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Abstract. We investigate the properties of extremal point sys-
tems on the real line consisting of two interlaced sets of points solv-
ing a modified minimum energy problem. We show that these ex-
tremal points for the intervals [−1, 1], [0,∞) and (−∞,∞), which
are analogues of Menke points for a closed curve, are related to
the zeros and extrema of classical orthogonal polynomials. Use
of external fields in the form of suitable weight functions instead
of constraints motivates the study of “weighted Menke points” on
[0,∞) and (−∞,∞). We also discuss the asymptotic behavior of
the Lebesgue constant for the Menke points on [−1, 1].

Dedicated to Jesus Dehesa on the occasion of his 60th birthday.

1. Introduction

Let q and p be two positive numbers representing charges at the left
endpoint and right endpoint, respectively, of the interval [−1, 1]. The

problem of finding n points x
(n)
1 , . . . , x

(n)
n , the locations of unit point

charges, in the interior of [−1, 1] such that the expression

(1.1) Tn(x1, . . . , xn):=
n∏

i=1

(1− xi)
p
∏
j<k

|xj − xk|
n∏

`=1

(1 + x`)
q

is maximized, or equivalently, log(1/Tn) is minimized over all n-point
systems x1, . . . , xn in [−1, 1], is a classical problem that owes its solution
to Stieltjes [12]. The quantity log(1/Tn) can be interpreted as the
potential energy of the point charges at x1, . . . , xn in an external field
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exerted by the charge p at x = 1 and the charge q at x = −1, where the
“points” interact according to a logarithmic potential. Stieltjes showed

that the points x
(n)
1 , · · · , x

(n)
n of minimal logarithmic energy are, in fact,

the zeros of the Jacobi polynomial P
(α,β)
n (x), where α = 2p − 1 and

β = 2q − 1. The zeros of Laguerre and Hermite polynomials admit a
similar interpretation (see, for example, [13, Theorems 6.7.2 and 6.7.3]).
Additional constraints are needed to prevent these zeros from escaping
to infinity. A more modern approach is to have external fields in form of
appropriate weight functions instead of constraints. (See, for example,
[1] for a discussion of this model.) We also refer the interested reader
to the short survey article [4].

In this note we investigate the properties of extremal point systems
on the real intervals [−1, 1], [0,∞), and (−∞,∞), that consist of two
interlaced sets of points solving a modified minimum energy problem.
We will see that these extremal points are related to the zeros and
extrema of classical orthogonal polynomials. Moreover, each of these
two interlaced sets solves a separate extremal problem. In the un-
bounded case an additional constraint is needed that prevents points
from escaping to infinity. We show that this constraint can be lifted by
introducing an external field in form of a suitable weight function. We
will also discuss the effectiveness of a certain class of extremal points on
the interval [−1, 1] by considering the associated Lebesgue constants.

Our study was motivated by the work of K. Menke [5], [6] who intro-
duced certain interlaced optimal point sets on closed analytic Jordan
curves C in the complex plane. To describe such points, we first provide
C with a positive orientation (denoted by ≺) and let w1, . . . , wn and
z1, . . . , zn be two sets of points on C interlaced in the following way:

(1.2) z1 ≺ w1 ≺ · · · ≺ wn−1 ≺ zn ≺ wn ≺ z1.

Then points that maximize the resultant

(1.3) Rn(z1, . . . , zn, w1, . . . , wn):=
n∏

j=1

n∏
k=1

|zj − wk|

are called Menke points.

Recall that N points ζ
(N)
1 , · · · , ζ

(N)
N of a compact set K of the complex

plane that maximize the product
∏

j 6=k |ζj−ζk| over all N -point subsets
of K are known as Fekete points for K. In particular, according to the

previously mentioned result of Stieltjes, the zeros of (1 − x2)P
(1,1)
N−2(x)

form an N -point Fekete set for the interval [−1, 1]. One intriguing
result in [5] is the comparison of Menke and Fekete points for a closed
analytic Jordan curves C. If Ψ is a conformal mapping of the exterior
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of the unit disk onto the exterior of C with Ψ(∞) = ∞, then the pre-
images under Ψ of 2n Menke points are more nearly equally spaced on
the unit circle (error decays geometrically) than the pre-images of 2n
Fekete points (error decays with 1/n) as n becomes large. (See also [8],
[9], and [11].)

To define the Menke points for a closed infinite subset A of the real
line R, we consider two finite sets of points X = {xj} and Y = {yk}
such that X ∪ Y ⊂ A with X and Y interlaced. In contrast to the
case of a closed curve, we need to distinguish two cases according to
the parity of the total number of points |X ∪ Y |.

2. Menke points on the interval [−1, 1]

Let q and p be two positive numbers. Analogous to the Stieltjes
problem mentioned above, for the case of an odd number (say 2n + 1)
of interlaced points on the interval A = [−1, 1],

(2.1) −1 = y0 < x1 < y1 < · · · < yn−1 < xn < yn = 1,

we maximize the function
(2.2)

Tn(x1, . . . , xn, y1, . . . , yn−1):=
n∏

i=1

(1− xi)
p

n∏
j=1

n−1∏
k=1

|xj − yk|
n∏

`=1

(1 + x`)
q

over all configurations satisfying (2.1), while for an even number of
points (say 2n), we assume that

(2.3) −1 = x1 < y1 < · · · < yn−1 < xn < yn = 1

and maximize the function
(2.4)

τn(x2, . . . , xn, y1, . . . , yn−1):=
n∏

i=2

(1− xi)
p

n∏
j=2

n−1∏
k=1

|xj − yk|
n−1∏
`=2

(1 + y`)
q

over all configurations satisfying (2.3).
A system X = {xj}, Y = {yk} for which the maximum is attained

in (2.2) or (2.4) is called a (p, q)-Menke system for [−1, 1]. In our
definition, we always regard the endpoints of the interval [−1, 1] as
Menke points; there is no loss of generality in such an assumption since
if, say, y0 and yn were regarded as variable points with −1 ≤ y0 < x1

and xn < yn ≤ 1, then maximizing the quantity

T ∗
n (x1, . . . , xn, y0, . . . , yn):=

n∏
i=1

(yn − xi)
p

n∏
j=1

n−1∏
k=1

|xj − yk|
n∏

`=1

(x` − y0)
q
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would clearly imply that y0 = −1 and yn = 1.
It turns out that Menke points are related to the zeros and extrema

of Jacobi polynomials. We shall prove in Section 7 the following:

Theorem 1. Let p > 0, q > 0, and let the points in (2.1) form a (p, q)-
Menke system for [−1, 1] maximizing (2.2). Then the points x1, . . . , xn

are the zeros and the points y0, . . . , yn are the extrema of the Jacobi

polynomial P
(α,β)
n (x) on [−1, 1], where α = p− 1, β = q − 1.

In particular, for p = q, the Menke points satisfy

xn−k+1 = −xk, k = 1, . . . , n, yn−k = −yk, k = 0, . . . , n.

Theorem 2. Let p > 0, q > 0, and let the points in (2.3) form
a (p, q)-Menke system for [−1, 1] maximizing (2.4). Then the points
x2, . . . , xn and the points y1, . . . , yn−1 are the zeros of the Jacobi poly-

nomial P
(p−1,q)
n−1 (x) and P

(p,q−1)
n−1 (x), respectively.

In particular, for p = q, the Menke points satisfy

yn−k+1 = −xk, k = 1, . . . , n.

Theorems 1 and 2 should be compared with the previously mentioned
result of Stieltjes concerning the minimization of (1.1). In fact, on
combining that result with Theorem 1, we deduce that the x-points of
a (p, q)-Menke system on [−1, 1] with (2n + 1) points solve a separate
extremal problem. The same holds true for the y-points.

Corollary 3. Under the hypotheses of Theorem 1 the points x1, . . . , xn

maximize the product

(2.5)
n∏

i=1

(1− xi)
p/2
∏
j<k

|xj − xk|
n∏

`=1

(1 + x`)
q/2 ,

and the points y1, . . . , yn−1 maximize the product

(2.6)
n−1∏
i=1

(1− yi)
(p+1)/2

∏
j<k

|yj − yk|
n−1∏
`=1

(1 + y`)
(q+1)/2 .

Proof. Note that the critical points of P
(α,β)
n are the zeros of P

(α+1,β+1)
n−1 .

�

A similar corollary, whose statement is left to the reader, follows
from Theorem 2 and aforementioned result of Stieltjes.

In Section 6 we will discuss the effectiveness of Menke points for poly-
nomial interpolation by considering the associated Lebesgue constants
for the case p = q = 1.
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3. Menke points on the interval [0,∞)

For an unbounded closed set, the existence of Menke points requires
that an additional constraint be imposed. For the interval [0,∞), the
setting for the Laguerre polynomials, we impose this constraint on the
centroid of the x-points.

Given a positive charge p and an even number (say 2n) of interlaced
points

(3.1) 0 = y0 < x1 < y1 < · · · < xn−1 < yn−1 < xn,

we seek to maximize the function

(3.2) Un(x1, . . . , xn, y1, . . . , yn−1):=
n∏

k=1

xp
k

n∏
j=1

n−1∏
k=1

|xj − yk|

subject to the additional condition that the centroid of the x-points
satisfies

(3.3)
1

n
(x1 + · · ·+ xn) = K,

where K is a pre-assigned positive real number.
In the case of an odd number of points we maximize the function

(3.4) Un(x0, . . . , xn, y1, . . . , yn):=
n∏

k=1

yp
k

n∏
j=1

n∏
k=1

|xj − yk|

subject to the condition that the x-points and y-points are interlaced,

(3.5) 0 = x0 < y1 < x1 < · · · < yn−1 < xn−1 < yn < xn,

and, again, the x-centroid satisfies (3.3).
A solution of either of these optimization problems will be called

a p-Menke system for [0,∞) with x-centroid at K. Notice that the
left endpoint zero is regarded as a Menke point in this setting (again
without loss of generality).

We shall prove the following results (see Section 7).

Theorem 4. Given p > 0 and K > 0, let (3.1) form a (2n)-point
p-Menke system for [0,∞) with x-centroid at K. Then the points
x1, . . . , xn are the zeros and the points y0, . . . , yn−1 are the extrema of

the generalized Laguerre polynomial L
(α)
n (ct) on [0,∞), where α = p−1

and c = (n + α)/K.

Recall that the generalized Laguerre polynomials L
(α)
n (t), where α >

−1, are orthogonal on the interval [0,∞) with respect to the weight
function tαe−t.
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Theorem 5. Given p > 0 and K > 0, let (3.5) form a (2n + 1)-
point p-Menke system for [0,∞) with x-centroid at K. Then the points
x1, . . . , xn and the points y1, . . . , yn are, respectively, the zeros of the

Laguerre polynomials L
(p)
n (ct) and L

(p−1)
n (ct), where c = (n + p)/K.

Theorems 4 and 5 should be compared with the following classical
result.

Proposition 6 ([13, Thm. 6.7.2]). For a positive charge p at the fixed
point x = 0 and unit point charges at the variable points x1, . . . , xn in
the interval [0,∞) such that the x-centroid satisfies

(3.6)
1

n
(x1 + · · ·+ xn) ≤ K,

where K is a pre-assigned positive real number, the maximum of

(3.7)
n∏

i=1

xp
i

∏
j<k

|xj − xk|

is attained if and only if the x1, . . . , xn are the zeros of the Laguerre

polynomial L
(α)
n (ct), where α = 2p− 1 and c = (n + α)/K.

From Theorem 4 and Proposition 6 it follows that the x-points of a
p-Menke system for [0,∞) with centroid K solve an extremal problem.
The same holds for the y-points.

Corollary 7. Under the hypotheses of Theorem 4, the points x1, . . . , xn

maximize the product

(3.8)
n∏

i=1

x
p/2
i

∏
j<k

|xj − xk|

subject to the constraint

(3.9)
1

n
(x1 + · · ·+ xn) ≤ K,

and the points y1, . . . , yn−1 maximize the product

(3.10)
n−1∏
i=1

y
1+p/2
i

∏
j<k

|yj − yk|

subject to the constraint

(3.11) y1 + · · ·+ yn−1 ≤ n (K − 1) + p.

An analogous corollary, whose statement is left to the reader, follows
from Theorem 5 and Proposition 6.
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4. Menke points on the interval (−∞,∞)

For the real line, the setting of the classical Hermite polynomials,
we define the Menke points by imposing a constraint on the moment
of inertia of the points. First we consider Menke systems with an odd
number of points. For unit charges at the points x1, . . . , xn, y1, . . . , yn−1

in (−∞,∞) we want to maximize the function

(4.1) Vn(x1, . . . , xn, y1, . . . , yn−1):=
n∏

j=1

n−1∏
k=1

|xj − yk|

subject to the conditions that

(4.2) x1 < y1 < x2 < · · · < yn−1 < xn

and the x-moment of inertia satisfies

(4.3)
1

n

(
x2

1 + · · ·+ x2
n

)
= L,

where L is a pre-assigned positive real number. A solution of this
optimization problem will be called Menke system for (−∞,∞) with
x-moment of inertia L.

Theorem 8. Let (4.2) form a (2n−1)-point Menke system for (−∞,∞)
with x-moment of inertia L(> 0). Then the points x1, . . . , xn are the
zeros and the points y1, . . . , yn−1 are the extrema of the Hermite polyno-
mial Hn(ct) with c =

√
(n− 1)/(2L). Furthermore, the Menke points

satisfy

xn−k+1 = −xk, k = 1, . . . , n, yn−k = −yk, k = 1, . . . , n− 1.

Recall that the Hermite polynomials Hn(t) are orthogonal on the

interval (−∞,∞) with respect to the weight function e−t2 .
Theorem 8 should be compared with the following classical result.

Proposition 9 ([13, Thm. 6.7.3]). For unit point masses at each of
the variable points x1, . . . , xn in (−∞,∞) such that the “moment of
inertia” satisfies

(4.4)
1

n

(
x2

1 + · · ·x2
n

)
≤ L,

where L is a pre-assigned positive real number, the maximum of

(4.5)
∏
j<k

|xj − xk|

is attained if and only if the points x1, . . . , xn are the zeros of the Her-
mite polynomial Hn(ct), c =

√
(n− 1)/(2L).
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From Theorem 8 and Proposition 9 it follows that both the x-points
and the y-points of a (2n + 1)-point Menke system solve an extremal
problem.

Corollary 10. Under the hypotheses of Theorem 8, the points x1, . . . , xn

maximize the product

(4.6)
∏
j<k

|xj − xk|

subject to the constraint

(4.7)
1

n

(
x2

1 + · · ·+ x2
n

)
≤ L,

and the points y1, . . . , yn−1 maximize the product

(4.8)
∏
j<k

|yj − yk|

subject to the constraint

(4.9) y2
1 + · · ·+ y2

n−1 ≤ n (L− 1) + 1.

We next consider the optimization problem for an even number of
points. A Menke system of 2n points for (−∞,∞) with total moment
of inertia L is a collection of points x1, . . . , xn, y1, . . . , yn maximizing
the function

(4.10) Vn(x1, . . . , xn, y1, . . . , yn):=
n∏

j=1

n∏
k=1

|xj − yk|

subject to the conditions that

(4.11) x1 < y1 < x2 < · · · < yn−1 < xn < yn

and the total moment of inertia satisfies

(4.12)
1

2n

(
x2

1 + · · ·+ x2
n + y2

1 + · · ·+ y2
n

)
= L,

where L is a pre-assigned positive real number.
We shall prove in Section 7 the following result.

Theorem 11. Let the 2n points, n ≥ 1, in (4.11) form a Menke system
for (−∞,∞) with total moment of inertia L(> 0). Then the points
x1, . . . , xn are the zeros of the polynomial

(4.13) Hn(ct) +
√

2nHn−1(ct)

and the points y1, . . . , yn are the zeros of the polynomial

(4.14) Hn(ct)−
√

2nHn−1(ct),
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where c =
√

(n + 1)/(4L). Furthermore

yn−k+1 = −xk, k = 1, . . . , n,

and

y1 + · · ·+ yn = − (x1 + · · ·+ xn) =

√
2nL

n + 1
.

5. Weighted Menke points on unbounded intervals

Additional constraints are needed to prevent points from escaping
to infinity when solving the corresponding modified energy problems
for Menke points on unbounded intervals. A more modern approach
is to replace constraints with external fields in the form of suitably
chosen weight functions. The monograph [10] deals in detail with the
logarithmic minimum energy problem when an external field is applied.
Ismail [1] gave an electrostatic model for zeros for general orthogonal
polynomials subject to certain integrability conditions on their weight
function w(x). The modified energy problem for Menke points will,
however, differ in at least one significant detail: the points (charges)
are decomposed into two interlaced configurations each of which may
be subject to its own external field. That is, we seek to maximize a
function of the type ∏

j

∏
k

wx(xj)wy(yk) |xj − yk|

subject to interlacing constraints on the x and y points in the presence
of given weight functions wx and wy.

5.1. Weighted p-Menke Points on [0,∞). Let p be a positive charge
placed at zero. Let wx(t) = tsx exp{−λxt}, sx ≥ 0 and λx > 0. We
similarly define wy but with constants sy and and λy instead of sx and
λx. For an odd number of points (counting x0 = 0) we seek to maximize
the function
(5.1)

F o
n(x1, . . . , xn, y1, . . . , yn) :=

n∏
k=1

[wy(yk)yk]
p

n∏
j=1

n∏
k=1

wx(xj)wy(yk) |xj − yk|

subject to the conditions (3.5), and for an even number (counting y0 =
0) of points we maximize the function
(5.2)

F e
n(x1, . . . , xn, y1, . . . , yn−1) :=

n∏
j=1

[wx(xj)xj]
p

n∏
j=1

n−1∏
k=1

wx(xj)wy(yk) |xj − yk|
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subject to the constraints (3.1).
A solution of either of these optimization problems will be called a

weighted p-Menke system for [0,∞) with weight functions wx and wy.
(Without loss of generality we regard the point at zero as a Menke
point.)

We shall prove the following results (see Section 7).

Theorem 12. Given p > 0. Let the 2n + 1 points in (3.5) form
a weighted p-Menke system for [0,∞) with weight functions wx(t) =
tsx exp{−λxt}, sx ≥ 0, λx > 0, and wy(t) = tsy exp{−λyt}, sy ≥ 0,
λy > 0. Then the points x1, . . . , xn are the zeros of the polynomial

(5.3) nL(α−1)
n (βt) + b∆L

(α−1)
n−1 (βt)

and the points y1, . . . , yn are the zeros of the polynomial

(5.4) nL(α−1)
n (βt)− d∆L

(α−1)
n−1 (βt),

where a = p + (p + n)sy, b = (p + n)λy, c = nsx, d = nλx, and
α = 1 + a + c, β = b + d. The quantity ∆ is the positive solution of

(5.5) (n + a + b∆) (n + c− d∆) = ac.

Moreover, ∆ = x1 + · · ·+ xn − y1 − · · · − yn.

Remark 13. Theorem 12 is the analogue of Theorem 5. For “switched
off” y-field (that is sy = 0 and λy → 0) and sx = 0 and nλxK = p + n
both theorems give the same Menke points.

Theorem 14. Given p > 0. Let the 2n(≥ 4) points in (3.1) form
a weighted p-Menke system for [0,∞) with weight functions wx and
wy as in Theorem 12. Then the points x1, . . . , xn are the zeros of the
polynomial

(5.6) L(α−2)
n (βt)− (sy − λyt) L

(α−1)
n−1 (βt)

and the points y1, . . . , yn−1 are the zeros of the generalized Laguerre
polynomial

(5.7) L
(α−1)
n−1 (βt),

where α = 1 + p + (p + n − 1)sx + nsy and β = (p + n − 1)λx + nλy.
Furthermore, λx (x̄− ȳ) = 1 + sx and βȳ = (n− 1)(n + α − 2), where
x̄ = x1 + · · ·+ xn and ȳ = y1 + · · ·+ yn−1. The x-centroid x̄/n satisfies

β (x̄/n) = (p + n− 1 + λy/λx) (1 + sx) + (n− 1) sy.

Remark 15. Theorem 14 is the analogue of Theorem 4 but the former
has a much wider scope. For “switched off” external y-field (that is
sy = 0 and letting λy → 0) and sx = 0 and λxK = 1 (K is the pre-
scribed x-centroid in Theorem 4) both theorems give the same results.
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5.2. Weighted Menke Points on (−∞,∞). We consider the weight
functions wx(t) = exp{−λxt

2}, λx > 0, and wy(t) = exp{−λyt
2}, λy >

0. For an even number of points we seek to maximize the function

(5.8) Ge
n(x1, . . . , xn, y1 . . . , yn) :=

n∏
j=1

n∏
k=1

wx(xj)wy(yk) |xj − yk|

subject to the conditions (4.11), and for an odd number of points we
maximize the function

(5.9) Go
n(x1, . . . , xn, y1, . . . , yn−1) :=

n∏
j=1

n−1∏
k=1

wx(xj)wy(yk) |xj − yk|

subject to the conditions (4.2).
A solution of either of these optimization problems will be called a

weighted Menke system for (−∞,∞) with weight functions wx and wy.
We shall prove the following results (see Section 7).

Theorem 16. Let the 2n(≥ 2) points in (4.11) form a weighted Menke
system for (−∞,∞) with weight functions wx and wy as given above.
Then the points x1, . . . , xn are the zeros of the polynomial

(5.10) Hn(βt) +
√

2 (λy/λx) nHn−1(βt)

and the points y1, . . . , yn are the zeros of the polynomial

(5.11) Hn(βt)−
√

2 (λx/λy) nHn−1(βt),

where β =
√

(λx + λy)n.

Remark 17. Theorem 16 is the analogue of Theorem 11. If λx = λy = λ,
that is x-points and y-points are subject to the same external field, then
the parameter λ characterizing the external field in Theorem 16 and
the total moment of inertia L (pre-assigned in Theorem 11) given by
relation (4.12) are connected via formula 8nλL = n + 1.

Theorem 18. Let the 2n − 1(≥ 3) points in (4.2) form a weighted
Menke system for (−∞,∞) with weight functions wx and wy as above.
Then the points x1, . . . , xn are the zeros of the polynomial

(5.12) Hn(βt)− 2 (λy/λx) nHn−2(βt)

and the points y1, . . . , yn−1 are the zeros of the polynomial

(5.13) Hn−1(βt),
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where β =
√

(n− 1)λx + nλy. Furthermore,

xn−j+1 = −xj, j = 1, . . . , n,

yn−k = −yk, k = 1, . . . , n− 1.

Remark 19. Theorem 18 is the analogue of Theorem 8. If λx = λy = λ
and λ (characterizing the field in Theorem 18) and L (the total moment
of inertia in Theorem 8) satisfy the relation n− 1 = 2L(2n− 1)λ, then
both theorems give the same Menke points.

6. Lebesgue constants for Menke Points on [-1,1]

In this section we consider the Lebesgue functions and Lebesgue
constants for the Menke points on [−1, 1] for the case p = q = 1.

It follows from Theorem 1 that, for such p and q, the (2n−1) Menke
points on [−1, 1] are the zeros of (1− x2)Pn−1(x)P ′

n−1(x), where Pn(x)
is the n-th Legendre polynomial. We denote this set of points by

(6.1) M(2n− 1) := {t(2n−1)
1 , t

(2n−1)
2 , · · · , t

(2n−1)
2n−1 }

and let `j(t), j = 1, · · · , 2n−1, denote the fundamental Lagrange poly-
nomials for this set of points, that is `j(t) is a polynomial of degree
2n− 2 satisfying

(6.2) `j(t
(2n−1)
i ) = δij, i, j = 1, · · · , 2n− 1.

The Lebesgue function for the set of points M(2n− 1) is given by

(6.3) ΛM(t, 2n− 1) :=
2n−1∑
j=1

|`j(t)|

and the corresponding Lebesgue constant is

(6.4) ΛM(2n− 1) := max
−1≤t≤1

ΛM(t, 2n− 1).

For an even number of points, we know from Theorem 2 that for

p = q = 1 the 2n Menke points are the zeros of (1−x2)P
(0,1)
n−1 (x)P

(1,0)
n−1 (x).

Denoting this set of points byM(2n), we similarly define the associated
Lebesgue function ΛM(t, 2n) and the Lebesgue constant ΛM(2n).

Recall that the Lebesgue constant ΛM(N) is the norm of the associ-
ated interpolation operator from C[−1, 1] to the space of polynomials of
degree at most N −1, defined via interpolation in the points of M(N).
As such it provides a measure of how close polynomial interpolants ap-
proximate a continuous function. More precisely, if f ∈ C[−1, 1] and
LM(N)(t) is the unique polynomial of degree N − 1 that interpolates f
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in the N points of M(N), then for the uniform norm on [−1, 1] there
holds ∥∥f − LM(N)

∥∥ ≤ (1 + ΛM(N))EN−1(f),

where EN−1(f) denotes the error in best uniform approximation to f
by polynomials of degree at most N − 1.

It is well-known that the Lebesgue constants ΛT (N) for any triangu-
lar scheme T of the interpolation points on [−1, 1] grow with order at
least log N as n →∞ (see [3] for the historical discussion and the char-
acterization of optimal schemes). As we shall prove in a later paper,
this optimal growth rate is also achieved for the Menke points.

Theorem 20. The Lebesgue constants for the (1, 1)-Menke pointsM(N)
on [−1, 1] satisfy

ΛM(N) = O(log N) as N →∞.

As a numerical example of the effectiveness of the interpolation in
the Menke points we computed the maximum (uniform) error in the
Lagrange interpolation for the simple function f(x) = |x|, −1 ≤ x ≤ 1.
For comparison purposes, Table 1 lists the maximum error over [−1, 1]
when the interpolation points are chosen to be

(1) zeros of the Chebyshev polynomial TN(x) rescaled so that the
first and last zeros coincide, respectively, with −1 and 1;

(2) the (1, 1)-Menke points for the interval [−1, 1];
(3) the Fekete points for the interval [−1, 1].

We see from Table 1 on the next page that the maximum absolute er-
ror of interpolation is least for the listed values of N if the interpolation
points (even or odd) are chosen to be the Menke points in comparison
to the Chebyshev points or the Fekete points. A plot of the correspond-
ing Lebesgue functions over [−1, 1] reveals that the Menke Lebesgue
function is smaller than the other Lebesgue functions if we stay away
from the endpoints. Thus, it is reasonable that the interpolation in the
Menke points might better approximate functions such as |x| that have
singularities only in the interior of the interval.

7. Proofs

7.1. Proof of Theorem 1. We give an argument similar to that in
[13]. For a (p, q)-Menke system of 2n+1 points, we have ∂ log Tn/(∂x`) =
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Table 1. Maximum error of Lagrange Interpolation in
N points for f(x) = |x| on [−1, 1]

N Chebyshev Menke Fekete
8 0.129946 0.122238 0.135684
9 0.068008 0.066984 0.070580
12 0.084777 0.081689 0.087608
13 0.046472 0.046136 0.047867
16 0.063106 0.061455 0.064782
17 0.035361 0.035211 0.036227
20 0.050309 0.049285 0.051416
21 0.028556 0.028477 0.029144
24 0.041845 0.041148 0.042629
25 0.023955 0.023908 0.024379
35 0.017083 0.017080 0.017308
36 0.027831 0.027531 0.028191
44 0.022756 0.022558 0.023001
45 0.013278 0.013270 0.013416
55 0.010860 0.010859 0.010954
56 0.017871 0.017750 0.018024
64 0.015634 0.015542 0.015751
65 0.009188 0.009185 0.009255
75 0.007962 0.007961 0.008013
76 0.013163 0.013098 0.0132473

0 (` = 1, . . . , n) and ∂ log Tn/(∂y`) = 0 (` = 1, . . . , n− 1), or

p

x` − 1
+

n−1∑
k=1

1

x` − yk

+
q

x` + 1
= 0, ` = 1, . . . , n,(7.1)

n∑
k=1

1

y` − xk

= 0, ` = 1, . . . , n− 1.(7.2)

Introducing the polynomials f(x) = (x − x1)(x − x2) · · · (x − xn) and
g(y) = (y − y1)(y − y2) · · · (y − yn−1), we observe that, by (7.2),

(7.3)
f ′(y`)

f(y`)
=

n∑
k=1

1

y` − xk

= 0, ` = 1, . . . , n− 1.

Since f has no zeros at y1, . . . , yn−1, it follows that the polynomial f ′(x)
of degree (n− 1) vanish at (n− 1) points x = y1, . . . , yn−1. Thus, f ′(x)
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is a multiple of g(x). The latter and (7.1) yield

(7.4)
f ′′(x`)

f ′(x`)
=

g′(x`)

g(x`)
=

n−1∑
k=1

1

x` − yk

= − q

x` + 1
+

p

1− x`

for all ` = 1, . . . , n, or equivalently,

(7.5)
(
1− x2

`

)
f ′′(x`) + [q − p− (p + q)x`] f

′(x`) = 0, ` = 1, . . . , n.

With α = p− 1 and β = q − 1, the last relation means that

(7.6) (1− x2)f ′′(x) + [β − α− (α + β + 2)x]f ′(x)

is a polynomial of degree n which vanish for all zeros of f(x). Hence,
it is a multiple of f(x). By comparing the terms in xn, we get for the
constant factor the expression −n(n + α + β + 1). The polynomial
solutions of the resulting linear homogeneous differential equation of
the second order,(

1− x2
)
f ′′(x) + [β − α− (α + β + 2)x] f ′(x)

+ n (n + α + β + 1) f(x) = 0,
(7.7)

are the Jacobi polynomials P
(α,β)
n (x), and therefore f(x) is a constant

multiple of P
(α,β)
n (x) and g(y) is a constant multiple of [P

(α,β)
n ]′(y) =

(1/2)(n+α+β+1)P
(α+1,β+1)
n−1 (y). The last assertion of the theorem fol-

lows immediately from symmetry properties of the Jacobi polynomials
when p = q. �

7.2. Proof of Theorem 2. For a (p, q)-point Menke system of 2n
points, we have the conditions ∂ log τn/(∂x`) = 0 (` = 2, . . . , n) and
∂ log τn/(∂y`) = 0 (` = 1, . . . , n− 1), or

p

x` − 1
+

n−1∑
j=1

1

x` − yj

= 0, ` = 2, . . . , n,(7.8)

q

y` + 1
+

n∑
j=2

1

y` − xj

= 0, ` = 1, . . . , n− 1.(7.9)

Setting f(x) := (x− x2) · · · (x− xn) and g(x) = (x− y1) · · · (x− yn−1),
we have by equation (7.9) we have

(7.10)
f ′(y`)

f(y`)
=

n∑
j=2

1

y` − xj

= − q

1 + y`

, ` = 1, . . . , n− 1.

Since f(x) has no zeros at y1, . . . , yn−1, it follows that the polynomial
(1 + x)f ′(x) + pf(x) of degree (n− 1) vanish at x = y1, . . . , yn−1. Thus

(7.11) (1 + x) f ′(x) + qf(x) = (n− 1 + q) g(x).
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Similarly, we obtain

(7.12) (1− x) g′(x)− pg(x) = (1− n− p) f(x)

Eliminating g(x) from (7.11) and (7.12), we get(
1− x2

)
f ′′(x) + [(1− p + q)− (1 + p + q) x] f ′(x)

+ (n− 1) (p + q + n− 1) f(x) = 0.
(7.13)

For α = p− 1 and β = q the above equation represents the differential

equation of (n − 1)-st Jacobi polynomial P
(α,β)
n−1 (x). Thus, f(x) is a

constant multiple of P
(α,β)
n−1 (x). Similarly, by eliminating f(x) from

(7.11) and (7.12) and proceeding as before, we arrive at the differential
equation (

1− x2
)
g′′(x) + [(−1− p + q)− (1 + p + q) x] g′(x)

+ (n− 1) (p + q + n− 1) g(x) = 0.
(7.14)

By taking α = p and β = q − 1 it follows that g(x) is a constant

multiple of P
(α,β)
n−1 (x). �

7.3. Proof of Theorem 4. Clearly, an extremal system exists and,
via convexity argument, one can show it is unique. Maximizing the
function Un is equivalent with minimizing Fn:= log(1/Un). Defining
h(x1, . . . , xn):=(x1 + · · ·+ xn)/n−K, we have the following necessary
conditions for optimality:

(7.15) ∇xFn = −λ∇xh, ∇yFn = −λ∇yh,

or equivalently,

− p

x`

−
n−1∑
k=1

1

x` − yk

= −λ

n
, ` = 1, . . . , n,(7.16)

−
n∑

j=1

1

y` − xj

= 0, ` = 1, . . . , n− 1.(7.17)

Setting f(x) = (x − x1)(x − x2) · · · (x − xn) and g(y) = (y − y1)(y −
y2) · · · (y − yn−1), we get from (7.17) that

(7.18)
f ′(y`)

f(y`)
=

n∑
j=1

1

y` − xj

= 0, ` = 1, . . . , n− 1.

Since f(y`) 6= 0 for all ` = 1, . . . , n− 1, we have that f ′, a polynomial
of degree n − 1, has the same zeros as g. Thus, f ′(x) is a constant
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multiple of g(x). The latter and (7.16) yield

(7.19)
f ′′(x`)

f ′(x`)
=

g′(x`)

g(x`)
=

n−1∑
k=1

1

x` − yk

=
λ

n
− p

x`

, ` = 1, . . . , n,

or equivalently,

(7.20) x`f
′′(x`) +

(
p− λ

n
x`

)
f ′(x`) = 0, ` = 1, . . . , n.

The left-hand side of (7.20) is a polynomial of degree n in x that
vanishes at n points x1, . . . , xn; hence this polynomial is a constant
multiple of f(x). We get

(7.21) xf ′′(x) +

(
p− λ

n
x

)
f ′(x) + λf(x) = 0.

A change of variables u = cx with nc = λ and the substitution α+1 = p
lead to the associated Laguerre differential equation

(7.22) uw′′ + (α + 1− u) w′ + nw = 0,

whose polynomial solutions are the associated Laguerre polynomials

w = L
(α)
n (u). Thus, f(x) is a constant multiple of L

(α)
n (cx) and g(y)

is a constant multiple of the derivative f ′(y). The constant c can be
obtained from the relation

(7.23) cnK = cx1 + · · ·+ cxn = u1 + · · ·+ un

and the fact that the sum of zeros u1 + · · ·+ un equals n(n + α) which
follows from

L(α)
n (u) =

n∑
k=0

(−1)k

k!

(
n + α

n− k

)
uk =

(−1)n

n!
(u− u1) · · · (u− un) .

�
The proof of Theorem 5 is similar to the preceding argument and is

therefore omitted.

7.4. Proof of Theorem 11. Since the proof of the Theorem 8 is more
straightforward, we leave it to the reader and proceed with the proof
of Theorem 11.

It is easily seen that an extremal system exists and is unique. Let
h(x1, . . . , xn, y1, . . . , yn) be defined as the difference between the left-
hand side and the right-hand side of (4.12). Maximizing the function
Vn is equivalent with minimizing Fn:= log(1/Vn). We have the following
necessary conditions for optimality:

(7.24) ∇xFn = −λ∇xh, ∇yFn = −λ∇yh,
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or equivalently,

−
n∑

k=1

1

x` − yk

= −λx`

n
, ` = 1, . . . , n,(7.25)

−
n∑

j=1

1

y` − xj

= −λy`

n
, ` = 1, . . . , n.(7.26)

We introduce the polynomials f(x) := (x−x1)(x−x2) · · · (x−xn) and
g(y) := (y − y1)(y − y2) · · · (y − yn). Using (7.25) and (7.26), we get

f ′(y`)

f(y`)
=

n∑
j=1

1

y` − xj

=
λy`

n
, ` = 1, . . . , n,(7.27)

g′(x`)

g(x`)
=

n∑
k=1

1

x` − yk

=
λx`

n
, ` = 1, . . . , n.(7.28)

Since the expressions are symmetric (that is, can be obtained from each
other by substituting g for f and x for y), it is sufficient to consider one
relation. The expression f ′(x)− (λ/n)xf(x) is a polynomial of degree
n + 1 which vanishes at x = y1, . . . , yn. Hence

(7.29) f ′(x)− λ

n
xf(x) = c (x + ∆) g(x)

for some non-negative constant c and a real zero −∆. The constant c
and the zero −∆ can be obtained from comparing the coefficients of
the following expansions

−λ

n
xf(x) = −λ

n
xn+1 +

λ

n
(x1 + · · ·+ xn) xn + · · · ,

c (x + ∆) g(x) = cxn+1 − c (−∆ + y1 + · · ·+ yn) xn + · · · .

We obtain c = −λ/n and ∆ = ȳ− x̄, where we defined x̄:=x1 + · · ·+xn

and ȳ:=y1 + · · ·+ yn. Combining these facts we deduce that

f ′(x)− λ

n
xf(x) +

λ

n
(x + ∆) g(x) = 0,(7.30)

g′(x)− λ

n
xg(x) +

λ

n
(x−∆) f(x) = 0.(7.31)

Adding and subtracting these equations yield

(f + g)′ − λ

n
∆ (f − g) = 0,

(f − g)′ − 2
λ

n
x (f − g) +

λ

n
∆ (f + g) = 0.
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Setting 2F = f + g and 2G = f − g, we have

F ′(x)− λ∆

n
G(x) = 0,(7.32)

G′(x)− 2λ

n
xG(x) +

λ∆

n
F (x) = 0.(7.33)

Next, we take the derivative of both sides of (7.32) and use (7.33) to
derive the second order differential equation

(7.34) F ′′(x)− 2λ

n
xF ′(x) +

(
λ∆

n

)2

F (x) = 0.

A change of variables u =
√

λ/nx leads to the Hermite differential
equation

(7.35) w′′ − 2uw′ +
λ

n
∆2w = 0,

which has a polynomial solution if and only if λ∆2/n is an even positive
integer. In the case λ∆2 = 2n2 its solution is a constant multiple of
the Hermite polynomial Hn(u) of degree n. Thus,

(7.36) F (x) = Hn(

√
2n

∆
x).

From (7.32) we obtain

(7.37) G(x) =
∆

2n
F ′(x).

Consequently, f = F + G is a multiple of

(7.38) Hn(

√
2n

∆
x) +

√
2nHn−1(

√
2n

∆
x), n = 1, 2, . . . ,

and g = F −G is a multiple of

(7.39) Hn(

√
2n

∆
x)−

√
2nHn−1(

√
2n

∆
x), n = 1, 2, . . . ,

which also justifies the identity g(x) = (−1)nf(−x). The last identity
implies that ȳ = −x̄, ∆ = 2ȳ = −2x̄ (x̄ < ȳ follows from the ordering
of the points x1, . . . , xn and y1, . . . , yn), and

∑n
j=1 x2

j =
∑n

k=1 y2
k. This

allows us to relate the total moment of inertia L of the given Menke
system and the difference ∆ = ȳ − x̄. Using

(7.40) Hn(z) = n!

bn/2c∑
k=0

(−1)k

k!(n− 2k)!
(2z)n−2k ,
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we compare the coefficient of xn−2 in (7.38) and in

(7.41) f(x) = xn − x̄xn−1 +

(
x̄2 −

∑
j=1

x2
j

)
xn−2 + · · · .

Only the first Hermite polynomial in (7.38) needs to be considered.
That is

(7.42)

(√
8n

∆

)n

xn + n!
−1

(n− 2)!

(√
8n

∆

)n−2

xn−2 + · · · = cf(x).

We get

(7.43) c =

(√
8n

∆

)n

, −n− 1

8
∆2 = x̄2 −

n∑
j=1

x2
j ,

and it follows that
n∑

k=1

y2
k =

n∑
j=1

x2
j =

∆2

4
+

n− 1

2

∆2

4
=

n + 1

8
∆2.

From (4.12), we have

(7.44) 2nL =
n∑

k=1

x2
k +

n∑
j=1

x2
j =

n + 1

4
∆2,

or equivalently,

(7.45) ∆ =

√
8n

n + 1
L, n = 1, 2, . . . .

�

7.5. Proof of Theorem 12. It is easy to see that an extremal system
exists. Let

f(x) := (x− x1) (x− x2) · · · (x− xn) = xn − f1x
n−1 + · · · ,

g(y) := (y − y1) (y − y2) · · · (y − yn) = yn − g1y
n−1 + · · · .

Maximizing the function F o
n is equivalent to minimizing the function

V o
n := log(1/F o

n). The corresponding optimality conditions give

f ′(y`)

f(y`)
=

n∑
j=1

1

y` − xj

= − (p + n)

(
sy

y`

− λy

)
− p

y`

, ` = 1, . . . , n,

g′(x`)

g(x`)
=

n∑
k=1

1

x` − yk

= −n

(
sx

x`

− λx

)
, ` = 1, . . . , n.
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Since f(y`) 6= 0 for all ` = 1, . . . , n, we have for some constant A = An

(7.46)
xf ′(x)+[p + (p + n) sy − (p + n) λyx] f(x) = − (p + n) λy (x− A) g(x).

Similarly, for some constant B = Bn

(7.47) xg′(x) + n (sx − λxx) g(x) = −nλx (x−B) f(x).

To simplify notation we write

xf ′(x) + (a− bx) f(x) + b (x− A) g(x) = 0,(7.48)

xg′(x) + (c− dx) g(x) + d (x−B) f(x) = 0,(7.49)

where we define the quantities

(7.50) a := p + (p + n) sy, b := (p + n) λy, c := nsx, d := nλx.

It is easy to see that

(7.51) b (A + g1 − f1) = n + a, d (B + f1 − g1) = n + c.

In particular, it follows that

(7.52) bd (A + B) = (b + d) n + ad + bc.

Evaluating (7.48) and (7.49) at x = 0 and using that f and g do not
vanish at x = 0, we derive

(7.53) ac− bdAB = 0.

It is convenient to introduce new functions F and G via f = F + G
and g = F −G. Thus, (7.48) and (7.49) are transformed to

xF ′(x) + xG′(x) + (a + bA− 2bx) G(x) + (a− bA) F (x) = 0,(7.54)

xF ′(x)− xG′(x)− (c + dB − 2dx) G(x) + (c− dB) F (x) = 0.(7.55)

Adding and subtracting these two differential equations yields

2xF ′(x) + (a + c− bA− dB) F (x)

+ [a− c + bA− dB + 2 (d− b) x] G(x) = 0,
(7.56)

2xG′(x) + [a + c + bA + dB − 2 (b + d) x] G(x)

+ (a− c− bA + dB) F (x) = 0.
(7.57)

By eliminating F (x) from (7.56) and (7.57), we obtain

x2G′′(x) + (α− βx) xG′(x) + (γ − δx) G(x) = 0,

where

α := 1 + a + c, β := b + d,

γ := ac− bdAB, δ := b + d + ad + bc− bd (A + B) .
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Taking into account both relations (7.52) and (7.53), we derive

xG′′(x) + (α− βx) G′(x) + (n− 1) βG(x) = 0.

A change of variables u = βx leads to the Laguerre differential equation

(7.58) uh′′(u) + (α− u) h′(u) + (n− 1) h(u) = 0,

whose polynomial solution is a constant multiple of the generalized

Laguerre polynomial L
(α−1)
n−1 (u). Consequently, G(x) = C1L

(α−1)
n−1 (βx)

for some C1 6= 0. By relations (7.57), f = F + G and g = F −G, and
using properties of Laguerre polynomials, we obtain

− (a− c− bA + dB) f(x)

= C1

{
2βx

{
L

(α−1)
n−1

}′
(βx) + [2c + 2bA− 2βx] L

(α−1)
n−1 (βx)

}
= 2C1

{
nL(α−1)

n (βx)− (n + a− bA) L
(α−1)
n−1 (βx)

}
,

− (a− c− bA + dB) g(x)

= C1

{
2βx

{
L

(α−1)
n−1

}′
(βx) + [2a + 2dB − 2βx] L

(α−1)
n−1 (βx)

}
= 2C1

{
nL(α−1)

n (βx)− (n + c− dB) L
(α−1)
n−1 (βx)

}
.

Set ∆ := f1 − g1 (which is positive by (3.5)). By eliminating A and B
from Equations (7.51), (7.52), and (7.53), we derive

(7.59) (n + a + b∆) (n + c− d∆) = ac.

�

7.6. Proof of Theorem 14. Clearly, an extremal system exists. Pro-
ceeding as in the proof of Theorem 12, we define

f(x) :=
n∏

j=1

(x− xj) = xn − f1x
n−1 + f2x

n−2 − · · ·+ (−1)nx1 · · ·xn,

g(y) :=
n−1∏
k=1

(y − yk) = yn−1 − g1y
n−2 + g2y

n−3 − · · ·+ (−1)n−1y1 · · · yn−1.
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Maximizing the function F e
n is equivalent to minimizing the function

V e
n := log(1/F e

n). The corresponding optimality conditions give

f ′(y`)

f(y`)
=

n∑
j=1

1

y` − xj

= −n

(
sy

y`

− λy

)
, ` = 1, . . . , n− 1,

g′(x`)

g(x`)
=

n−1∑
k=1

1

x` − yk

= − (n− 1 + p)

(
sx

x`

− λx

)
− p

x`

, ` = 1, . . . , n.

Since f(y`) 6= 0 for all ` = 1, . . . , n−1 and g(x`) 6= 0 for all ` = 1, . . . , n,
we have

xf ′(x) + (a− bx) f(x) + b (x− A) (x−B) g(x) = 0,(7.60)

xg′(x) + (c− dx) g(x) + df(x) = 0,(7.61)

where

a := nsy, b := nλy, c := p + (n− 1 + p) sx, d := (n− 1 + p) λx.

The constants A and B follow from comparison of coefficients. We find
that

b (A + B) = n + a + b (f1 − g1) ,

bAB = (n + a) g1 − (n− 1 + a) f1 + b [f2 − g2 + (f1 − g1) g1] .

By eliminating f(x) from (7.60) and (7.61), we get

(7.62) x2g′′(x) + (α− βx) xg′(x) + (γ + δx) g(x) = 0,

where

α := 1 + a + c, β := b + d,

γ := ac− bdAB, −δ := d + ad + bc− bd (A + B) .

Since g is a polynomial of degree n−1 we get from (7.62) the conditions

(7.63) (n− 1) β = δ, γ = 0.

(These relations follow by equating the constant terms and equating
the xn−1-terms.) Thus, for x > 0 it is sufficient to consider

xg′′(x) + (α− βx) g′(x) + (n− 1) βg(x) = 0.

A change of variables u = βx and g(x) = h(u) leads to the Laguerre
differential equation

(7.64) ug′′(x) + (α− u) h′(x) + (n− 1) h(x) = 0,

whose polynomial solution is given by a constant multiple of the gen-

eralized Laguerre polynomial L
(α−1)
n−1 (u). Hence g(x) = C1L

(α−1)
n−1 (βx)
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for some constant C1 6= 0. By (7.61) and a differentiation formula for
Laguerre polynomials

− (d/C1) f(x) = (c− dx) L
(α−1)
n−1 (βx)− βxL

(α)
n−2(βx).

An alternative representation, obtained by using a second differentia-
tion formula and a three-term recurrence relation, is given by

(7.65) − d

C1n
f(x) = L(α−1)

n (βx)−
(

1 +
a

n
− b

n
x

)
L

(α−1)
n−1 (βx).

The centroids can be obtained by using explicit representations of the
Laguerre polynomials. However, it is easier to use the relations between
AB, A+B, and the quantities f1 and g1. Clearly, d(f1−g1) = n−1+c
and it is well-known that u1 + · · ·+ un−1 = (n− 1)(n + α− 2), where

u1, . . . , un−1 are the zeros of L
(α−1)
n−1 (βx). Thus, βg1 = (n− 1)(n + α−

2). �

7.7. Proof of Theorem 16. Maximizing the function Ge
n is the same

as minimizing V e
n := log(1/Ge

n). Defining

f(x) :=
n∏

j=1

(x− xj) = xn − f1x
n−1 + · · · ,

g(y) :=
n∏

k=1

(y − yj) = yn − g1y
n−1 + · · · ,

by the optimality conditions, we have that

g′(x`)

g(x`)
=

n∑
k=1

1

x` − yk

= −n
w′(x`)

w(x`)
= 2nλxx`, ` = 1, . . . , n,(7.66)

f ′(y`)

f(y`)
=

n∑
j=1

1

y` − xj

= −n
w′(y`)

w(y`)
= 2nλyy`, ` = 1, . . . , n.(7.67)

Since both f(y`) 6= 0 and g(x`) 6= 0 for all ` = 1, . . . , n and proceeding
as usual, we obtain

f ′(x)− 2axf(x) + 2a (x− A) g(x) = 0,

g′(x)− 2bxg(x) + 2b (x−B) f(x) = 0,

where a := nλy and b := nλx. Comparing the coefficients of xn, we get

(7.68) B = −A = ∆ := g1 − f1(> 0).
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Introducing the functions F and G via f = F + G and g = F −G, we
have

(F + G)′(x) + 2a∆F (x)− 2a (∆ + 2x) G(x) = 0,

(F −G)′(x)− 2b∆F (x)− 2b (∆− 2x) G(x) = 0.

Adding and subtracting these equations, we obtain

F ′(x) + (a− b) ∆F (x)− [(a + b) ∆ + 2 (a− b) x] G(x) = 0,

G′(x)− [(a− b) ∆ + 2 (a + b) x] G(x) + (a + b) ∆F (x) = 0.(7.69)

Eliminating G(x) from the above equations we get

(7.70) G′′(x)− 2 (a + b) xG′(x)− 2
(
a + b− 2ab∆2

)
G(x) = 0.

A change of variables u = βx, β =
√

a + b, leads to the Hermite
differential equation

h′′(u)− 2uh′(u) + 2
[
2ab∆2/β2 − 1

]
h(u) = 0,

which has a polynomial solution if and only if the square bracketed
expression is equal to an integer ≥ 0. Since we know that G is a
polynomial of degree n− 1, we derive the relation

(7.71) 2ab∆2 = (a + b) n,

and thereby deduce that h is a constant multiple of the Hermite poly-
nomial Hn−1. Hence, G(x) = C1Hn−1(βx) for some C1 6= 0. By (7.69)
and expressing the derivative of a Hermite polynomial in terms of Her-
mite polynomials, we get

F (x) = C1

{
1

β∆
Hn(βx) +

a− b

a + b
Hn−1(βx)

}
.

Consequently, f = F + G is a constant multiple of

(7.72) Hn(βx) + 2a (∆/β) Hn−1(βx)

and g = F −G is a constant multiple of

(7.73) Hn(βx)− 2b (∆/β) Hn−1(βx).

Furthermore,

2a (∆/β) =
√

2 (a/b) n, 2b (∆/β) =
√

2 (b/a) n.

The symmetry of the weighted Menke points follows from the properties
of the Hermite polynomials. �
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7.8. Proof of the Theorem 18. Proceeding as in the proof of The-
orem 16, we define

f(x) :=
n∏

j=1

(x− xj) = xn − f1x
n−1 + f2x

n−2 − · · · ,

g(y) :=
n−1∏
k=1

(y − yk) = yn−1 − g1y
n−2 + g2y

n−3 − · · · .

By the optimality conditions, we have

f ′(y`)

f(y`)
=

n∑
j=1

1

y` − xj

= 2nλyy`, ` = 1, . . . , n− 1,

g′(x`)

g(x`)
=

n−1∑
k=1

1

x` − yk

= 2 (n− 1) λxx`, ` = 1, . . . , n.

Consequently,

f ′(x)− 2axf(x) + 2a (x− A) (x−B) g(x) = 0,(7.74)

g′(x)− 2bxg(x) + 2bf(x) = 0,(7.75)

where we define a := nλy and b := (n−1)λx. By eliminating f(x) from
(7.74) and (7.75), we get

g′′(x)− 2 (a + b) xg′(x)

− 2 [b + 2abAB − 2ab (A + B) x] g(x) = 0,

which, on comparing highest order terms, implies the condition

(7.76) A + B = 0.

A change of variables u = βx with β =
√

a + b now leads to the Hermite
differential equation

(7.77) h′′ − 2uh′ + 2
b + 2abAB

a + b
h = 0.

It has a polynomial solution of degree n− 1 if and only if

(7.78)
b + 2abAB

a + b
= n− 1.

Thus, g(x) = C1Hn−1(βx) for some C1 6= 0. By (7.75) and properties
of Hermite polynomials

2bβf(x) = C1

{
2bβxHn−1(βx)− 2 (n− 1) β2Hn−1(βx)

}
= C1 {bHn(βx)− 2 (n− 1) aHn−2(βx)} .

The symmetry relations for the weighted Menke points follows from
properties of the Hermite polynomials. �
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