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Abstract. Let A ⊆ R
2 be a compact set in the right-half plane and Γ(A) the

set in R
3 obtained by rotating A about the vertical axis. We review recent

results concerning the support of the equilibrium measure on Γ(A) for the
Riesz kernel ks(x,y) := 1/|x − y|s (0 < s < 1) and the logarithmic kernel
k0(x, y) := log(1/|x − y|) (limit case s → 0). Here | · | denotes the Euclidean
distance. The main tool is to reduce the minimum energy problem on Γ(A) in
R

3 for the singular kernel ks to a related problem on A in R
2 for a continuous

kernel Ks. Some open problems are posed.

1. Introduction

Let K be an infinite compact set in Rp whose d-dimensional Hausdorff measure,
Hd(K), is finite and positive (hence, d is the Hausdorff dimension of K). [We
normalize the Hausdorff measure Hd so that the d-dimensional unit cube in Rp has
measure 1.] For a collection of N(≥ 2) distinct points XN := {x1, . . . ,xN} ⊆ K,
and s > 0, the discrete Riesz s-energy of XN is defined by

Es(XN ) :=
∑

j 6=k

1

|xj − xk|s
=

N
∑

j=1

N
∑

k=1,
k 6=j

1

|xj − xk|s
,

while the N -point Riesz s-energy of K is defined by

(1.1) Es(K, N) := inf{Es(XN ) : XN ⊆ K, |XN | = N},
where |X | denotes the cardinality of the set X . Since K is compact, there must be
at least one N -point set Xs,N ⊆ K such that Es(K, N) = Es(Xs,N ).
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This class of minimal discrete s-energy problems can be considered as a bridge
between logarithmic energy problems and best-packing ones. Indeed, when s → 0
and N is fixed, the minimal energy problem turns into the problem for the loga-
rithmic potential energy

E0(XN ) :=
∑

j 6=k

log
1

|xj − xk|
,

which is minimized over all N -point configurations {x1, . . . ,xN} ⊆ K.
On the other hand, when s → ∞, and N is fixed, we get the best-packing prob-

lem (cf. [FT64], [CS99]); that is, the problem of finding N -point configurations
XN ⊆ K with the largest separation radius:

(1.2) δ(XN ) := min
j 6=k

|xj − xk|.

We are interested in the geometrical properties of optimal s-energy N -point
configurations for a set K; that is, sets XN for which the infimum in (1.1) is attained.
Indeed, these configurations are useful in statistical sampling, weighted quadrature,
and computer-aided geometric design where the selection of a “good” finite (but
possibly large) collection of points is required to represent a set or manifold K.
Since the exact determination of optimal configurations seems, except in a handful
of cases, beyond the realm of possibility, our focus is on the asymptotics of such
configurations. Specifically, we consider the following questions.

(i) What is the asymptotic behavior of the quantity Es(K, N) as N gets large?
(ii) How are optimal point configurations Xs,N distributed as N → ∞?

In the case 0 ≤ s < dimK (the Hausdorff dimension of K), answers to questions
(i) and (ii) are determined by the equilibrium measure µs,K that minimizes the
continuous energy integral

Is[µ] :=

∫ ∫

ks(x,y) dµ(x) dµ(y)

over the class M(K) of (Radon) probability measures µ supported on K. Let
Vs(K) := infµ∈M(K) Is[µ]. Specifically (cf. [Lan72, Ch. II no. 12]), we have

lim
N→∞

Es(K, N)/N2 = Vs(K) = Is[µs,K ]

and (in the weak-star sense)

1

N

∑

x∈Xs,N

δx
∗−→ µs,K ,

where δx denotes the atomic measure centered at x. In the case when K = Sd,
the unit sphere in Rd+1, the equilibrium measure is simply the normalized surface
area measure and it follows that optimal energy points on the sphere are uniformly
distributed in this sense.

The hypersingular case when s ≥ d was studied by the second and third authors
together with S. Borodachov in [HS04, HS05, BHS08]. In this case, Is(µ) = ∞
for any probability measure supported on K and, hence, K has s-capacity 0 and
no equilibrium measure for the continuous energy integral problem. However, for
any d-rectifiable set K, the following holds:

lim
N→∞

Es(K, N)/N1+s/d = Cs,d/(Hd(K))s/d,
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Figure 1. Near minimum Riesz s-energy configurations (N =
1000 points) on a torus in R3 for s = 0, 0.2, and 1.

where Cs,d is a positive constant independent of K. Furthermore, if Hd(K) > 0,
then

(1.3)
1

N

∑

x∈Xs,N

δx
∗−→ Hd(·)/Hd(K).

For the critical index s = d, we have (under some smoothness conditions)

lim
N→∞

Es(K, N)/(N2 log N) = Vol(Bd)/Hd(K),

where Bd is the unit ball in Rd, and, if Hd(K) > 0, then again (1.3) holds.
Numerical experiments, conducted by Rob Womersley [Wom05], suggest that

minimum s-energy configurations on a torus are confined to the “outer-most” part
with positive curvature (Figure 1) for s ≥ 0 sufficiently small, which, if true, implies
that the support of the ks-equilibrium measure on this torus would also be contained
in this set. Conversely, if the ks-equilibrium measure is concentrated on the “outer-
most” part, the fraction of points of a minimum s-energy N -point system not in this
set tends to zero as N goes to infinity. In [HSS07] the last two authors together
with Herbert Stahl showed that, indeed, the support of the ks-equilibrium measure
on a compact set of revolution K with no points on the axis of rotation is a subset
of the “outer-most” part of K in the logarithmic case (s = 0). In [BHS07b] we
studied the case 0 < s < 1.

In this paper we review results from these two papers concerning the support
of equilibrium measures µs,K on sets of revolution K in R3 and pose some open
problems.

2. The energy problem on sets of revolution

Let A be a non-empty compact set in the right-half plane H+ and K = Γ(A)
the set of revolution in R3 obtained by rotating A about the vertical axis. Classical
potential theory yields that for 0 ≤ s ≤ 1 the equilibrium measure µs,Γ(A) on Γ(A)
is supported on the outer boundary ∂Γ(A)∞ of Γ(A) which is the boundary of the
unbounded component of the complement of Γ(A). (In the Coulomb case s = 1 the
support of µs,Γ(A) is essentially the outer boundary of Γ(A).) In the next sections
we will review results from [HSS07] and [BHS07b] which will give us more insight
into the nature of suppµs,Γ(A).

On a set of revolution it is sufficient to consider rotational symmetric measures.
A Borel measure µ̃ ∈ M(R3) is rotationally symmetric about the vertical axis if

µ̃(RφB) = µ̃(B)
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for all Borel sets B ⊆ R3 and for all rotations Rφ about the vertical axis. Thus,
the energy problem on Γ(A) in R3 for the singular Riesz kernel ks can be reduced
to the energy problem on A in R2 for a new kernel Ks (which is continuous if
0 ≤ s < 1) by rewriting the energy integral

(2.1) Is[µ̃] =

∫ ∫

Ks(z, w)dµ(z)dµ(w) =: JKs
[µ],

where the compactly supported rotational symmetric measure µ̃ ∈ M(R3), admits
a decomposition

dµ̃ =
dφ

2π
dµ, µ = µ̃ ◦ Γ ∈ M(H+),

into the normalized Lebesgue measure on the half-open interval [0, 2π) and a mea-
sure µ on the right-half plane H

+. For convenience, we identify H
+ with the complex

right-half plane {z : Re[z] ≥ 0}. As mentioned in [HSS07], the kernel Ks(z, w) is
given by the integral

(2.2) Ks(z, w) =
1

2π

∫ 2π

0

ks(Rφz, w)dφ.

The Ks-energy VKs
of A is given by

(2.3) VKs
(A) := inf {JKs

[ν] : ν ∈ M(A)} .

For ν ∈ M(A), we define the Ks-potential W ν
s by

(2.4) W ν
s (z) :=

∫

Ks(z, w)dν(w), z ∈ H
+.

The existence and uniqueness of the equilibrium measure on A and a Frostman-
type result follow from the properties of the equilibrium measure on Γ(A).

Proposition 2.1. Suppose A is a non-empty compact set in H+ with positive
logarithmic capacity (s = 0) or positive s-capacity (0 < s < 1). Then λs,A :=
µs,Γ(A) ◦Γ is the unique measure in M(A) that minimizes JKs

[ν] over all measures
ν ∈ M(A). The equilibrium measure λs,A on A for the kernel Ks is supported on
the outer boundary of A. Furthermore:

Wλs,A
s ≥ VKs

(A) everywhere on A,(2.5)

Wλs,A
s ≤ VKs

(A) everywhere on suppλs,A,(2.6)

and
VKs

(A) = JKs
[λs,A] = Is[µs,Γ(A)] = Vs(Γ(A)).

By studying the Ks-equilibrium measure on sets obtained by translating a given
set A ⊆ H+ a distance R units to the right and taking the limit R → ∞, one
can obtain further information. Specifically, for 0 < s < 1 and z, w ∈ H

+, the
asymptotic expansion of Ks(R + z, R + w) for large R is (cf. [BHS07b, Lemma 3
of section IV]) of the form

Ks(R + z, R+ w) = Vs(T)R−s −B2(s)
|z − w|1−s

2R
−B3(s)

Re[z − w∗]

2R
R−s +O(

s

R2
),

where Vs(T) = Γ(1 − s)/[Γ(1 − s/2)]2 is the s-energy of the unit circle T, B2(s) =
2−s[s/(1 − s)]V−s(T), and B3(s) = sVs(T).

This motivates the introduction of the “finite R” kernel

(2.7) K(R)
s (z, w) := 2R

[

Ks(R + z, R + w) − Vs(T)R−s
]
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and the “infinity” kernel

K(∞)
s (z, w) := −B2(s) |z − w|1−s

.

These kernels are then related by

K(R)
s (z, w) = K(∞)

s (z, w) + O(1/R), R → ∞,

which holds uniformly on compact subsets in the interior of H+ × H+, and are
connected to the logarithmic case (see Section 3) by means of

lim
s→0

K(R)
s (z, w)/s = K(∞)

0 (z, w) + O(1/R), R → ∞.

It follows from (2.7) that the equilibrium measure λR
s,A on A for K(R)

s is equal

to λs,A+R(·+R), that is, λR
s,A(B) = λs,A+R(B+R) for any measurable set B ⊆ H+,

where B+R denotes the translate {b+R : b ∈ B}. The kernel K(∞)
s falls into a class

of kernels studied by Björck [Bjoe56]. From his results we obtain the following
proposition.

Proposition 2.2. Let 0 ≤ s < 1. If A is a non-empty compact set in the
interior of H+, then there is a unique equilibrium measure λ∞

s,A minimizing J
K

(∞)
s

[µ]

over all µ ∈ M(A). Moreover, λR
s,A converges weak-star to λ∞

s,A as R → ∞.

Throughout this paper we will use the notation z = x + iy, w = u + iv with
x, y, u, v ∈ R. Then w∗ := −u + iv denotes the reflection of w in the imaginary
axis. One also has |Rφz − w|2 = x2 + u2 − 2xu cosφ + (y − v)2.

3. The Logarithmic Case s = 0

The logarithmic case (s = 0) has been investigated by Hardin, Saff, and Stahl
in [HSS07]. The kernel in (2.2) has the representation

K0(z, w) = log
2

|z − w∗| + |z − w| , z, w ∈ H
+.

The level sets of K0(·, w) are ellipses with foci w and w∗. The kernel is symmetric,
that is, K0(w, z) = K0(z, w). Furthermore, K0 is continuous at any (z, w) ∈ H+ ×
H+ unless z = w = iy for some y ∈ R. The “infinity” kernel is given by

(3.1) K(∞)
0 (z, w) = −Re[z − w∗] − |z − w|, z, w ∈ H

+.

If A ⊆ H+ is compact, let projA denote the projection of the set A onto the
imaginary axis and for y ∈ projA, define xA(y) := max{x : (x, y) ∈ A}. We denote
by A+ the “right-most” portion of A, that is,

A+ := {(xA(y), y) : y ∈ projA} .

The following main result is proved in [HSS07].

Theorem 3.1. Suppose A is a non-empty compact set in H+ such that A+

is contained in the interior of H+. Then the support of the equilibrium measure
λ0,A ∈ M(A) is contained in A+. (The same holds for λ∞

0,A.)

Corollary 3.2 (horizontal line-segment). Let A be a non-empty compact sub-
set of the line-segment [a+ ib, c+ ib], 0 < a < c and b ∈ R. Then λ0,A (λ∞

0,A) is the
unit point charge concentrated at the “right-most” point of A.
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More can be said if the “right-most” part A+ is contained in the graph of a
simple smooth curve γ : [a, b] → H+; that is, A+ ⊆ γ∗ := {γ(t) : a ≤ t ≤ b}. Strict
convexity of K0(γ(·), γ(t)) on the intervals [a, t] and [t, b] for each fixed t ∈ [a, b]
implies the existence of some closed interval I ⊆ [a, b] such that suppλ0,A = γ(I)∩
A+. Note that A+ is only required to be a compact subset of γ∗. For example, A+

may be a Cantor subset of γ∗.

Corollary 3.3 (vertical line-segment). Suppose A is a non-empty compact
subset in the interior of H+ such that A+ is contained in a vertical line segment
[R + ic, R + id] for some R > 0. Then suppλ0,A = A+.

For large R, suppλ0,A thins out in the “middle”. In fact, it is shown in [HSS07]
that suppλ∞

0,A consists of the two “endpoints” of A+. (The behavior for s > 0 is

different, cf. Corollary 4.5(b) below.)

Corollary 3.4 (circle). Suppose C ⊂ C is a circle of radius r > 0 and center
a with Re[a] > 0 and suppose A is a compact set in H+ such that A+ ⊂ C+. Then
suppλ0,A = Aθ

+ := A+ ∩ {a + reit : |t| ≤ θ} for some θ ∈ [0, π/2]. In particu-
lar, if A+ is a circular arc contained in C+, then so is suppλ0,A; consequently,
suppµ0,Γ(A) is connected.

Moreover, the following can be shown for a torus.

Corollary 3.5 (torus). Let A be a circle with center (R, 0) and radius r with
0 < r < R. Then, for each ǫ > 0 there is some R > 0 such that the support of λR

0,A

is contained in A
π/3+ǫ
+ . Consequently, for each ǫ > 0 and R/r sufficiently large, the

support of the equilibrium measure µ0,Γ(A) on the torus Γ(A) is a proper subset of

Γ(A
π/3+ǫ
+ ).

4. The Case 0 < s < 1

In the case 0 < s < 1 the kernel in (2.2) can be represented in terms of a
hypergeometric 2F1-function

Ks(z, w) = |z − w∗|−s
2F1

(

s/2, 1/2
1

; 1 − |z − w|2
|z − w∗|2

)

, z, w ∈ H
+.

The level sets of Ks(·, w), w ∈ H+ fixed, look like Cassinian ovals as shown in Figure
2. For 0 < s < 1, the kernel Ks is clearly continuous at any (z, w) ∈ H+ × H+

unless z = w = iy for some y ∈ R. For s ≥ 1 the kernel Ks is singular on the
diagonal (w, w). As s → 0+, we recover the logarithmic kernel K0 discussed in the
last section

lim
s→0+

Ks(z, w) − 1

s
= K0(z, w), z, w ∈ H

+.

The “infinity” kernel is given by

K(∞)
s (z, w) = − 2

1 − s

Γ((1 + s)/2)√
πΓ(s/2)

|z − w|1−s, z, w ∈ H
+.

The existence of compact sets A for which suppλs,A is not all of the outer
boundary of A is shown in the next result. We define

(4.1) K∗
s(z, w) := [Ks(z, w) + Ks(z, w)] /2.
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Figure 2. Level curves for K1/2(z, w) for w a fixed point on the
unit circle centered at (2, 0).

Theorem 4.1 (3-point Theorem). Let 0 < s < 1. Let x > 0 and z′ be in the
interior of H+. Let A be a non-empty compact subset of {w ∈ H+ : Ks(x, w) ≥
Ks(x, z′)} in the interior of H+ with x, z′, z′ ∈ A.

(a) If ∆s := Ks(x, z′) −K∗
s(z′, z′) > 0, then x /∈ suppλs,A.

(b) If z′ = 1 + iγ, γ > 0, and

(4.2) 4
(

γ +
√

1 + γ2
)

>

(

√

(1 + x)
2

+ γ2 +

√

(1 − x)
2

+ γ2

)2

,

then ∆s > 0 (and hence, by (a), x /∈ suppλs,A) for s > 0 sufficiently
small.

(c) If x = 1/2 and z′ = 1+i/2, then ∆s > 0 (and hence, by (a), x /∈ suppλs,A)
for all 0 < s < 1/3. (The graph of ∆s is shown in Figure 3.)

The difference ∆s = Ks(x, z′)−K∗
s(z

′, z′) compares the potential due to a unit
point charge at x with the potential due to half unit charges at z′ and its complex
conjugate z′. Positivity of ∆s implies Ks(x, ·) > K∗

s(z
′, ·) on A, which in turn

implies W
λs,A
s (x) > VKs

(A); hence x /∈ suppλs,A by variational inequality (2.6).
In Theorem 4.1.(c) we give a range for s. Based upon numerical experimention

we state

Conjecture 4.2. To every 0 < s < 1 there exists a compact set A 6= ∅ in the
interior of H+ such that suppλs,As

is a proper subset of the outer boundary of A.

Example 4.3. Let A be the rectangle with lower left corner 1/2 − i/2 and
upper right corner 1 + i/2. From Theorem 4.1 it follows that 1/2 /∈ suppλs,A for
0 < s < 1/3. Alternatively, if A is the left-half circle with radius 1/2 centered at
1, it again follows from Theorem 4.1 that 1/2 /∈ suppλs,A for 0 < s < 1/3. (See
Figure 3.) In contrast, as A is moved to the right R units and R → ∞, we get
suppλ∞

s,A = A for every 0 < s < 1.

The converse, the existence of sets A for which suppλs,A equals the outer
boundary SA of A for all 0 < s < 1, can be shown by using a convexity argument
utilized in the following result.
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Figure 3. Examples of sets A satisfying Theorem 4.1.(c). ∆s

for x = γ = 1/2.

Lemma 4.4. Let 0 < s < 1 and A be a compact set in the interior of H+.

(i) If γ : [a, b] → H+, a < b, is a simple continuous non-closed curve
with SA ⊆ γ∗ := {γ(t) : a ≤ t ≤ b}, and Ks(γ(·), γ(t)) is a strictly convex
function on the intervals [a, t] and [t, b] for each fixed t ∈ [a, b], then there
is some closed interval I ⊆ [a, b] such that suppλs,A = γ(I) ∩ SA.

(ii) If γ : [0, b] → H+ is a simple continuous closed curve, that is γ(0) =
γ(b), with SA ⊆ γ∗ and extended periodically by γ(t) = γ(t + b), and
Ks(γ(·), γ(t)) is a strictly convex function on the interval [t, t+ b] for each
fixed t ∈ [0, b], then suppλs,A = SA.

Using Lemma 4.4 it follows that any compact subset A of a horizontal or vertical
line-segment satisfies supp λs,A = A for every 0 < s < 1. We compare and contrast
this with the logarithmic case, where it is still true that suppλ0,A = A in case of a
vertical line-segment (Corollary 3.3). However, in case of a horizontal line-segment
one has that λ0,A is a unit point charge at the “right-most” point of A (Corollary
3.2).

Corollary 4.5 (horizontal and vertical line-segment). Suppose A is a non-
empty compact subset of either (a) the horizontal line-segment [a + ic, b + ic], 0 <
a < b, or (b) the vertical line-segment [R + ic, R + id], R > 0, c < d. Then
suppλs,A = suppλ∞

s,A = A for every 0 < s < 1.

Conjecture 4.6. Suppose C is a circle with radius 1 centered at R + i0 in
H+ (so that Γ(A) is a torus in R3). Based on several numerical experiments for
the discrete energy (see Figure 4), we conjecture that the support of the equilibrium
measure λs,C is connected and is increasing with respect to growing s. Furthermore,
there seems to be a critical value s0 < 1 (at least for R sufficiently large) such that
suppλs,C = C for s ≥ s0.

5. Transfinite Diameter and Limit Distribution

Let Xs,N , N ≥ 2, be a sequence of minimum s-energy N -point systems on
a compact set K in Rp. Since the class M(K) of all Radon probability measures
supported on K is weak-star compact, the sequence of discrete probability measures
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Figure 4. Minimum Ks-energy configurations (N = 34 points)
for s = 0, 0.5 (top circles), 0.75, 1 (bottom circles).

µ(Xs,N ), N ≥ 2, induced by Xs,N , always has a cluster point µ∗
s,K in M(K). But

one can say more. Define the quantities

Ds(XN ) := N(N − 1)
/

∑

j 6=k

|xj − xk|−s
(s > 0)

called the N -th generalized transfinite diameter. Note, [Ds(XN )]1/s can be seen as
a generalization of the harmonic mean (s = 1) of the N(N −1) distances |xj − xk|,
j 6= k. Clearly, [Ds(XN )]1/s ≥ δ(XN ), where δ(XN ) is defined in (1.2). The limit
lims→∞[Ds(XN )]1/s for N fixed is studied in [BHS07a]. It is known [Lan72,
Ch. II no. 12] that the positive quantities Ds(Xs,N ), N ≥ 2, satisfy

Ds(Xs,2) ≥ Ds(Xs,3) ≥ · · · ≥ Ds(Xs,N ) ≥ · · · .

This implies the existence of the non-negative limit

Ds(K) := lim
N→∞

Ds(Xs,N ),

which is called the generalized transfinite diameter of order s of the compact set
K. The generalized transfinite diameter Ds(K) was introduced by Pólya and Szegő
in [PS31]. It is related to the N -point Riesz s-energy Es(N, K) of K defined in
(1.1) and the s-capacity of K (the reciprocal of Vs(K) [s > 0] or the exponential
exp{−V0(K)} [s = 0]; Vs(K) is defined in the Introduction) in the following way

(5.1) Ds(K) = lim
N→∞

N(N − 1)

Es(N, K)
= capsK. (s > 0)

(In the logarithmic case s = 0 we define D0(XN ) to be the N(N − 1)-root of the
product of all mutual distances

∏

j 6=k |xj − xk|. Then (5.1) holds except its middle
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part is replaced by limN→∞ exp{−E0(N, K)/[N(N − 1)]}.) By (5.1), the positivity
of the s-capacity (s > 0) of K implies the weak-star convergence of the sequence of
measures µ(Xs,N ), N ≥ 2, to the limit distribution µ∗

s,K . Moreover, by uniqueness
of the equilibrium measure µs,K on K, one has µ∗

s,K = µs,K .
For sets K with s-capacity zero the situation is more complicated. For example,

for K a compact set in Rd one gets from [HS05] that

lim
N→∞

(log N)Dd(Xd,N ) =
Hd(K)

βd
,(5.2)

lim
N→∞

Ns/d−1Ds(Xs,N ) =
[Hd(K)]s/d

Cs,d
(s > d),(5.3)

where βd is the volume of the d-dimensional unit ball and Cs,d is a positive constant
independent of K. (The value of Cs,d is known explicitly only for d = 1.)

Similarly, one can redefine the “N -th generalized transfinite diameter” DKs
(ZN ) :=

N(N − 1)/
∑

n6=k Ks(zj , zk) to be related to the kernel Ks (0 < s < 1). Since
Ks is symmetric, positive, and continuous, one can easily show that the sequence
DKs

(Zs,N ), N ≥ 2, induced by minimum Ks-energy N -point systems Zs,N , N ≥ 2,
is a non-increasing sequence bounded from below whose limit is DKs

(A), the gen-
eralized Ks-transfinite diameter of A. Furthermore, one has

(5.4) DKs
(A) = lim

N→∞

N(N − 1)

EKs
(N, A)

= capKs
A = capsΓ(A). (0 < s < 1)

The last equality holds by (2.1). By (5.4), the positivity of the s-capacity (s > 0)
of Γ(A) implies the weak-star convergence of the sequence of measures λ(Zs,N ) =
(1/N)

∑

z∈Zs,N
δz, N ≥ 2, to the limit distribution λ∗

s,A. Moreover, by uniqueness

of the equilibrium measure λs,A on A, one has λ∗
s,A = λs,A.

An interesting question is whether the minimum s-energy N -point systems
Xs,N (0 < s < 1) are always contained in the support of µs,K for every N .

Open Problem: For what sets of revolution Γ(A) and values of 0 ≤ s < 1 is

it true that the points of minimum s-energy configurations are always contained in

the support of the ks-equilibrium measure on Γ(A)? Same question for the kernel

Ks and A.
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