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Asymptotics of weighted best-packing on rectifiable sets

S.V. Borodachov, D. P. Hardin and E.B. Saff

Abstract. We investigate the asymptotic behaviour, as N grows, of the
largest minimal weighted pairwise distance between N points restricted to
a rectifiable compact set embedded in Euclidean space, and we find the
limit distribution of asymptotically optimal configurations.

Bibliography: 23 titles.

The classical best-packing problem is the problem of finding a configuration of
N points on a given compact set A with the largest possible separation (largest
minimal pairwise distance). Formulated for the Euclidean space Rd this problem
becomes that of finding the largest density of a collection of non-overlapping equal
balls in Rd. Some of the significant results and reviews of the literature on this
problem can be found in [1]–[6]. It is known, for example, that the solution to
this problem for certain sets A in the plane coincides with asymptotically optimal
nodes for cubature formulae (see, for example, [7]).

The best-packing problem is dual to the problem of ε-complexity of a compact
set A which, for a given ε > 0, requires one to find the largest number of points
on A that are at a distance at least ε from each other. The notion of ε-complexity
was first introduced by Kolmogorov and Tikhomirov [8] and has, in particular,
applications to the study of complexity of the behaviour of orbits in dynamical
systems (see, for example, [9]).

The problems mentioned above have also been considered for different metric
spaces. In this paper we study a weighted analogue of the best-packing problem
which, in a sense, is similar to introducing a certain metric, or sequence of met-
rics. The solution to such problems can be applied to the construction of optimal
weighted cubature formulae (see [10] and references therein for more information
on such optimization problems) and computer aided geometric design when it is
required to place points on a surface according to a prescribed non-uniform dis-
tribution (for example, to place more points on regions of the surface with higher
curvature).
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§ 1. Definitions, notation and known results

Let A ⊂ Rp be an infinite set, where p is a positive integer. For a collection of
distinct points ωN := {x1, . . . , xN} ⊂ A and a function w : A×A → [0,∞] let

δw(ωN ) := min
16i 6=j6N

w(xi, xj)|xi − xj |,

where | · | is the Euclidean distance in Rp. We also denote the best weighted N -point
packing distance on A by

δw
N (A) := sup{δw(ωN ) : ωN ⊂ A, #ωN = N}, (1)

where #X stands for the cardinality of the set X. We are interested in the asymp-
totics (as N → ∞) of the quantities in (1) as well as the asymptotic behaviour of
the configurations that attain the supremum on the right-hand side of (1).

Without loss of generality we can assume that w is a symmetric function, since
for v(x, y) := min{w(x, y), w(y, x)} we have δv(ωN ) = δw(ωN ) for every configur-
ation ωN .

In the non-weighted case (w ≡ 1) we get the classical best-packing problem
(we shall omit the superscript w in definition (1) and elsewhere when w ≡ 1). In
this case the (not necessarily unique) configurations ωN that achieve the supremum
in (1) are called best-packing configurations on A. We remark that the exact solution
to the best-packing problem when A is the sphere S2 in R3 has been obtained for
N = 2, . . . , 12 and N = 24 (see [4] or [5] for the list of references). The asymptotic
behaviour as N → ∞ of the best-packing distance on S2 (up to the next order
term) was obtained by Habicht and van der Waerden in [11] and [12].

Kolmogorov and Tikhomirov [8] obtained the main term of the quantity (1) as
N → ∞ when w = 1 and A is a compact set of positive Lebesgue measure in Rp.
In [13] the present authors analysed the asymptotic behaviour of the best-packing
distance in the non-weighted case on d-rectifiable sets and their countable unions.

Throughout this paper, Hα with α 6 p denotes α-dimensional Hausdorff mea-
sure in Rp. When α is an integer d, then we choose a normalization so that an
isometric copy of the cube [0, 1]d has Hd-measure 1. A set A ⊂ Rp is d-rectifiable,
d 6 p, if it is the image of a bounded subset T of Rd with respect to a Lipschitz
mapping, that is a mapping ϕ : T → Rp that satisfies for some constant λ

|ϕ(x)− ϕ(y)| 6 λ|x− y|, x, y ∈ T. (2)

(See [14], [15].)
In what follows we assume that A is a compact set with Hd(A) < ∞. In the first

part of the paper we shall consider the weighted best-packing problem for a fixed
weight on A × A satisfying certain conditions. A function w : A × A → [0,∞] is
said to be a CBD-weight function on A×A if

(a) w is continuous (as a function on A × A) at Hd-almost every point of the
diagonal D(A) := {(x, x) : x ∈ A},

(b) there is some neighbourhood G of D(A) (relative to A × A) such that
supG w < ∞, and

(c) infB w > 0 on any closed subset B ⊂ A×A such that B ∩D(A) = ∅.
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Here CBD stands for (almost) continuous and bounded on the diagonal. In
particular, conditions (a)–(c) hold if w is greater than some positive number on
A×A and continuous on the diagonal D(A) (where continuity at a diagonal point
(x0, x0) is meant in the sense of limits taken on A×A).

Note that w(x, y)|x− y| is, in general, not a metric. However, if a metric ρ(x, y)
is continuous with respect to the Euclidean distance in Rp and the limit

f(z) := lim
(x,y)→(z,z)

ρ(x, y)
|x− y|

, (x, y) ∈ (A×A) \D(A), z ∈ A,

exists and is continuous, then we obtain best-packing results for the metric ρ(x, y)
by setting

w(x, y) :=

{
ρ(x, y)/|x− y| if x 6= y,

f(z) if x = y = z.

For a review of results on packing in non-Euclidean spaces see, for example, [16], [17].
In this paper the asymptotic behaviour of the quantity (1) together with the

weak-star limit distribution of asymptotically optimal configurations is obtained
for compact d-rectifiable sets. We further extend these results in two ways: by
considering varying weights and by allowing weights with singularities. Large values
of the weight can significantly affect distances between optimal points, which leads
to certain technical difficulties when the weight has singularities.

We set
C∞,d := lim

N→∞
δN ([0, 1]d)N1/d.

Let ∆d denote the largest density of packing equal non-overlapping balls in Rd

(see [3] for the precise definition) and let βd be the Lebesgue measure of the unit
ball in Rd. It follows from the definition that

C∞,d = 2
(

∆d

βd

)1/d

. (3)

The density ∆d (and hence, constant C∞,d) has been obtained only for d = 2
(cf. [1]) and recently for d = 3 (cf. [6]). These results imply that

C∞,2 =

√
2√
3

, C∞,3 = 6
√

2

(clearly, C∞,1 = 1).
The weighted best-packing problem represents the limiting case as s →∞ of the

following weighted minimum energy problem

E w
s (A,N) = inf

x1,...,xN∈A

∑
16i 6=j6N

w(xi, xj)
|xi − xj |s

.

This problem was considered by the present authors in [18] for a class of weights w
that includes the reciprocals of CBD-weight functions and more general weights
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with a finite number of zeros on the diagonal. It was shown that if A ⊂ Rp is
a closed d-rectifiable set and s > d, then

lim
N→∞

E w
s (A,N)
N1+s/d

= Cs,d

(∫
A

(w(x, x))−d/s dHd(x)
)−s/d

, (4)

where Cs,d is a positive constant independent of the set A. When w ≡ 1, we obtain
the (non-weighted) minimal energy problem (see [19]–[23] and references therein).

The limit distribution of asymptotically optimal configurations is understood in
the following sense. If A ⊂ Rp is compact and ν and {νN}∞N=1 are Borel probability
measures on A, then the sequence {νN}∞N=1 is said to converge weak-star to ν (and
we write νN

∗−→ ν as N →∞) if for any function f continuous on A, we have

lim
N→∞

∫
A

f dνN =
∫

A

f dν.

We say that a sequence of configurations {ωN}∞N=2, ωN = {x1,N , . . . , xN,N} ⊂ A,
N = 2, 3, . . . , has limit probability measure ν if

ν(ωN ) :=
1
N

N∑
k=1

δxk,N

∗−→ ν, N →∞, (5)

where δx is the atomic probability measure in Rp centred at the point x ∈ Rp.
To prove that (5) holds it is sufficient to show that for every subset B ⊂ A whose

boundary relative to A has ν-measure zero, we have

lim
N→∞

#(ωN ∩B)
N

= ν(B). (6)

In [22] and [23] the uniformity of the limit distribution of minimal s-energy config-
urations on d-rectifiable manifolds in Rp for s > d is established. In [18] the present
authors show that the density of the limit distribution of configurations asymptoti-
cally minimizing the weighted energy in (4) is proportional to (w(x, x))−d/s, s > d.
Afraimovich and Glebsky [9] study the properties of the limit distribution with
respect to convergence along an ultrafilter of optimal ε-complexity configurations
on compact sets in Rd endowed with a varying metric.

Our first goal is to establish a weighted analogue of the following theorem in [13].

Theorem 1.1. Let d 6 p, where d, p are integers, and A ⊂ Rp an infinite closed
d-rectifiable set. Then

lim
N→∞

δN (A)N1/d = C∞,dHd(A)1/d = 2
(

∆d

βd

)1/d

Hd(A)1/d. (7)

If Hd(A) > 0, then for every sequence {ωN}∞N=2 of best-packing configurations on A
such that #ωN = N , N = 2, 3, . . . , we have

ν(ωN ) ∗−→
Hd

∣∣
A
( · )

Hd(A)
, N →∞.

Relation (7) for d = p is the result of Kolomogorov and Tikhomirov obtained
in [8].



Asymptotics of weighted best-packing 5

§ 2. Main results

Let H w
d and hw

d be the Borel measures supported on A such that

H w
d (B) =

∫
B

w(x, x)d dHd(x)

and

hw
d (B) =

H w
d (B)

H w
d (A)

for every Borel set B ⊂ A. A sequence of point configurations in A, {ωN}∞N=2,
#ωN = N , N = 2, 3, . . . , is called asymptotically w-best-packing on A if

δw(ωN ) = δw
N (A)(1 + o(1)), N →∞.

Theorem 2.1. Let d 6 p, where d, p are integers. Suppose that A ⊂ Rp is an
infinite closed d-rectifiable set and w is a CBD-weight function on A×A. Then

lim
N→∞

δw
N (A)N1/d = C∞,d

(∫
A

w(x, x)d dHd(x)
)1/d

, (8)

where C∞,d is as in (3).
Furthermore, if Hd(A) > 0, then any asymptotically w-best-packing sequence of

configurations ω̃N = {xN
1 , . . . , xN

N}, N = 2, 3, . . . , on A satisfies

1
N

N∑
k=1

δxN
k

∗−→ hw
d , N →∞. (9)

Example 2.2. Let D denote the open unit disc in the complex plane C and suppose
that A is an infinite closed 1-rectifiable set in D (such as a rectifiable arc or curve)
with positive length (that is, H1(A) > 0). Let ω∗N = {z∗1,N , . . . , z∗N,N} maximize the
minimum pseudohyperbolic metric distance d(z, ζ) =

∣∣(z − ζ)/(1− zζ̄)
∣∣ among all

N -point subsets of A. Then from Theorem 2.1 with the weight w(z, ζ) = 1/|1−zζ̄|,
z, ζ ∈ D, it follows that the points ω∗N are asymptotically uniformly distributed with
respect to the infinitesimal Bergman (Poincaré) metric |dz|/(1− |z|2).

Similarly, if A ⊂ D is a closed set with positive area (that is, H2(A) > 0), then
with the same weight as above, w-best-packing configurations have asymptotic
density 1/(1− |z|2)2 with respect to area measure (that is, H2).

Theorem 2.1 considers weights bounded on D(A). Below, we study the case
when the weight is allowed to have singularities on D(A). Let B(a, r) be the open
ball in Rp centred at the point a with radius r > 0. For t > 0 we say that a function
w : A×A → [0,∞] has a singularity at (a, a) ∈ D(A) of order at most t if there are
positive constants C and δ such that

w(x, y) 6
C

|x− a|t
, x, y ∈ A ∩B(a, δ).

If w has a singularity (a, a) ∈ D(A) whose order is too large, then it may act as
an attracting ‘sink’ for optimal configurations, yielding δw

N (A) = ∞. For example,
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let A be a closed ball in Rd centred at the origin and w(x, y) = (|x| + |y|)−t,
x, y ∈ A, t > 1. If ωN = {x1, . . . , xN} is a configuration of N distinct points
in A, then δw(γωN ) = γ1−tδw(ωN ) for any 0 < γ < 1. Taking γ → 0 shows that
δw
N (A) = ∞.

A closed set A ⊂ Rp is called α-regular at a ∈ A if there are positive constants
C0 and δ0 such that

C−1
0 rα 6 Hα(A ∩B(x, r)) 6 C0r

α (10)

for all x ∈ A ∩B(a, δ0) and 0 < r < δ0.

Theorem 2.3. Let A ⊂ Rp be an infinite closed d-rectifiable set, where d 6 p.
Suppose that A is αi-regular with αi 6 d at ai, i = 1, . . . , n, for a finite collection
of points a1, . . . , an ∈ A and that w : A× A → [0,∞] is a CBD-weight function on
K ×K for any compact set K ⊂ A \ {a1, . . . , an}. If w has singularity of order at
most t < 1 at each (ai, ai), then the conclusions of Theorem 2.1 hold.

Finally, we determine under suitable assumptions the asymptotic behaviour of
weighted best-packing when the weight varies with N . Given a sequence {vN}∞N=2

of non-negative weight functions defined on A×A, we say that a sequence of config-
urations {ωN}∞N=2 on the set A, where #ωN = N , N = 2, 3, . . . , is asymptotically
optimal for this sequence of weights if

δvN (ωN ) = δvN

N (A)(1 + o(1)), N →∞.

Theorem 2.4. Let d 6 p be integers and let A ⊂ Rp be an arbitrary infinite closed
d-rectifiable set. Suppose that either w is a CBD-weight function on A×A or that
the set A and weight w satisfy the assumptions of Theorem 2.3. Let {vN}∞N=2 be
a sequence of non-negative functions on A×A such that

(1− εN )w(x, y) 6 vN (x, y) 6 (1 + εN )w(x, y), (x, y) ∈ A×A, (11)

where {εN}∞N=2 ⊂ (0, 1) is some sequence converging to zero. Then

lim
N→∞

δvN

N (A)N1/d = C∞,d

(∫
A

w(x, x)d dHd(x)
)1/d

.

Moreover, if Hd(A)>0, then for any sequence of configurations ωN := {xN
1 , . . . , xN

N},
N = 2, 3, . . . , that is asymptotically optimal for the sequence of weights {vN}∞N=2

we have
1
N

N∑
k=1

δxN
k

∗−→ hw
d , N →∞. (12)

§ 3. Auxiliary statements

In the following, we find it convenient to define δw
N (A) for finite sets to be 0 when

N > #A. Given positive integers d 6 p, let

gd
w(A) = lim inf

N→∞
δw
N (A)N1/d, ḡw

d (A) = lim sup
N→∞

δw
N (A)N1/d
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and
gw

d (A) = lim
N→∞

δw
N (A)N1/d (13)

if this limit exists. When w ≡ 1 we shall denote the above limits by gd(A), ḡd(A)
and gd(A), respectively. To prove Theorems 2.1 and 2.3 we first establish the
following analogues of Lemmas 1 and 2 from [18].

Lemma 3.1. Let B and D be two bounded sets in Rp and suppose that

w : (B ∪D)× (B ∪D) → [0,∞]

is an arbitrary weight function. Then

ḡw
d (B ∪D)d 6 ḡw

d (B)d + ḡw
d (D)d. (14)

Furthermore, if ḡw
d (B), ḡw

d (D) < ∞ and at least one of these quantities is positive,
then

lim
N 3N→∞

#(ω̃N ∩B)
N

=
ḡw

d (B)d

ḡw
d (B)d + ḡw

d (D)d
(15)

holds for every sequence {ω̃N}N∈N of N -point configurations in B ∪D such that

lim
N 3N→∞

δw(ω̃N )N1/d =
(
ḡw

d (B)d + ḡw
d (D)d

)1/d
, (16)

where N is some infinite subset of N.

Proof. If B ∪D is finite, then the result of the lemma holds trivially. Let N1 ⊂ N
be an infinite subset and let {ωN}N∈N1 be a sequence of N -point configurations
in B ∪D such that the limit

α := lim
N13N→∞

#(ωN ∩B)
N

exists. We shall show that

lim sup
N13N→∞

δw(ωN )N1/d 6
(
ḡw

d (B)d + ḡw
d (D)d

)1/d
. (17)

Let NB = #(ωN ∩B) and ND = #(ωN \B), N ∈ N1. Then

δw(ωN ) = min
x6=y∈ωN

w(x, y)|x− y|

6 min
{
δw(ωN ∩B), δw(ωN \B)

}
6 min

{
δw
NB

(B), δw
ND

(D)
}
.

If 0 < α < 1, then we get

lim sup
N13N→∞

δw(ωN )N1/d

6 min
{

lim sup
N13N→∞

δw
NB

(B)N1/d
B

(
N

NB

)1/d

, lim sup
N13N→∞

δw
ND

(D)N1/d
D

(
N

ND

)1/d}
6 min

{
ḡw

d (B)α−1/d, ḡw
d (D)(1− α)−1/d

}
6

(
ḡw

d (B)d + ḡw
d (D)d

)1/d
.
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If α = 0, then

lim sup
N13N→∞

δw(ωN )N1/d

6 lim sup
N13N→∞

δw(ωN \B)N1/d 6 lim sup
N13N→∞

δw
ND

(D)N1/d
D

(
N

ND

)1/d

6 ḡw
d (D) 6

(
ḡw

d (B)d + ḡw
d (D)d

)1/d
.

The case α = 1 is handled analogously, which completes the justification of (17).
Now let {ωN}∞N=2 be a sequence of N -point configurations on B ∪D such that

for N sufficiently large

δw(ωN ) > δw
N (B ∪D)− 1

N2/d
, if δw

N (B ∪D) < ∞

and
δw(ωN ) > N, if δw

N (B ∪D) = ∞.

Since {#(ωN ∩ B)/N}∞N=2 is a bounded sequence, there exists an infinite subset
N2 ⊂ N such that

ḡw
d (B ∪D) = lim

N23N→∞
δw(ωN )N1/d,

and the limit

lim
N23N→∞

#(ωN ∩B)
N

exists. Then, by (17) we have

ḡw
d (B ∪D) = lim

N23N→∞
δw(ωN )N1/d 6

(
ḡw

d (B)d + ḡw
d (D)d

)1/d
,

which establishes (14).
Now let {ω̃N}N∈N be any sequence of N -point configurations in B ∪ D such

that (16) holds. Choose any subsequence N3 ⊂ N such that the limit

β := lim
N33N→∞

#(ω̃N ∩B)
N

exists. Assume that both ḡw
d (B) and ḡw

d (D) are positive. Then, using the above
argument and (16), we have(

ḡw
d (B)d + ḡw

d (D)d
)1/d = lim

N33N→∞
δw(ω̃N )N1/d

6 F (β) := min
{
ḡw

d (B)β−1/d, ḡw
d (D)(1− β)−1/d

}
. (18)

The function F (β) attains its maximum on [0, 1] only at the point

α∗ :=
ḡw

d (B)d

ḡw
d (B)d + ḡw

d (D)d

and F (α∗) =
(
ḡw

d (B)d + ḡw
d (D)d

)1/d. Then, in view of (18), we necessarily have
β = α∗.
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Now suppose that ḡw
d (B) = 0, but ḡw

d (D) > 0. If β > 0, we can write

ḡw
d (D) =

(
ḡw

d (B)d + ḡw
d (D)d

)1/d= lim
N33N→∞

δw(ω̃N )N1/d

6 lim
N33N→∞

δw(ω̃N ∩B)N1/d 6 ḡw
d (B)β−1/d = 0,

which contradicts the fact that ḡw
d (D) must be positive. Hence, β = 0 = α∗. If

ḡw
d (D) = 0, we will get β = 1 = α∗. Thus, we always have β = α∗. In view of the

arbitrariness of the subsequence N3, we obtain (15).

Lemma 3.2. Let B and D be two sets in Rp such that dist(B,D) > 0. Suppose
that for some h > 0, w(x, y) > h for (x, y) ∈ B ×D. Then

gd
w(B ∪D)d > gd

w(B)d + gw
d
(D)d.

Proof. We can assume that 0 < gd
w(B), gd

w(D) < ∞, since otherwise Lemma 3.2
holds trivially. Let

α∗ :=
gd

w(B)d

gd
w(B)d + gd

w(D)d

and a := dist(B,D). Let {ωB
N}∞N=2 and {ωD

N}∞N=2 be sequences of N -point config-
urations in B and D, respectively, such that

gd
w(B) = lim inf

N→∞
δw(ωB

N )N1/d, gd
w(D) = lim inf

N→∞
δw(ωD

N )N1/d

(these sequences can be chosen in the same way as the sequence {ωN} in the proof
of Lemma 3.1). For every N ∈ N, let NB := bα∗Nc and ND := N − bα∗Nc, where
btc denotes the floor function of a number t. Then,

δw
N (B ∪D) > δw(ωB

NB
∪ ωD

ND
) > min

{
δw(ωB

NB
), δw(ωD

ND
), ha

}
.

Hence,

gd
w(B ∪D) = lim inf

N→∞
δw
N (B ∪D)N1/d

> min
{

lim inf
N→∞

δw(ωB
NB

)N1/d, lim inf
N→∞

δw(ωD
ND

)N1/d, lim
N→∞

haN1/d
}

= min
{

lim inf
N→∞

δw(ωB
NB

)N1/d
B

(
N

NB

)1/d

, lim inf
N→∞

δw(ωD
ND

)N1/d
D

(
N

ND

)1/d}
> min

{
gd

w(B)(α∗)−1/d, gd
w(D)(1− α∗)−1/d

}
=

(
gd

w(B)d + gd
w(D)d

)1/d
,

which completes the proof of Lemma 3.2.

§ 4. The case of a weight bounded on the diagonal

Theorem 2.1 is a consequence of the following result.

Lemma 4.1. Suppose that A ⊂ Rp is a compact set with Hd(A) < ∞, and that
w : A × A → [0,∞] is a CBD-weight function on A × A. Furthermore, suppose
that for any compact set K ⊂ A the limit gd(K) exists and is given by

gd(K) = C∞,dHd(K)1/d. (19)
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Then,
(a) gw

d (A) exists and is given by

gw
d (A) = C∞,dH

w
d (A)1/d, (20)

and
(b) if a sequence {ω̃N}∞N=2, where ω̃N = {xN

1 , . . . , xN
N}, is asymptotically w-best-

packing on the set A and Hd(A) > 0, then

1
N

N∑
k=1

δxN
k

∗−→ hw
d , N →∞. (21)

Proof. To prove the first part of the lemma (that is, relation (20)), we break A
into disjoint ‘pieces’ of small diameter and estimate the w-best-packing radius of A
by replacing w with its supremum or infimum on each of the ‘pieces’ and applying
Lemmas 3.1 and 3.2.

For δ > 0 suppose that Pδ is a partition of A such that diam P 6 δ and
Hd(P ) = Hd(P ) for P ∈ Pδ, where B denotes the closure of a set B. For each
P ∈ Pδ choose a closed subset QP ⊂ P so that Qδ := {QP : P ∈ Pδ} satisfies∑

P∈Pδ

Hd(QP ) > Hd(A)− δ. (22)

An example of such systems Pδ and Qδ can be constructed as follows. Let Gj [t]
be the hyperplane in Rp consisting of all points whose jth coordinate equals t. If
(−a, a)p is a cube containing A, then for i = (i1, . . . , ip) ∈ {1, . . . ,m}p let

Ri := [t1i1−1, t
1
i1)× · · · × [tpip−1, t

p
ip

),

where m and partitions −a = tj0 < tj1 < · · · < tjm = a, j = 1, . . . , p, are chosen so
that the diameter of any Ri, i ∈ {1, . . . ,m}p, is less than δ and Hd(Gj [t

j
i ]∩A) = 0

for all i and j. (Since Hd(A) < ∞, there are at most countably many values of t
such that Hd(Gj [t] ∩A) > 0.) Then, we may choose

Pδ =
{
Ri ∩A : i ∈ {1, . . . ,m}p

}
and γ ∈ (0, 1) sufficiently close to 1 such that (22) holds for

Qδ =
{
Qi : i ∈ {1, . . . ,m}p

}
,

where Qi = (γ(Ri − ci) + ci) ∩A and ci denotes the centre of Ri.
For B ⊂ A, let

wB := sup
x,y∈B

w(x, y), wB := inf
x,y∈B

w(x, y)

and define the simple functions

wδ(x) :=
∑

P∈Pδ

wP χP (x), wδ(x) :=
∑

P∈Pδ

wP χP (x),
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where χ
K

denotes the characteristic function of a set K. Since the distance between
any two sets from Qδ is strictly positive, applying Lemma 3.2 and relation (19) we
obtain

gd
w(A)d > gd

w

( ⋃
Q∈Qδ

Q

)d

>
∑

Q∈Qδ

wd
Qgd(Q)d

> Cd
∞,d

∑
Q∈Qδ

wd
QHd(Q) > Cd

∞,d

∫
S

Q∈Qδ
Q

wδ(x)d dHd(x). (23)

Here we assumed that δw
N (Q) = 0 if #Q = 0 or 1.

On the other hand, by Lemma 3.1, Theorem 1.1 and properties of the partition
Pδ we have

ḡw
d (A)d = ḡw

d

( ⋃
P∈Pδ

P

)d

6
∑

P∈Pδ

ḡw
d (P )d 6

∑
P∈Pδ

wd
P ḡd(P )d

= Cd
∞,d

∑
P∈Pδ

wd
P Hd(P ) = Cd

∞,d

∑
P∈Pδ

wd
P Hd(P )

= Cd
∞,d

∫
A

wδ(x)d dHd(x). (24)

Since w is a CBD-weight function on A× A, there is some neighbourhood G of
D(A) such that τ := supG w < ∞. For δ > 0 sufficiently small, we have P ×P ⊂ G
for all P ∈ Pδ, and hence wδ(x) 6 w(x, x) 6 wδ(x) 6 τ for x ∈ A. Furthermore, w
is continuous at (x, x) ∈ D(A) for Hd-almost all x ∈ A and thus, for any such x,
it follows that wδ(x) and wδ(x) converge to w(x, x) as δ → 0. Therefore, by the
Lebesgue Dominated Convergence Theorem, the integrals∫

S
Q∈Qδ

Q

wδ(x)d dHd(x),
∫

A

wδ(x)d dHd(x)

both converge to H w
d (A) as δ → 0. Hence, using (23) and (24), we obtain (20).

We next prove relation (21). Let Hd(A) > 0 and let ω̃N := {xN
1 , . . . , xN

N}, N ∈ N,
be an asymptotically w-best-packing sequence of configurations on A. Choose any
set B ⊂ A whose boundary relative to the set A (denote it by ∂AB) has Hd-measure
zero. We shall show that

lim
N→∞

#(ω̃N ∩B)
N

= hw
d (B). (25)

Note that B and A \B are compact sets with finite Hd-measure and the restriction
of w on each of them is still a CBD-weight function. Every compact subset of these
sets is a compact subset of A and hence, these two sets satisfy the assumptions of
Lemma 4.1. Moreover, H w

d (∂AB) = H w
d (∂AA \B) = 0. Thus,

gw
d (B) = C∞,dH

w
d (B)1/d and gw

d (A \B) = C∞,dH
w

d (A \B)1/d,

and taking into account relation (20) we obtain that

lim
N→∞

δw(ω̃N )N1/d = lim
N→∞

δw
N (A)N1/d = gw

d (A) = C∞,dH
w

d (A)1/d

= C∞,d

(
H w

d (B) + H w
d (A \B)

)1/d =
(
gw

d (B)d + gw
d (A \B)d

)1/d
.
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By relation (16) of Lemma 3.1, we have

lim
N→∞

#(ω̃N ∩B)
N

=
gw

d (B)d

gw
d (B)d + gw

d (A \B)d
= hw

d (B) = hw
d (B). (26)

Since relation (26) holds for any closed subset of A whose boundary relative to A
has Hd-measure zero, it follows that

lim
N→∞

#(ω̃N ∩ (B \B))
N

6 lim
N→∞

#(ω̃N ∩ ∂AB)
N

= hw
d (∂AB) = 0.

Consequently, (25) holds for all sets B ⊂ A whose boundary relative to the set A
has Hd-measure zero. As mentioned in Section 1, this implies relation (21), which
completes the proof.

Proof of Theorem 2.1. Since A is a compact d-rectifiable set, it follows that
Hd(A) < ∞ and any closed subset K of A is also a compact d-rectifiable set. By
Theorem 1.1, relation (19) holds for K. Then Theorem 2.1 follows from Lemma 4.1.

§ 5. The case of the weight with singularities on the diagonal

Asymptotic behaviour of δw
N(A). The hypotheses of Theorem 2.3 imply that

H w
d (A) =

∫
A

w(x, x)d dHd(x)

is finite and positive (see the proof below) and hence the same is true for gw
d (A).

The essential ingredient in the proof of Theorem 2.3 is the following lemma which
assumes lower regularity. Consistent with the definition in (10), we say that a set
K ⊂ Rp is lower α-regular at a ∈ K, if there are positive constants C0 and r0 such
that

C−1
0 rα 6 Hα(K ∩B(x, r)), x ∈ K ∩B(a, r0), 0 < r < r0.

Lemma 5.1. Suppose that α > 0 and let K ⊂ Rp be a compact set that is lower
α-regular at a point a ∈ K . Let w : K×K → [0,∞] be a weight function with a sin-
gularity at a of order at most t < 1. Then there is a constant C1 = C1(w,K, t, α)
such that for any λ sufficiently small

ḡw
α (K ∩B(a, λ)) 6 C1

(∫
K∩B(a,2λ)

1
|x− a|tα

dHα(x)
)1/α

. (27)

Proof. Let r0 and C0 be as in the definition of lower α-regularity of the set K at a,
and let C and δ be as in the definition of a being a singularity of w of order at most
t < 1.

Choose any 0 < λ < min{r0, δ}. Let ωN = {x1, . . . , xN} be an arbitrary con-
figuration of N distinct points in K ∩ B(a, λ). For i = 1, . . . , N , let ρi = |xi − a|,
ri = minj:j 6=i |xj − xi| and let yi be a point in ωN such that |xi − yi| = ri.

Since K ∩ B(a, λ) is bounded, there are at most L − 1 points xi ∈ ωN (for
example, one could take L = 3p + 1) such that ri > λ. Reorder the points in ωN so
that ρN 6 ρi, i = 1, . . . , N − 1, and ri < λ, i = 1, . . . , N − L. Then,

δw(ωN ) = min
i 6=j

w(xi, xj)|xi − xj | 6 min
i=1,...,N−L

w(xi, yi)|xi − yi|.
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For every i = 1, . . . , N − L, since xi, yi ∈ K ∩B(a, λ) ⊂ K ∩B(a, δ), we have

w(xi, yi) 6
C

|xi − a|t
.

Hence,

δw(ωN ) 6 min
i=1,...,N−L

Cri

|xi − a|t
= min

i=1,...,N−L

Cri

ρt
i

6 C

(
1

N − L

N−L∑
i=1

rα
i

ρtα
i

)1/α

.

For i = 1, . . . , N − 1,

ri = min
j:j 6=i

|xj − xi| 6 |xi − a|+ min
j:j 6=i

|a− xj | 6 ρi + ρN 6 2ρi.

For every x ∈ B(xi, ri/2), i = 1, . . . , N − 1, we also have

|x− a| 6 |x− xi|+ |xi − a| 6 ri

2
+ ρi 6 2ρi.

Taking into account the lower α-regularity of the set K at a, it is not difficult to
see that

rα
i

ρtα
i

6 2αC0Hα

(
K ∩B

(
xi,

ri

2

))
1

ρtα
i

6 2αC0

∫
K∩B(xi,ri/2)

1
ρtα

i

dHα(x) 6 2α(t+1)C0

∫
K∩B(xi,ri/2)

1
|x− a|tα

dHα(x).

Consequently,

δw(ωN ) 6 2t+1C
1/α
0 C(N − L)−1/α

( N−L∑
i=1

∫
K∩B(xi,ri/2)

1
|x− a|tα

dHα(x)
)1/α

.

Since ωN is an arbitrary N -point collection in K ∩ B(a, λ) and B(xi, ri/2) ∩
B(xj , rj/2) = ∅, i 6= j, we can write

δw
N (K ∩B(a, λ)) 6 2t+1C

1/α
0 C(N − L)−1/α

( ∫
K∩B(a,2λ)

1
|x− a|tα

dHα(x)
)1/α

.

Hence,

ḡw
α (K ∩B(a, λ)) = lim sup

N→∞
δw
N (K ∩B(a, λ))(N − L)1/α

6 C1

( ∫
K∩B(a,2λ)

1
|x− a|tα

dHα(x)
)1/α

,

where C1 = 2t+1C
1/α
0 C, which completes the proof of Lemma 5.1.
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Proof of Theorem 2.3. If K is α-regular, 0 < α 6 d, as opposed to only lower
α-regular at a, then the integral∫

K

1
|x− a|tα

dHα(x)

is finite (cf. [15], p. 109) and by absolute continuity of the Lebesgue integral we
have

lim
λ→0

∫
K∩B(a,2λ)

1
|x− a|tα

dHα(x) = 0.

By Lemma 5.1 we then have limλ→0 ḡw
α (K ∩B(a, λ)) = 0 for any 0 < α 6 d. Hence

limλ→0 ḡw
d (K ∩B(a, λ)) = 0.

The αi-regularity of A at ai and the fact that w has a singularity of order at
most t < 1 at ai, i = 1, . . . , n, imply that∫

A

w(x, x)d dHd(x) < ∞.

Suppose that ε > 0. By Lemmas 5.1 and 3.1 we can find δ > 0 such that Bδ :=⋃n
i=1 A ∩B(ai, δ) satisfies ḡw

d (Bδ) < ε and for Aδ := A \Bδ,

H w
d (Aδ) =

∫
Aδ

w(x, x)d dHd(x) > (1− ε)H w
d (A).

Since w is a CBD-weight function on Aδ × Aδ, it follows from Theorem 2.1 that
gw

d (Aδ) exists and is given by gw
d (Aδ) = C∞,dH w

d (Aδ)1/d. By Lemma 3.1 we then
get

ḡw
d (A) 6

(
ḡw

d (Aδ)d + ḡw
d (Bδ)d

)1/d

6
(
Cd
∞,dH

w
d (Aδ) + εd

)1/d
6

(
Cd
∞,dH

w
d (A) + εd

)1/d
. (28)

We also have

gd
w(A) > gd

w(Aδ) = C∞,dH
w

d (Aδ)1/d > C∞,d(1− ε)1/dH w
d (A)1/d. (29)

Taking ε → 0 in (28) and (29) shows that gw
d (A) exists and that (8) also holds

under the assumptions of Theorem 2.3.
We next show that (9) holds for the case of a weight with singularities. Let

B ⊂ A be any set such that Hd(∂AB) = 0. For every δ > 0 such that

Hd(A ∩ ∂RpB(ai, δ)) = 0, i = 1, . . . , n

(there are at most countably many δ’s for which this does not hold) consider sets
B1 = B ∪

(⋃n
i=1 A ∩B(ai, δ)

)
and A \B1. Note that

H w
d (∂AB1) = H w

d (∂AA \B1) = 0.

Both sets are d-rectifiable. Since A \B1 is also a compact subset of A\{a1, . . . , an},
w is a CBD-weight function on A \B1 ×A \B1. Then, by Theorem 2.1,

gw
d (A \B1) = C∞,dH

w
d (A \B1)1/d.
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The set B1 is compact and, for δ > 0 sufficiently small, is αi-regular at ai, i =
1, . . . , n. Restriction of w on B1 × B1 will be a weight with singularities of order
at most t < 1 at a1, . . . , an. Then, by (8), we have

gw
d (B1) = C∞,dH

w
d (B1)1/d.

Let {ωN}∞N=2, #ωN = N , be any asymptotically w-best-packing sequence. Then

lim
N→∞

δw(ωN )N1/d = gw
d (A) = C∞,dH

w
d (A)1/d

= C∞,d

(
H w

d (B1) + H w
d (A \B1)

)1/d =
(
gw

d (B1)d + gw
d (A \B1)d

)1/d
.

Since H w
d (A) > 0, one of the quantities H w

d (B1) or H w
d (A \B1) has to be positive.

Using relation (15) from Lemma 3.1, we have

lim sup
N→∞

#(ωN ∩B)
N

6 lim
N→∞

#(ωN ∩B1)
N

=
gw

d (B1)d

gw
d (B1)d + gw

d (A \B1)d
= hw

d (B1).

Since limδ→0 hw
d (B1) = hw

d (B), we get that

lim sup
N→∞

#(ωN ∩B)
N

6 hw
d (B). (30)

Repeating the same argument for the set B1 = (A \ B) ∪
(⋃n

i=1 A ∩ B(ai, δ)
)
, we

deduce that

lim sup
N→∞

#(ωN ∩ (A \B))
N

6 hw
d (A \B).

Hence,

lim inf
N→∞

#(ωN ∩B)
N

> hw
d (B).

Combining this relation with (30) yields

lim
N→∞

#(ωN ∩B)
N

= hw
d (B),

which implies that (9) also holds under the assumptions of Theorem 2.3.

Proof of Theorem 2.4. From relation (11), for any configuration

ωN := {x1, . . . , xN} ⊂ A

we have

δvN (ωN ) = min
i 6=j

vN (xi, xj)|xi − xj |

> (1− εN )min
i 6=j

w(xi, xj)|xi − xj | = (1− εN )δw(ωN ). (31)

Analogously,
δvN (ωN ) 6 (1 + εN )δw(ωN ). (32)
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Hence,
(1− εN )δw

N (A) 6 δvN

N (A) 6 (1 + εN )δw
N (A),

and using Theorem 2.1 or 2.3, we get that

lim
N→∞

δvN

N (A)N1/d = lim
N→∞

δw
N (A)N1/d = C∞,d(H w

d (A))1/d. (33)

Now let {ωN}∞N=2 be an asymptotically optimal sequence of configurations for the
sequence of weights {vN}∞N=2. Then, taking into account (33), we get

δvN (ωN ) = δvN

N (A)(1 + o(1)) = δw
N (A)(1 + o(1)), N →∞.

Relations (31) and (32) also imply that

δvN (ωN ) = δw(ωN )(1 + o(1)), N →∞.

Then
δw(ωN ) = δw

N (A)(1 + o(1)), N →∞,

that is, the sequence {ωN}∞N=2 is asymptotically w-best-packing on the set A.
Applying again Theorem 2.1 or Theorem 2.3, we get (12).
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[5] K. Böröczky, jr., Finite packing and covering, Cambridge Tracts in Math., vol. 154,
Cambridge Univ. Press, Cambridge 2004.

[6] Th.C. Hales, “A proof of the Kepler conjecture”, Ann. of Math. (2) 162:3 (2005),
1065–1185.

[7] V. F. Babenko, “On the optimal error bound for cubature formulae on certain classes of
continuous functions”, Anal. Math. 3:1 (1977), 3–9.

[8] A.N. Kolmogorov and V. M. Tikhomirov, “ε-entropy and ε-capacity of sets in functional
spaces”, Uspekhi Mat. Nauk 14:2 (1959), 3–86; English transl. in Amer. Math. Soc.
Transl. (2) 17 (1961), 227–364.

[9] V. Afraimovich and L. Glebsky, “Measures of ε-complexity”, Taiwanese J. Math. 9:3
(2005), 397–409.

[10] E.V. Chornaya, “On the optimization of weighted cubature formulae on certain classes of
continuous functions”, East J. Approx. 1:1 (1995), 47–60.

[11] W. Habicht and B. L. van der Waerden, “Lagerung von Punkten auf der Kugel”, Math.
Ann. 123:1 (1951), 223–234.

[12] B. L. van der Waerden, “Punkte auf der Kugel. Drei Zusätze”, Math. Ann. 125:1 (1952),
213–222.

[13] S. V. Borodachov, D. P. Hardin and E.B. Saff, “Asymptotics of best-packing on rectifiable
sets”, Proc. Amer. Math. Soc. 135:8 (2007), 2369–2380.

[14] H. Federer, Geometric measure theory, Grundlehren Math. Wiss., vol. 153, Springer-Verlag,
Berlin–Heidelberg–New York 1969.

http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0052.18401
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0052.18401
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0134.15705
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0176.51401
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0176.51401
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0915.52003
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0915.52003
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1061.52011
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1061.52011
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1096.52010
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1096.52010
http://dx.doi.org/10.1007/BF02333249
http://dx.doi.org/10.1007/BF02333249
http://mi.mathnet.ru/eng/rm7289
http://mi.mathnet.ru/eng/rm7289
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0133.06703
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0133.06703
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1094.28008
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1094.28008
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0848.41023
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0848.41023
http://dx.doi.org/10.1007/BF02054950
http://dx.doi.org/10.1007/BF02054950
http://dx.doi.org/10.1007/BF01343118
http://dx.doi.org/10.1007/BF01343118
http://dx.doi.org/10.1090/S0002-9939-07-08975-7
http://dx.doi.org/10.1090/S0002-9939-07-08975-7
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0176.00801
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0176.00801


Asymptotics of weighted best-packing 17

[15] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability,
Cambridge Stud. Adv. Math., vol. 44, Cambridge Univ. Press, Cambridge 1995.
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