular interest in the study of the discrete energy problem on a
compact set A in Rp is the asymptotic expansion of the optimal energy
Es(A,N) as N → ∞. If A has Hausdorff dimension d and 0 < s < d,
classical potential theory (cf. Landkof [13]) gives

(1.5) lim
N→∞

Es(A,N)
N2

= Is[µA,s],

where Is[µA,s] is the energy of the equilibrium measure µA,s on A. More pre-
cisely, µA,s is the unique probability measure supported on A that minimizes
the s-energy

(1.6) Is[µ]:=
∫ ∫

|z − w|−s dµ(z)dµ(w)

over the class M(A) of all Borel probability measures µ supported on A.
That is,

(1.7) Vs(A):= inf{Is[µ] | µ ∈M(A)} = Is[µA,s].

An analogous result holds for s = 0 with the logarithmic kernel. Equa-
tion (1.5) is also valid for the case −2 < s < 0, where now µA,s maximizes
Is[µ] for µ ∈M(A) (cf. [3], [6] and [13]).

Here we focus on the optimal energy problem for the circle A = T in
which case the s-equilibrium measure µT,s is easily seen to be normalized
arclength measure. For −2 < s < 1, s 6= 0, we have (cf. [16, 2.5.3.1])

(1.8) Vs:=Vs(T) =
1
2π

∫ 2π

0
|1− eiφ|−sdφ = 2−s Γ((1− s)/2)√

π Γ(1− s/2)
;

hereafter, we set V0 = 1 so that Vs is continuous at 0. Our goal is to derive a
complete asymptotic expansion of Es(T, N) as N →∞. For the special case
−2 < s < 1, s 6= 0, the above discussion shows that VsN

2 is the dominant
term. The general results of [14] (see the discussion at the end of this section)
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imply that, for A = T and s = 1, the dominant term is (1/π)N2 logN , while
for s > 1, the dominant term in the expansion is [2ζ(s)/(2π)s]N1+s, where
ζ(s) denotes the classical Riemann zeta function.

We will in fact provide in Theorems 1.1 and 1.3 a complete asymptotic
expansion of

(1.9) Ls(N) := Es(z1,N , . . . , zN,N ), N ≥ 2, s ∈ C.

Three noteworthy features of this expansion are: (i) the fact that it is valid
for complex s in (1.1), (ii) the essential role played by the Riemann zeta
function, and (iii) the unifying feature of these formulas that is provided
by use of analytic continuation in the complex variable s. From an energy
standpoint, the formulas provide a natural bridge between the potential
theoretic case (−2 < s < 1) and the hypersingular case (s ≥ 1).

As we noted above, Ls(N) = Es(T, N) for s ≥ −2. It is easy to see that

(1.10) Ls(N) = 2−sN
N−1∑
k=1

(
sin

πk

N

)−s

, N ≥ 2, s ∈ C, s 6= 0,

where a−s := e−s ln a for a > 0 and s ∈ C.
Before we present the results for s 6= 0, we give a simple formula for the

logarithmic energy L0(N) which can be obtained in a remarkably easy way
by taking the logarithm of both sides of the identity (see, for example, [16,
6.1.1(2)], [9, (91.1.3)])

(1.11)
N−1∏
k=1

sin
πk

N
= 21−NN, N ≥ 2.

Indeed, by the symmetry of the points zk,N one gets

L0(N) = N

N∑
k=2

log
1

|zk,N − z1,N |
= N log

1

2N−1
∏N−1

k=1 sin πk
N

= −N logN.

Alternatively, one can deduce this formula from the relation between the
discriminant of the polynomial pN (z) := zN − 1 and the resultant of pN (z)
and p′N (z).

The Euler-MacLaurin summation formula is an essential tool in obtaining
our main results which are stated in terms of the classical Riemann zeta
function

(1.12) ζ(s):=
∞∑

n=1

1
ns
, Re s > 1.
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It is well-known that ζ(s) can be analytically continued to the half-plane
Re s+ 2p > 0 for arbitrary p (cf., for example, [12, Formula (1.8)] 1) using

ζ(s) =
1

s− 1
+

1
2

+
p∑

k=1

B2k

(2k)!
(s)2k−1

−
(s)2p+1

(2p+ 1)!

∫ ∞

1
C2p+1(x)x−s−2p−1dx.

(1.13)

The Pochhammer symbol (·)n, the Bernoulli numbers Bn, and the periodic
(mod 1) Bernoulli functions Cn(x) are defined in Section 2.

The coefficients αn(s), n ≥ 0, defined by the generating function relation

(1.14)
(

sinπz
πz

)−s

=
∞∑

n=0

αn(s)z2n, |z| < 1, s ∈ C,

also play a central role in our results. In fact, they may be expressed in
terms of generalized Bernoulli polynomials (also called Nørlund polynomials)
B

(σ)
k (x), which are defined by the generating function relation (cf. [17])

(1.15)
(

z

ez − 1

)σ

exz =
∞∑

k=0

B
(σ)
k (x)
k!

zk, |z| < 2π,

by means of

(1.16) αn(s) =
(−1)nB

(s)
2n (s/2)

(2n)!
(2π)2n , n = 0, 1, 2, . . . .

We now present our main results concerning the asymptotic expansion
(as N →∞) of Ls(N). For this purpose we make use of the fact that Vs in
(1.8) has an analytic continuation to the complex plane, more precisely:

(1.17) Vs:=
2−s Γ((1− s)/2)√
π Γ(1− s/2)

, s ∈ C, s 6= 1, 3, 5, . . . .

Theorem 1.1 (general case). Let s ∈ C with s not zero or an odd positive
integer and let p be any non-negative integer. Then

Ls(N) = VsN
2 +

2
(2π)s

p∑
n=0

αn(s) ζ(s− 2n)N1+s−2n

+Os,p(N−1+Re s−2p), N →∞.

(1.18)

Remark 1.2. If s is a non-zero even integer, then ζ(s−2n) can be zero, since
the Riemann zeta function ζ(s) has its trivial zeros at s = −2,−4,−6, . . . .
Consequently, the asymptotic expansion of Ls(N) terminates after finitely
many terms and one gets exact formulas. That is, the expansion (1.18)
simplifies to

(1.19) Ls(N) = VsN
2, s = −2,−4,−6, . . . ,

1Note, that the factor 1/(2p + 1)! is missing in [12, Formula (1.8)].
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and for s = 2M , M = 1, 2, 3, 4, . . . , the expansion (1.18) becomes

(1.20) Ls(N) =
2

(2π)s

M∑
n=0

αn(s) ζ(s− 2n)N1+s−2n.

(The constant Vs vanishes for s = 2, 4, 6, 8, . . . ; see (1.17).) We further
remark that when s = 0, the right-hand side of (1.18) reduces to N(N − 1)
which is precisely the limit as s→ 0 of Ls(N) (see (1.10)).

Theorem 1.3 (exceptional case). Let s = 2M + 1, M = 0, 1, 2, 3, . . . , and
let p be any integer with p > M . Then

Ls(N) =
1
π

(1/2)M

22MM !
N2 logN +

(
GM +

1
π

(1/2)M

22MM !
γ

)
N2

+
2

(2π)s

p∑
n=0,
n6=M

αn(s) ζ(s− 2n)N1+s−2n

+Os,p(N−1+s−2p), N →∞,

(1.21)

where the constant GM is given by

GM =
1
π

(1/2)M

22MM !

[
α′M (2M + 1)
αM (2M + 1)

+
1
2
ψ(M + 1)− 1

2
ψ(M + 1/2)− log π

]
,

with the derivative with respect to s of αM (s) at s = 2M + 1 given by

α′M (2M + 1) =
M−1∑
m=0

αm(2M + 1)
ζ(2(M −m))
M −m

,

and γ = limM→∞(1 + 1
2 + 1

3 + 1
4 + · · · + 1

M − logM) denotes the Euler-
Mascheroni constant.

Remark 1.4. A delicate question is that of the sign of the coefficients in the
asymptotic expansion of Ls(N) as N →∞. We discuss the coefficient

(1.22) cn(s):=
2

(2π)s
αn(s) ζ(s− 2n),

associated with the power N1+s−2n in (1.18). For s > 0 the sign of cn(s) is
determined by ζ(s− 2n), since αn(s) > 0 in this case (see Proposition A.2).
Hence

sgn cn(s) = sgn ζ(s− 2n), s > 0.(1.23)

(Recall, the Riemann zeta function ζ(s′) is positive for s′ > 1, negative for
−2 < s′ < 1, and changes its sign when s′ moves over one of the trivial zeros
of ζ(s′) at s′ = −2,−4,−6, . . . .)

Remark 1.5. Of further interest is the asymptotic behavior of the coefficient
cn(s) in (1.22) as n→∞. We already know (cf. Remark 1.4) that cn(2M) =
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0 for M an integer and n > M . For s > 0 and s 6= 2, 4, . . . , we have (see
Appendix B)

(1.24) lim sup
n→∞

|cn(s)N−2n| = ∞ for N ≥ 2 fixed.

This means that the asymptotic expansion of Ls(N) as N → ∞ forms a
divergent series if s > 0 and s 6= 2, 4, . . . .

We conclude this section by mentioning some related results for optimal
Riesz s-energy on one-dimensional rectifiable curves A in Rp. For such
curves, Mart́ınez-Finkelshtein et al. [14] obtained the dominant term in the
hypersingular case s ≥ 1. Namely, they showed

(1.25) lim
N→∞

E1(A,N)
N2 logN

=
2
|A|

, lim
N→∞

Es(A,N)
N1+s

=
2 ζ(s)
|A|s

, s > 1,

where | · | denotes here the arc length. (For results concerning more general
sets A ⊂ Rp, we refer to [10, 11]). Borodachov [4] derived the next order
term for sufficiently smooth closed curves for s ≥ 1. In his formula, the
curvature κ(x) of the curve A at x ∈ A plays a crucial role. For example,
for a simple closed C3 curve (in Rp) and s > 3 there holds [4, Thm. V.1.1]

(1.26) lim
N→∞

Es(A,N)− (2 ζ(s)/|A|s)N1+s

N s−1
=
s ζ(s− 2)
12|A|s−2

‖κ‖2
L2(A,λA) .

Here λA denotes the normalized arclength measure supported on A. Even
less is known about the next order term for 0 < s < 1 (the dominant term
is given by (1.5)). The case of the unit circle analyzed in this paper is the
first example where all terms in the asymptotic expansion of the optimal
energy are explicitly given. This is possible because one knows precisely the
positions of the optimal points and can use their symmetry.

The outline of the paper is as follows. In Section 2, we present notation
and formulas that are central for the proofs of our main theorems. In Section
3, we use the Euler-Maclaurin formula to obtain an expansion for Ls(N) in
terms of the incomplete zeta function. In Section 4, we provide proofs of
our main theorems. In Appendix A, we derive an alternate form for the
constant GM appearing in Theorem 1.3 while in Appendix B we provide a
proof of the assertion (1.24) in Remark 1.5.

2. Preliminaries

2.1. The function sinc−s z and another expression for Vs. The nor-
malized ‘sinc’ function defined by

sinc z:=

{
(sinπz)/(πz) if z 6= 0,
1 if z = 0,

is an entire function that is non-zero for |z| < 1 and hence, has a logarithm
g(z) = log sinc z that is analytic for |z| < 1 (we choose the branch such
that log sinc 0 = 0). The function sinc−s z:= exp(−s log sinc z) is even and
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analytic on the unit disc |z| < 1 and thus has a power series representation
of the form

(2.1) sinc−s z =
∞∑

n=0

αn(s)z2n, |z| < 1, s ∈ C.

Since

sinc−s z =
(

2πiz
exp(iπz)− exp(−iπz)

)s

=
(

2πiz
exp(i2πz)− 1

)s

exp(iπsz),

it follows from (1.15) that the coefficients αn(s) can be expressed in terms
of generalized Bernoulli polynomials (cf. relation (1.16)).

For 0 < y < 1, we have

(2.2) (sinπy)−s = π−sy−s sinc−s y = π−s
∞∑

n=0

αn(s)y2n−s,

where the convergence is uniform for y in any compact subset of (0, 1) (and
s fixed). Hence we may differentiate term-wise to obtain

(2.3)
dm

dym
(sinπxy)−s =

(−1)m

πs

∞∑
n=0

αn(s)(s− 2n)mx
2n−sy2n−s−m,

where (a)m denotes the Pochhammer symbol (a)m:=a(a+ 1) · · · (a+m− 1)
and (a)0:=1. Similarly, we construct an antiderivative As(y) for (sinπy)−s

by integrating term-wise to get

As(y):=
1
πs

∞∑
n=0

αn(s)
y2n+1−s

2n+ 1− s
, s 6= 1, 3, 5, . . . ;(2.4)

in the exceptional cases s = 2M + 1, M = 0, 1, 2, . . . , we have

As(y):=
αM (s)
πs

log y +
1
πs

∞∑
n=0,
n6=M

αn(s)
y2n+1−s

2n+ 1− s
, s = 2M + 1.(2.5)

By Proposition A.2 in the Appendix, αn(s) is a polynomial in s with
non-negative coefficients. Therefore, |αn(s)| ≤ αn(|s|) ≤ αn(R) for |s| ≤
R and so, using the convergence of (2.1) at z = y, it follows that the
expression for As(y) in (2.4) converges uniformly for s in any compact subset
of C \ {1, 3, 5, . . .} for fixed 0 < y < 1. Hence, As(y) is an analytic function
of s for s 6= 1, 3, 5, . . . for fixed 0 < y < 1.

When Re s < 1, the function (sinπy)−s is integrable on [0, 1] and, using
the symmetry of sinπy about y = 1/2, we have (recall (1.8))

Vs = 21−s

∫ 1/2

0
(sinπy)−s dy = 21−sAs(1/2) =

1
πs

∞∑
n=0

αn(s)(1/2)2n

2n− s+ 1
.
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Since Vs agrees with 21−sAs(1/2) for Re s < 1 and both Vs and 21−sAs(1/2)
are analytic functions of s for s 6= 1, 3, 5, . . ., they must agree for all such s
and so we have

(2.6) Vs = 21−sAs(1/2) =
1
πs

∞∑
n=0

αn(s)(1/2)2n

2n− s+ 1
, s 6= 1, 3, 5, . . . .

In the exceptional cases s = 2M +1, M = 0, 1, 2, . . ., we define the constant
GM by

GM = 21−sAs(1/2) =
αM (s)
2s−1πs

log
1
2

+
1
πs

∞∑
n=0,
n6=M

αn(s)
(1/2)2n

2(n−M)
.(2.7)

2.2. The Euler-MacLaurin formula and incomplete Riemann zeta
function. The numbers Bk in the summation formula

(2.8)
1

p+ 1
np+1 +

1
2
np +

p∑
k=2

(
p

k − 1

)
Bk

k
np−k = 1p + 2p + · · ·+ np

together with B0:=1, B1:=−1/2 are called Bernoulli numbers. In particular,
one has B2k+1 = 0 and (−1)k−1B2k > 0 for k = 1, 2, 3, . . . . The Bernoulli
polynomials are defined by

(2.9) Bn(x):=
n∑

k=0

(
n

k

)
Bn−kx

k.

The first two Bernoulli polynomials are then B0(x) = 1, B1(x) = x − 1/2.
These polynomials satisfy the generating function relation

(2.10)
text

et − 1
=

∞∑
n=0

Bn(x)
n!

tn

and satisfy on the interval [0, 1] the following inequalities for k ≥ 1:

(2.11) |B2k(x)| ≤ |B2k| and |B2k+1(x)| ≤ (2k + 1) |B2k| .
Replacing x by 1−x and t by −t leaves the left-hand side of (2.10) invariant
and so we have

(2.12) Bn(1− x) = (−1)nBn(x), x ∈ R, n ≥ 0.

We recall the Euler-MacLaurin summation formula (cf., for example, [2]
and [18]) which states that for a sufficiently smooth function f (for example,
if f (2p+1) is continuous on [1, n])

(2.13)
n∑

k=1

f(k) =
∫ n

1
f(x)dx+

1
2
{f(1) + f(n)}+ Sn,

where

(2.14) Sn:=
B2

2!
f ′ +

B4

4!
f (3) + · · ·+ B2p

(2p)!
f (2p−1)

∣∣∣n
1

+Rp, p = 2, 3, . . . ,
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and the remainder term is given by

(2.15) Rp:=
1

(2p+ 1)!

∫ n

1
f (2p+1)(x)C2p+1(x)dx,

where the Bernoulli periodic function Cn(x):=Bn(x−[x]) denotes the Bernoulli
polynomial evaluated at the fractional part of x. Property (2.12) implies

(2.16) Cn(N − x) = (−1)nCn(x), x ∈ R, N ∈ N.

Definition 2.1. Let p be a non-negative integer, y ≥ 1, and s a complex
number with s 6= 1. Then we define

ζy,p(s):=
1

s− 1
+

1
2

+
p∑

k=1

B2k

(2k)!
(s)2k−1

−
(s)2p+1

(2p+ 1)!

∫ y

1
C2p+1(x)x−s−2p−1dx.

(2.17)

and we also define the quantity

(2.18) Ψy,p:= lim
s→1

[
ζy,p(s)−

1
s− 1

]
=

1
2
+

p∑
k=1

B2k

2k
−
∫ y

1
C2p+1(x)x−2p−2dx.

For Re s+ 2p > 0, using (2.17), (1.13), and (2.11) we get

| ζy,p(s)− ζ(s)| =
∣∣∣∣ (s)2p+1

(2p+ 1)!

∫ ∞

y
C2p+1(x)x−s−2p−1dx

∣∣∣∣
≤

|(s)2p+1B2p|
(2p)!(Re s+ 2p)

y−Re s−2p = Os,p(y−Re s−2p).

(2.19)

In particular,

(2.20) lim
y→∞

ζy,p(s) = ζ(s), Re s+ 2p > 0,

and so ζy,p(s) can be considered to be an incomplete Riemann zeta function.

Remark 2.2. The quantity ΨN/2,p plays an important role in the expansion of
Ls(N) for the exceptional cases s = 1, 3, 5, . . .. We note that Ψy,p approaches
the Euler-Mascheroni constant γ as y → ∞, since the Euler-MacLaurin
summation formula applied to the function f(x) = 1/x for any integer p > 1
gives

γ:= lim
n→∞

(
n∑

k=1

1
k
− log n

)
=

1
2
+

p∑
k=1

B2k

2k
−
∫ ∞

1
C2p+1(x)x−2p−2dx = lim

y→∞
Ψy,p.

3. A series expansion of Ls(N)

We first establish a series expansion of Ls(N). Theorem 1.1 will then
follow from this expansion.

Lemma 3.1. Let p be a non-negative integer and let s be a complex number.
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(a) If s 6= 0, 1, 3, 5, . . . , then

(3.1) Ls(N) = VsN
2 +

2
(2π)s

∞∑
n=0

αn(s) ζN/2,p(s− 2n)N1+s−2n,

where Vs is given in (1.17) and the numbers αn(s), n ≥ 0, are defined
in (2.1).

(b) If s = 2M + 1, M = 0, 1, 2, 3, . . . , then

Ls(N) = 21−sαM (s)
πs

N2 logN +
(
GM + 21−sαM (s)

πs
ΨN/2,p

)
N2

+
2

(2π)s

∞∑
n=0,
n6=M

αn(s) ζN/2,p(s− 2n)N1+s−2n,(3.2)

where GM is defined in (2.7) and ΨN/2,p is defined in (2.18).

Proof. For N = 1, 2, 3, . . ., let fN (x):=[sin(πx/N)]−s for 0 < x < N . Then
from (1.10) we have

(3.3) Ls(N) = 2−sN

N−1∑
k=1

fN (k).

Since fN (N − x) = fN (x), we have f (m)
N (N − x) = (−1)mf

(m)
N (x). Apply-

ing the Euler-MacLaurin summation formula (2.13) and using the fact that
C2p+1(x)f

(2p+1)
N (x) is even about x = N/2 we obtain

N−1∑
k=1

fN (k) = 2
∫ N/2

1
fN (x)dx+ fN (1)− 2

p∑
k=1

B2k

(2k)!
f

(2k−1)
N (1)

+
2

(2p+ 1)!

∫ N/2

1
C2p+1(x) f

(2p+1)
N (x)dx.

(3.4)

We next find series expansions for each of the terms on the right-hand side
of (3.4). Recalling that As(y) is an antiderivative of (sinπy)−s for 0 < y < 1
we have

JN := 2
∫ N/2

1
fN (x)dx = 2N

∫ 1/2

1/N

dy

(sinπy)s = 2N [As(1/2)−As(1/N)] .

It then follows from (2.4) and (2.6) that, for s 6= 0, 1, 3, 5, . . . ,

JN = 2sNVs +
2
πs

∞∑
n=0

αn(s)
N s−2n

s− 2n− 1
,(3.5)
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while for s = 2M + 1, M = 0, 1, 2, . . ., we get from (2.5) and (2.7) that

JN = 2sNGM + 2
αM (s)
πs

N logN +
2
πs

∞∑
n=0,
n6=M

αn(s)
N s−2n

s− 2n− 1
.(3.6)

Furthermore, from (2.2), we have

(3.7) fN (1) =
1
2

2
πs

∞∑
n=0

αn(s)N s−2n

and from (2.3) we get

−2
p∑

k=1

B2k

(2k)!
f

(2k−1)
N (1) =

2
πs

∞∑
n=0

αn(s)N s−2n
p∑

k=1

B2k

(2k)!
(s− 2n)2k−1.(3.8)

Moreover, we have

2
(2p+ 1)!

∫ N/2

1
C2p+1(x) f

(2p+1)
N (x)dx = − 2

πs

∞∑
n=0

αn(s)N s−2n(3.9)

×
(s− 2n)2p+1

(2p+ 1)!

∫ N/2

1
C2p+1(x)x2n−s−2p−1dx.

Substituting the expressions (3.5), (3.7), (3.8), and (3.9) into (3.3) and
gathering common terms we have in the case s 6= 1, 3, 5, . . . ,

Ls(N) = N2Vs +
2

(2π)s

∞∑
n=0

αn(s)N1+s−2n

×

{
1

s− 2n− 1
+

1
2

+
p∑

k=1

B2k

(2k)!
(s− 2n)2k−1

−
(s− 2n)(2p+1)

(2p+ 1)!

∫ N/2

1
C2p+1(x)x−(s−2n)−2p−1dx

}
,

which, using Definition 2.1, establishes the general case (a).
Now suppose s = 2M + 1 for some M = 0, 1, 2, 3, . . .. Substituting the

expressions from (3.6) to (3.9) into (3.3), separating out the n = M terms
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in the expressions from (3.7) to (3.9) and using (s− 2M)k = k!, we obtain

Ls(N) = N2GM +
2αM (s)
(2π)s

N2 logN +
2

(2π)s

∞∑
n=0,
n6=M

αn(s)N1+s−2n

×

{
1

s− 2n− 1
+

1
2

+
p∑

k=1

B2k

(2k)!
(s− 2n)2k−1

−
(s− 2n)2p+1

(2p+ 1)!

∫ N/2

1
C2p+1(x)x−(s−2n)−2p−1dx

}

+
2αM (s)
(2π)s

N2

[
1
2

+
p∑

k=1

B2k

2k
−
∫ N/2

1
C2p+1(x)x−2p−2dx

]
,

which, using Definition 2.1, completes the proof of case (b). �

4. Proofs of Theorems 1.1 and 1.3

We first prove Theorem 1.1 using Lemma 3.1.

Proof of Theorem 1.1. Let p be an integer ≥ 0 and let q be the smallest
positive integer such that Re s+ 2q > 2. Then by Lemma 3.1, we can write

Ls(N) = VsN
2 +

2
(2π)s

p∑
n=0

αn(s) ζ(s− 2n)N1+s−2n

+
2

(2π)s

p∑
n=0

αn(s)
[
ζN/2,p+q(s− 2n)− ζ(s− 2n)

]
N1+s−2n(4.1)

+
2

(2π)s

∞∑
n=p+1

αn(s) ζN/2,p+q(s− 2n)N1+s−2n.(4.2)

Using (2.19), it follows that the expression (4.1) is Os,p(N−1+Re s−2p).
To estimate the last term (4.2), we write it as

(4.3)
2N−1+s−2p

(2π)s

∞∑
n=p+1

βn(s, p,N).

where

β(s, p,N) := αn(s) ζN/2,p+q(s− 2n)(N/2)−2(n−p−1)(1/2)2(n−p−1).
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Observe that (s− 2n)2p+2q+1 is a polynomial in n of degree 2p+ 2q+ 1 and
that there is a constant K1 depending only on s and p such that2

(4.4) (N/2)−2(n−p−1)

∣∣∣∣∣
∫ N/2

1
C2p+2q+1(x)x−s+2n−2p−2q−1dx

∣∣∣∣∣ ≤ K1

for all N ≥ 2 and n ≥ p+ 1. Then, it follows that

ζN/2,p+q(s− 2n)(N/2)−2(n−p−1) = Os,p(n2p+2q+1)

for n ≥ p + 1 and N ≥ 2. Finally, since lim supn→∞ |αn(s)|1/n ≤ 1 (cf.
(2.1)), we deduce that there is some constant K2 depending only on s and
p such that

|β(s, p,N)| ≤ K2(1/3)n

for all N ≥ 2 and n ≥ p+1. Consequently, (4.2) is of order O(N−1+Re s−2p)
which combined with the estimate for (4.1) completes the proof of Theorem
1.1. �

Similarly we can prove Theorem 1.3 dealing with the exceptional cases
s = 1, 3, 5, . . . . Note that an explicit expression of the constant GM is given
in (A.9) of the Appendix.

Appendix A. The constant GM

The following alternative form for Vs

(A.1) Vs =
2−s Γ(s/2) tan(πs/2)√

π Γ((1 + s)/2)
, s 6= 1, 3, 5, . . . ,

can be obtained from (1.17) using the identity Γ(z)Γ(1 − z) = π/ sinπz.
Equating the two expressions (A.1) and (2.6) and separating out the n = M
term (M = 0, 1, 2, 3, . . .), we obtain for s 6= 1, 3, 5, . . . the identity

(A.2)
1
πs

∞∑
n=0,
n6=M

αn(s)(1/2)2n

2n− s+ 1
=

2−s Γ(s/2) tan(πs/2)√
π Γ((1 + s)/2)

− αM (s)
πs

(1/2)2M

2M − s+ 1
.

The left-hand side in (A.2), and therefore also its right-hand side, is analytic
at s = 2M +1 (cf. the discussion in Section 2.1 of the antiderivative As(y)).
Set s(ε) = 2M + 1 + 2ε, |ε| < 1, where M is a fixed non-negative integer,
and define the auxiliary function

(A.3) HM (ε):=
1

πs(ε)

∞∑
n=0,
n6=M

αn(s(ε))(1/2)2n

2(n−M − ε)
.

2In the case that s is an even integer, it is possible that the integral in (4.4) introduces
a term of order log N ; however, in such a case, n− p− 1 is necessarily positive and hence
its product with log N is bounded by a constant.
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By continuity of HM (ε) at ε = 0 and (2.7), we obtain

(A.4) lim
ε→0

HM (ε) = GM +
αM (2M + 1)
22Mπ2M+1

log 2.

Since tan(πs/2) = tanπ (M + 1/2 + ε) = tanπ (1/2 + ε) = − cotπε, it fol-
lows
(A.5)

HM (ε) =
2−2M

2επs(ε)

{
αM (s(ε))− π2M Γ(M + 1/2 + ε)√

π Γ(M + 1 + ε)

(π
2

)2ε
(πε cotπε)

}
.

From the existence of the limit (A.4) and relation (A.5) we immediately get

(A.6) αM (2M + 1) = π2M (1/2)M

M !
.

On the other hand, from (A.5), (A.6), and the fact that αn(s(ε)) are poly-
nomials in ε (see Proposition A.2), we obtain

lim
ε→0

HM (ε) =
2−2M

π2M+1
lim
ε→0

αM (2M + 1 + 2ε)− αM (2M + 1)
2ε

+
2−2M

2π
(1/2)M

M !
lim
ε→0

1
ε

[
1− Γ(M + 1/2 + ε) Γ(M + 1)

Γ(M + 1/2) Γ(M + 1 + ε)

(π
2

)2ε
(πε cotπε)

]
The square bracketed expression has the following expansion in ε,(

2 log
2
π
− ψ(M + 1/2) + ψ(M + 1)

)
ε+O(ε2), as ε→ 0.

All together this gives

lim
ε→0

HM (ε) =
2−2M

π

α′M (2M + 1)
π2M

− 2−2M

π

(1/2)M

M !

[
1
2
ψ(M + 1/2)− 1

2
ψ(M + 1) + log

π

2

]
.

(A.7)

Combining (A.4) and (A.7) and using (A.6), we have

GM =
2−2M

π

α′M (2M + 1)
π2M

− 2−2M

π

(1/2)M

M !

[
1
2
ψ(M + 1/2)− 1

2
ψ(M + 1) + log π

](A.8)

or equivalently
(A.9)

GM =
2−2M

π

(1/2)M

M !

[
α′M (2M + 1)
αM (2M + 1)

+
1
2
ψ(M + 1)− 1

2
ψ(M + 1/2)− log π

]
.

The first derivative of αM (s) with respect to s can be expressed in terms of
coefficients αn(s) with n < M .
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Lemma A.1. The coefficients αn(s) in (1.14) satisfy

(A.10) α′0(s) = 0, α′n(s) =
n−1∑
m=0

αm(s)
ζ(2(n−m))
n−m

, n ≥ 1,

for all s ∈ C.

Proof. Differentiating both sides of (1.14) we have

(A.11) (− log sinc z) sinc−s z =
∞∑

n=0

α′n(s)z2n, |z| < 1, s ∈ C.

Taking the logarithm of both sides of the infinite product

(A.12)
sinπz
πz

=
∞∏

k=1

(
1− z2

k2

)
, z ∈ C,

and substituting the Maclaurin series of log(1 − z), we obtain the series
expansion

(A.13) − log sinc z =
∞∑

m=1

ζ(2m)
m

z2m, |z| < 1.

Substituting the expansions of sinc−s z and (A.13) into (A.11) and gathering
common terms, a comparison of the coefficients of z2n on both sides in (A.11)
gives (A.10). �

Proposition A.2. For each n = 0, 1, 2, . . ., the coefficient αn(s) is a poly-
nomial of degree n in s with non-negative coefficients.

Proof. The assertion follows by induction on n. Simply integrate (A.10) and
use the fact that α0(s) = 1 and that αm(0) = 0 for m ≥ 1. �

Appendix B. Proof of (1.24)

Let s 6= 0,±2,±4, . . . . Using the well-known functional equation for the
Riemann zeta function, we have

(B.1) cn(s) = (−1)n 2
π

(
sin

πs

2

) αn(s)
(2π)2n

Γ(2n+ 1− s) ζ(2n+ 1− s).

Assume to the contrary that |cn(s)N−2n| remains bounded, that is, since
ζ(2n+ 1− s) → 1 as n→∞, there exists a constant c > 0 such that

|αn(s)| ≤ c
(2πN)2n

Γ(2n+ 1− s)
≤ c

(
2πeN

2n+ 1− s

)2n( e

2n+ 1− s

)−s

for all n ≥ n0. (We used (x/e)x−1 < Γ(x) < (x/2)x−1, x ≥ 2.) Hence,

lim sup
n→∞

2n
√
|αn(s)| = 0.

It follows that the series
∑∞

n=0 αn(s)z2n is an entire function. But this
series also represents the function [(sinπz)/(πz)]−s, which has a singularity
at z = 1. �
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