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Abstract
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Fekete points are investigated. As an application we obtain the separation of the minimal s-
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1 Introduction and main results

In this article we shall further develop and apply the theory of minimal s-energy problems for Riesz

spherical potentials with external �eld, where the potential varies inversely with respect to the

s-power of the Euclidean distance between points. The restriction to spherical potentials is mainly

motivated by the applications to minimal energy points on the sphere, but the analysis may be

carried out on more general manifolds, as well as with other kernels. This we intend to address in

a subsequent work. For more on the general theory of equilibrium potentials with external �elds

we refer to the recent works of Zorii [22], [23], and [24].

As the main application of our results we derive optimal order separation of the minimal s-

energy points on the sphere Sd � Rd+1 for the range of the parameter d� 2 < s < d. The explicit

form of our separation constant is new even for the classical case s = d� 1 considered by Dahlberg

[2] in 1978, and improves upon the (mainly) implicit constants obtained in [15] by Kuijlaars, Sa¤,

and Sun for the cases d � 1 < s < d. In addition, for the important particular case of S2, our

results with what was previously known settle the question of well-separation of minimal s-energy

points for all s � 0, except for the critical value s = 2.

1.1 Energy problems on the sphere with external �elds.

Let Sd := fx 2 Rd+1 : jxj = 1g be the unit sphere in Rd+1, where j � j denotes the Euclidean norm.

Given a compact set E � Sd, consider the classM(E) of unit positive Borel measures supported

on E. For 0 < s < d the Riesz s-potential and Riesz s-energy of a measure � 2 M(E) are given

respectively by

U�s (x) :=

Z
ks(x; y) d�(y); Is(�) :=

Z Z
ks(x; y) d�(x)d�(y);
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where ks(x; y) := jx� yj�s is the so-called Riesz kernel. For the case s = 0 we use the logarithmic

kernel k0(x; y) := log(1=jx� yj) instead. The s-capacity of E is then de�ned as Cs(E) := 1=Ws(E)

for s > 0, where Ws(E) := inffIs(�) : � 2 M(E)g. A property is said to hold quasi-everywhere

(q.e.), if the exceptional set has s-capacity zero. When Cs(E) > 0, there exists a unique minimizer

�E = �s;E , called the s-equilibrium measure for E, such that Is(�E) = Ws(E). For more details

see [16, Chapter II].

We shall refer to a non-negative lower semi-continuous function Q : Sd ! [0;1], such that

Q(x) <1 on a set of positive Lebesgue surface measure, as an external �eld. The weighted energy

associated with Q(x) is then given by

IQ(�) := Is(�) + 2

Z
Q(x) d�(x): (1.1)

De�nition 1.1 The energy problem on the sphere in the presence of the external �eld Q(x) refers

to the minimal quantity

VQ := inf
n
IQ(�) : � 2M(Sd)

o
: (1.2)

A measure �Q = �Q;s 2 M(Sd) such that IQ(�Q) = VQ is called an s-equilibrium measure

associated with Q(x).

We �rst state a Frostman-type theorem which deals with the existence and uniqueness of the

measure �Q, as well as a criterion that characterizes �Q in terms of its potential. The proof of this

theorem follows closely the proof of [21, Theorem I.1.3]. It could also be derived as a particular

case from the more general results in [22] (see in particular Theorem 1 and Proposition 1).

Theorem 1.2 Let 0 � s < d. For the minimal energy problem on Sd with external �eld Q(x) the

following properties hold:
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(a) VQ is �nite.

(b) There exists a unique s-equilibrium measure �Q = �Q;s 2 M(Sd) associated with Q(x).

Moreover, the support SQ of this measure is contained in the compact set EM := fx 2 Sd :

Q(x) �Mg for some M > 0.

(c) The measure �Q satis�es the variational inequalities

U
�Q
s (x) +Q(x) � FQ q:e: on Sd; (1.3)

U
�Q
s (x) +Q(x) � FQ for all x 2 SQ; (1.4)

where

FQ := VQ �
Z
Q(x) d�Q(x): (1.5)

(d) Inequalities (1.3) and (1.4) completely characterize the equilibrium measure �Q in the sense

that if � 2M(Sd) is a measure with �nite s-energy such that for some constant C we have

U�s (x) +Q(x) � C q:e: on Sd; (1.6)

U�s (x) +Q(x) � C for all x 2 supp(�); (1.7)

then � = �Q and C = FQ.

Remark For a given compact subset E � Sd with positive capacity, we may consider a problem

similar to (1.2) but with � 2M(E) instead. For the external �eld Q on E the same theorem holds

with E instead of Sd (one can set Q � 1 on Sd n E and use the theorem above).

In the case when d � 1 � s < d we are able to analyze further the characterization property

from Theorem 1.2 (d). More precisely, the following result holds.
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Theorem 1.3 Let d� 1 � s < d, Q be an external �eld on Sd, and FQ be de�ned as in (1.5). For

any measure � 2M(Sd) we have

\ inf
x2SQ

"(U�s (x) +Q(x)) � FQ; (1.8)

and

sup
x2supp(�)

(U�s (x) +Q(x)) � FQ; (1.9)

where \ inf " means that the in�mum is taken quasi-everywhere. If equality holds in both inequalities,

then � = �Q.

Remark The proof of this theorem utilizes the Principle of Domination for Riesz potentials,

which in general holds for the parameter range d � 1 � s < d + 1 and measures supported on

any subsets of Rd+1. Since the measures in our case are supported on the d-dimensional manifold

Sd, a restricted version of the Principle of Domination holds for d � 2 < s < d (see Lemma 5.1).

Nonetheless, it remains an open problem whether Theorem 1.3 holds for this larger range. However,

for the particular case of Riesz external �elds Qa(x) = Qa;s(x) := ks(x; a), where a 2 Sd is �xed,

we are able to establish this assertion directly. Because of its importance for the applications to

the separation of minimum energy points, we formulate the result as a separate theorem.

Theorem 1.4 For any positive multiple of a Riesz external �eld, that is Q(x) := cQa;s(x) with

c > 0, the conclusions of Theorem 1.3 hold for d� 2 < s < d.

Observe that if �a is the unit Dirac-delta measure supported at a, then the Riesz external �eld

is also the Riesz potential of �a, i.e. Qa;s(x) = U �as (x). Henceforth, we will assume that the point

a is the North Pole of Sd.
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1.2 Minimal s-energy points on the sphere and their separation

The initial motivation for considering the minimal energy problem with external �eld, as well as the

main application in this paper, is related to minimal s-energy points and their separation. Given

a con�guration of N points on the unit sphere !N = fx1; x2; : : : ; xNg � Sd we de�ne its discrete

Riesz s-energy as

Es(!N ) :=
X

1�i6=j�N
ks(xi; xj); s � 0; (1.10)

where ks(x; y) is the Riesz kernel for s > 0 and the logarithmic kernel for s = 0 (see Section

1.1). A con�guration !�N = !�N;s = fx�1; x�2; : : : ; x�Ng that minimizes (1.10) is called an N -point

minimal s-energy arrangement. Such arrangements serve as �well-distributed" point sets on the

sphere and have been a source of intensive investigations with a wide variety of applications in

chemistry, physics, crystallography, morphology, etc. (see [1], [9], [13], [18], [19]). The celebrated

Thomson problem [18] is the special case d = 2, s = 1. Here we are particularly interested in

the separation properties of such minimal arrangements. We say that a sequence of con�gurations

!N = fx(N)1 ; x
(N)
2 ; : : : ; x

(N)
N g � Sd, N = 2; 3; : : : is well separated if there is a positive constant C

independent of N such that

�N = �(!N ) := min
i6=j

jx(N)i � x(N)j j � C

N1=d
: (1.11)

Among the most studied extremal arrangements in the literature are the best-packing points,

in which case the smallest distance between all the various pairs of N points is maximized. Such

points, for �xed N , correspond to limiting minimal s-energy arrangements as s!1. When d = 2,

Habicht and van der Waerden [11] have not only established the separation for these points, they

have actually found lim
p
N�N . Another distinguished sequence of con�gurations is the Fekete

points (s = d � 1), and their well separated property was shown by Dahlberg [2] for any d. In
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[14], Kuijlaars and Sa¤ among other results handled the case s � d, but for s = d they obtained

the weaker inequality �N � C=(N logN)1=d. It is still an open problem whether one can omit the

logN term from this estimate. For the minimal s-energy arrangements when d = 2 and s = 0,

called logarithmic points, Rakhmanov, Sa¤, and Zhou in [20] showed that �N � (3=5)=
p
N , which

was subsequently improved by Dubickas [6] to �N � (7=4)=
p
N , and Dragnev [5], who obtained

the estimate �N � 2=
p
N � 1.

In this paper we shall prove that N -point minimal s-energy arrangements are well separated

for d � 2 < s < d. More precisely, if !�N = fx�1; x�2; : : : ; x�Ng is an N -point minimal s-energy

arrangement and

�N;s;d = �(!
�
N ) := min

i6=j
jx�i � x�j j (1.12)

we have the following result.

Theorem 1.5 For d�2 < s < d, any sequence f!�Ng1N=2 of minimal s-energy point con�gurations

is well-separated. More precisely, for any N(> 2)-point minimal s-energy con�guration !�N for Sd

we have

�N;s;d �
Ks;d

N1=d
; Ks;d :=

�
2B(d=2; 1=2)

B(d=2; (d� s)=2)

�1=d
=

21�s=d

Is(�=k�k)1=d
; (1.13)

where B(x; y) :=
R 1
0 u

x�1(1� u)y�1 du is the Beta function. In particular, when s = d� 1

�N;d�1;d �
21=d

N1=d
; (1.14)

and, when d = 2

�N;s;2 �
2
p
1� s=2p
N

: (1.15)

Remark For the case s = d� 2 > 0 we can deduce from the above theorem that there is at least

one sequence of minimal (d�2)-energy con�gurations which satis�es (1.13). Indeed, let us consider
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a sequence s1; s2; : : : ; sn; � � � & d� 2 and let f!�N;ig1N=2 be a minimal si-energy point con�guration

sequence which satis�es (1.13). For every �xed N from the collection of con�gurations f!�N;ig1i=1,

we select a subsequence, so that !�N;i ! !�N as i!1. From the continuity of the discrete energy

functional it is easy to derive that !�N is a minimal (d � 2)-energy con�guration, which satis�es

(1.13) with Kd�2;d. Then the sequence f!�Ng1N=2 has the desired properties.

We note that in a concurrent independent work [15] the separation property was established

for d� 1 < s < d, but no explicit forms of the separation constants were given there. The explicit

forms of Ks;d in (1.13)-(1.15) here are new, even for the classical case s = d � 1. The separation

property in the range d � 2 < s < d � 1 is also established for the �rst time here. Thus, except

for s = 2, all sequences of minimal s-energy con�gurations are well separated for the classical case

of S2. When d = s = 2 the estimate from [14] is dN;2 � Kd=
p
N logN , and it is open whether

the logN term can be dropped. Unfortunately, our result doesn�t help in this direction, because

in (1.15) Ks;d ! 0 as s! 2. Finally, we note that when d = 2 and s = 0 the estimate (1.15) is the

same as the one in [5].

Remark We are grateful to J. Brauchart for pointing out that for d = 2, a careful analysis of the

proof of Theorem 1.5 shows that N can be replaced by N � 1 in (1.13)-(1.15).

We recall the approach from [5]. Let us �x N and choose one of the points of a minimal energy

arrangement !�N to be at the North Pole a. Next we apply stereographic projection with center a

of the unit sphere onto the extended complex plane. The image of a is the point at in�nity and

the images z1; z2; : : : ; zN�1 of the rest of the points become weighted Fekete points in the complex

plane with an external �eld QN (z) = (N � 1) log(1 + jzj2)=(2(N � 2)) (see [21, Chapter 3]). But

the weighted Fekete points, no matter how many points we consider, all lie in the support of the
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equilibrium measure of the corresponding weighted energy problem, which turns out to be the disk

fz : jzj �
p
N � 2g. Therefore, z1; z2; : : : ; zN�1 belong to this disk, and thus, stay away from the

point at in�nity, which in turn implies the separation of a from x�1; x
�
2; : : : ; x

�
N�1.

In this paper our approach is somewhat similar. The di¤erence is that instead of project-

ing we solve the discrete energy problem directly on the sphere. Let N be �xed and let !�N =

fx�1; x�2; : : : ; x�Ng be a minimal s-energy con�guration, s > 0. Without loss of generality we may

place x�N at the North Pole a and let

QN (x) = QN;a;s(x) := ks(x; a)=(N � 2); N > 2: (1.16)

Since this �eld is a multiple of the Riesz external �eld, we will be able to utilize Theorem 1.4.

De�nition 1.6 Let Q(x) be an external �eld and n � 2 be an arbitrary natural number. A set of

n points Rn := fy1; y2; : : : ; yng � Sd that solves the discretized minimization problem

minimize

8<: X
1�i6=j�n

[ks(xi; xj) +Q(xi) +Q(xj)] : xi 2 Sd; i = 1; 2; : : : ; n

9=; : (1.17)

is called an n-point minimal Q-weighted Riesz set.

We note that the problem (1.17) is a discretized version of (1.2). The existence of Riesz sets

is an easy consequence of the lower semi-continuity of the energy functional and the compactness

of the unit sphere. Observe, that in the particular case when Q(x) = QN (x) and n = N � 1 the

points fx�1; x�2; : : : ; x�N�1g form an (N � 1)-point QN -weighted Riesz set.

The normalized counting measure of an n-point set En = fx1; x2; : : : ; xng is de�ned as

�En :=
1

n

nX
i=1

�xi ;
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where �x is the Dirac-delta measure with unit mass at x. In addition, denote with hEn(x) the

weighted potential of �En , i.e.

hEn(x) := U
�En
s (x) +Q(x) =

1

n

nX
i=1

1

jx� xijs
+Q(x): (1.18)

As an application of Theorems 1.3 we deduce the following theorem.

Theorem 1.7 Let d� 1 � s < d. Let En � Sd be a set of n distinct points, and suppose that the

associated weighted potential satis�es the inequality

hEn(x) �M q:e: on SQ; (1.19)

for some constant M . Then for all x 2 Rd+1 we have

U
�En
s (x) �M + U

�Q
s (x)� FQ: (1.20)

Furthermore,

hEn(x) �M q:e: on Sd: (1.21)

If Q(x) = cQa(x), c > 0, then Theorem 1.4 allows us to extend the range of the parameter s.

Theorem 1.8 Let d � 2 < s < d. Let Q(x) = cQa(x), En be a set of n points, and suppose that

the associated weighted potential satis�es the inequality

hEn(x) �M q:e: on SQ; (1.22)

for some constant M . Then for all x 2 Sd we have

U
�En
s (x) �M + U

�Q
s (x)� FQ: (1.23)
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Theorems 1.7 and 1.8 can be applied to show that the minimal Q-weighted Riesz energy sets

from De�nition 1.6 are contained in the essential support of �Q

S�Q := fx 2 Sd : U
�Q
s (x) +Q(x) � FQg: (1.24)

Corollary 1.9 For any d � 1 � s < d and any positive integer n, the weighted Riesz sets Rn are

contained in the essential support S�Q. Moreover, when Q(x) = cQa(x), this is true for d�2 < s < d.

1.3 The equilibrium problem for QN(x)

In the paragraph after De�nition 1.6, we noted that if !�N = fx�1; x�2; : : : ; x�Ng is a minimal s-energy

con�guration and x�N is �xed at the North Pole a, then fx�1; x�2; : : : ; x�N�1g forms an (N � 1)-point

QN -weighted Riesz set. In light of Corollary 1.9 we are able to conclude that these points belong

to the essential support S�QN (see (1.24)). In this case the essential support coincides with the

equilibrium support SQN (see Theorem 1.10). Therefore, since x�N was arbitrary we get that

�N;s;d � dist(a; SQN ):

This latter observation motivates us to consider the equilibrium problem for the Riesz external �eld

QN (x) de�ned in (1.17).

Throughout the paper we shall denote by �(x) = �d(x) the Lebesgue surface measure on Sd.

For future reference, we recall that the total mass of �(x) is given by

Wd+1 := k�k =
Z
Sd
d�(x) =

2�(d+1)=2

�((d+ 1)=2)
: (1.25)

For a �xed r > 0 let Cr be the polar cap fx 2 Sd : jx � aj < rg and �r be its complement

Sd n Cr. For y 2 Cr denote by

�y = �y;r := Bal(�y;�r)
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the balayage measure of the unit Dirac-delta measure �y onto �r. When y = a we simply write

�r := �a = �a;r:

In Section 3 we show that for d� 2 < s < d the balayage measure �y is well-de�ned and absolutely

continuous with respect to the Lebesgue surface measure � restricted to �r. Let �0y(x) be its density,

i.e.

d�y(x) = �
0
y(x)d�j�r :

We note that

U
�y
s (z) = U

�y
s (z) = 1=jz � yjs; z 2 �r (1.26)

and on the rest of the sphere Sd we have U �ys (z) < U
�y
s (z) (see [16, p. 401]).

Next, we de�ne the measure �r supported on �r as

d�r(x) :=

�Z
Cr

�0y(x) d�(y) + 1

�
d�(x)j�r : (1.27)

It is easy to verify that the potential of �r is constant on �r. Indeed, using (1.26) for any z 2 �r

we obtain

U�rs (z) =

Z
�r

1

jz � xjs

�Z
Cr

�0y(x) d�(y)

�
d�(x) +

Z
�r

1

jz � xjs d�(x)

=

Z
Cr

U
�y
s (z)d�(y) +

Z
�r

1

jz � xjs d�(x)

=

Z
Sd

1

jz � yjs d�(y) =
2d�s�d=2�((d� s)=2)

�(d� s=2) =Wd+1Is(�=k�k): (1.28)

Therefore, the measure from (1.27) is a multiple of the equilibrium measure on �r.

Consider now the class of signed measures, depending on r

�r = �r;s :=
1 + k�rk

N�2
k�rk

�r �
1

N � 2�r: (1.29)
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For

r0 = r0;s := minfr : �r � 0g (1.30)

we obtain the following result which is used to prove Theorem 1.5.

Theorem 1.10 Let d� 2 < s < d. Then �QN = �r0 and SQN = �r0. Moreover, �N;s;d � r0.

The paper is organized as follows. In Section 2 we prove Theorems 1.3 and 1.7, postponing the

proofs of Theorems 1.4, 1.5, 1.8, and Corollary 1.9 until Section 5. Section 3 investigates balayage

and equilibrium measures of spherical caps. The proof of Theorem 1.10 is in Section 4.

2 Energy problems on the sphere with external �elds - Proofs

We begin with the proof of Theorem 1.3. For this we need the Principle of Domination for Riesz

potentials. The following theorem of Landkof can be found in [16, Theorem 1.29].

Theorem L Let p�2 � s < p. Suppose � is a positive measure in Rp whose potential U�s is �nite

�-almost everywhere, and that f(x) is a (p � s)-superharmonic function. Then if the inequality

U�s (x) � f(x) holds �-almost everywhere, it holds everywhere in Rp.

Proof of Theorem 1.3. Suppose to the contrary that there is a measure � 2 M(Sd) such that

(1.8) fails, i.e. there is a constant L1 > FQ such that

U�s (x) +Q(x) � L1; q:e: on SQ:

Applying (1.4) we obtain then that

U�s (x) � U
�Q
s (x)� FQ + L1 q:e: on SQ:
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From Theorem 1.2 we have that �Q has �nite s-energy, therefore its support SQ will have positive s-

capacity. Hence, the s-equilibrium measure �SQ of SQ is well-de�ned. Let � := (L1�FQ)Cs(SQ)�SQ .

Then U�s (x) = L1 � FQ q.e. on SQ. Thus,

U�s (x) � U
�Q+�
s (x) q:e: on SQ: (2.1)

Observe that both � and �Q have �nite s-energy, which implies that the inequality will be true

(�Q + �)-a.e. Since for this range of s, potentials are (d + 1 � s)-superharmonic, we can apply

Theorem L with p = d+ 1 to derive the inequality (2.1) for all x 2 Rd+1. Multiplying by jxjs and

letting jxj ! 1 we obtain that 1 � 1 + (L1 � FQ)Cs(SQ), which is a contradiction.

We derive (1.9) similarly, utilizing (1.3) instead. Let there be a measure � 2 M(Sd) and a

constant L2 < FQ, such that

U�s (x) +Q(x) � L2 ; x 2 supp(�):

Integration with respect to � yields that � has �nite s-energy (recall that FQ is �nite and Q(x) � 0).

This implies that Cs(supp(�)) > 0, and that the measure �supp(�) is well-de�ned. From (1.3) we

get

U
�Q
s (x) � U�s (x) + FQ � L2 q:e: on supp(�):

With � := (FQ � L2)Cs(supp(�))�supp(�) we can write

U
�Q
s (x) � U�+�s (x) q:e: on supp(�):

Applying again the Principle of Domination we obtain a similar contradiction.

Finally, suppose equality holds in both (1.8) and (1.9). Using (1.4) we can extend (1.8) to

U�s (x) � FQ �Q(x) � U
�Q
s (x) q:e: on SQ;
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which from the Principle of Domination can be extended to

U�s (x) � U
�Q
s (x) on Rd+1:

In particular, from (1.3) we have U�s (x)+Q(x) � U
�Q
s (x)+Q(x) � FQ q.e. on Sd. Using (1.9) and

Theorem 1.2 (d) we conclude that � = �Q. 2

As a consequence of Theorem 1.3 we can deduce Theorem 1.7.

Proof of Theorem 1.7. From Theorem 1.3 we conclude thatM � FQ. Using (1.4), the inequality

(1.19) yields that

U
�En
s (x) + FQ �M � U�Qs (x) q:e: on SQ:

Now let � be a multiple of the Lebesgue surface measure on Sd, so that U�s (x) = FQ �M for

all x 2 Sd. Then

U
�En+�
s (x) � U�Qs (x) q:e: on SQ:

Since �Q has a �nite s-energy, this inequality holds �Q almost everywhere. The aforementioned

principle of domination implies (1.20).

Finally, we note that (1.21) is an immediate consequence of (1.20) and (1.3). 2

3 Balayage and equilibrium measures for spherical caps

In this section we lay the potential-theoretical groundwork for the proofs of Theorems 1.5 and 1.10.

We have to �nd the balayage measures �y and �r, as well as the equilibrium measure �r (see (1.27)).

We shall follow the approach to balayage measures for Riesz kernels as given by Landkof in [16,

Chapter IV, §5].
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Let a� be the South Pole of Sd. With the notation of the previous section, we �x y 2 Cr and

consider the Kelvin transform Ky : Sd ! Rd+1, called also stereographic projection or inversion

with pole y and radius
p
2, i.e. if x� := Ky(x) is the image of x under this transform, we have that

x� lies on the ray determined by y and x, and

jy � xj � jy � x�j = 2: (3.1)

The transformation of the distance is given by the formula

jx� � z�j = 2jx� zj
jx� yjjz � yj : (3.2)

The image of Sd is a hyperspace orthogonal to the radius-vector y, which we can identify with

Rd in a natural way. Let x1 and x2 be points that minimize, respectively maximize, the distance

from y to the hypersphere (hypercircle) @�r. Clearly, if y 6= a; a� the points are unique and lie

on the two-dimensional plane determined by a; a�, and y. Then Ky(�r) is a hyperball Dy with

diameter x�1x
�
2. Let b

� be the center and Ry be the radius of this hyperball. Since jx�1�b�j = jx�2�b�j

we obtain using (3.2) that

jy � x1j
jy � x2j

=
jb� x1j
jb� x2j

: (3.3)

Let yw be the bisector of 6 y in 4x1x2y. Then (3.3) implies that bw will be the bisector of 6 b in

4x1x2b. Thus, we can construct b from y as follows. First, we construct w as the intersection of

the segments y a� and x1x2, and then b as the intersection of the ray aw! with the sphere Sd. If

x0 is the midpoint of x1x2 we see that the quadrilateral x0w y a can be inscribed in a circle with

diameter aw. Therefore, 6 x0aw = 6 x0yw. If y0 is the intersection of the ray yx0! with the sphere,

then y0 is symmetrical to b with respect to aa�.

Next, we recall the de�nition of the Kelvin transform of measures. Given a measure � with no
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point mass at y, its Kelvin transformation �� = Ky(�) is a measure de�ned by

d��(x�) :=
2s=2

jx� yjsd�(x): (3.4)

Clearly, (3.1) and (3.4) imply the duality (��)� = �.

We now focus on determining the balayage �y of the Dirac-delta measure �y onto �r. In general,

the existence of this balayage measure onto a compact set is guaranteed only for d� 1 � s < d, but

we will show that in our particular case when the set is the complement of a spherical cap (which

is a spherical cap itself), it exists for d� 2 < s < d.

Let �y be the equilibrium measure of the hyperball Dy, normalized so that its potential is one.

From [16, Appendix 1] (with p = d, 0 < � = d� s < 2), we have that

d�y(x
�) = As;d

dx�

(R2y � jx� � b�j2)
d�s
2

; jx� � b�j � Ry; (3.5)

where dx� is the regular Lebesgue measure in the hyperplane (restricted to the ball jx�� b�j � Ry)

and

As;d :=
�(d=2) sin(�(d� s)=2)

�d=2+1
: (3.6)

The balayage measure in question is then

�y := 2
�s=2(�y)

�: (3.7)

Indeed, for any z 2 �r its potential satis�es

U
�y
s (z) =

Z
�r

1

jx� zjs d�y(x)

=

Z
Dy

jx� � yjsjz� � yjs
2sjx� � z�js

1

jx� � yjs d�y(x
�)

=
jz� � yjs
2s

U
�y
s (z

�) =
1

jz � yjs = U
�y
s (z): (3.8)
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Observe, that on the rest of the sphere Sd we have U �ys (z) < U
�y
s (z) (see [16, p. 401, (A.1) and

(A.2)]).

In the �ve steps below we determine the quantities involved in the de�nition of �r from (1.29).

Step 1. The balayage measure �y.

To compute �y explicitly, we �nd from (3.5) and the de�nition of �y (3.7) that

d�y(x) = As;d
dx�

jy � x�js(jx�1 � b�j2 � jx� � b�j2)
d�s
2

; jx� � b�j � Ry; (3.9)

where As;d is the constant de�ned in (3.6). The relation between the hyperplanar Lebesgue measure

dx� and the surface Lebesgue measure d�(x) on the unit sphere Sd is given by

dx�

jy � x�jd =
d�(x)

jy � xjd : (3.10)

Since jx�1 � b�j = jx�1 � x�2j=2, using (3.1) and (3.2), from (3.9) and (3.10) we obtain

d�y(x) = As;d

�
jy � xj2 jx0 � x1j2
jy � x1j2 jy � x2j2

� jx� bj
2

jy � bj2

� s�d
2 d�(x)

jx� yjd ; x 2 �r: (3.11)

Because the points x0; x1; x2; y and b all lie in one two-dimensional plane, in cylindrical coordinates

we have:

x = (
p
1� u2 x; u); y = (

p
1� t2 y; t); b = (

p
1� q2 y; q); x1;2 := (�

q
1� t20 y; t0); x0 = (0; t0);

where x; y 2 Sd�1. Note that in these coordinates Cr = fy : t > t0g and �r = fx : u � t0g.

Recall that y0 is symmetrical to b about the aa�-axis. From jy0�x0jjy�x0j = jx1�x0jjx2�x0j we

can �nd q in terms of t and t0, namely

q =
2t0 � t(1 + t20)
1� 2tt0 + t20

:

We evaluate that p
1� q2 =

p
1� t2(1� t20)
1� 2tt0 + t20

;
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and

jy � x1j2jy � x2j2 = 4(t� t0)2:

The quantity jy � bj2 is found to be

jy � bj2 = 4(t� t0)2
1� 2tt0 + t20

:

The density of �y from (3.11) now becomes

d�y(x) = As;d

�
jy � xj2(1� t20)
4(t� t0)2

� jx� bj
2(1� 2tt0 + t20)
4(t� t0)2

� s�d
2 d�(x)

jx� yjd

= As;d

�
2(1� x � y)(1� t20)� 2(1� x � b)(1� 2tt0 + t20)

4(t� t0)2

� s�d
2 d�(x)

jx� yjd

= As;d

�
4t0(t� t0)� 2x � (y(1� t20)� b(1� 2tt0 + t20))

4(t� t0)2

� s�d
2 d�(x)

jx� yjd

= As;d

�
4t0(t� t0)� 4u(t� t0)

4(t� t0)2

� s�d
2 d�(x)

jx� yjd

= As;d

�
t0 � u
t� t0

� s�d
2 d�(x)

jx� yjd =: �
0
y(x)d�(x); x 2 �r: (3.12)

The latter representation shows that �y is absolutely continuous with respect to the restriction of

the Lebesgue surface measure � to �r.

Step 2. The measure �r.

To �nd the measure �r, we observe that in this case t = 1 and jy � xj2 = 2(1� u). In addition,

recall that in polar coordinates we have the relation

d�(x) = d�d(x) = (1� u2)
d�2
2 du d�d�1(x);

where �d and �d�1 are the Lebesgue surface measures on Sd and Sd�1 respectively. So, the measure

in (3.12) simpli�es to

d�r(x) = As;d

�
t0 � u
1� t0

� s�d
2 (1 + u)

d�2
2 du d�d�1(x)

2d=2(1� u)
; �1 � u < t0; x 2 Sd�1: (3.13)
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Step 3. The norm k�rk.

Integrating (3.13) over �r and using (1.25) we evaluate the norm as follows:

k�rk = As;d

Z
Sd�1

 Z t0

�1

�
t�0 �u
1� t0

� s�d
2
�
1 + u

2

� d�2
2 du

2(1� u)

!
d�d�1(x)

= WdAs;d

Z t0

�1

�
t�0 �u
1� t0

� s�d
2
�
1 + u

2

� d�2
2 du

2(1� u)

= WdAs;d
(1� t0)

d�s
2 (1 + t0)

s
2

2
d
2

Z 1

0

v
d
2
�1(1� v) s�d2 dv

2� (1 + t0)v
: (3.14)

Step 4. The equilibrium measure �r.

Recall that the measure �r, supported on �r, is de�ned in (1.27), and is a multiple of the

equilibrium measure on �r. To determine �r we have to evaluate the integral (see also (3.12))

Jr(x) := As;d

Z
Cr

�
t0 � u
t� t0

� s�d
2 d�(y)

jx� yjd : (3.15)

By substituting d�(y) = (1�t2)(d�2)=2dt d�d�1(y) and jx�yj2 = 2(1�ut�
p
1� u2

p
1� t2 x �y)

in (3.15) we get that

Jr(x) = As;d

Z 1

t0

�
t0 � u
t� t0

� s�d
2

 Z
Sd�1

(1� t2) d�22 d�d�1(y)

2
d
2 (1� ut�

p
1� u2

p
1� t2 x � y) d2

!
dt:

Using the Funk-Hecke formula [17, p. 20] we evaluate the inner integral (save for a constant)

as follows

I1 :=

Z
Sd�1

d�d�1(y)

(1� ut�
p
1� u2

p
1� t2 x � y) d2

= Wd�1

Z 1

�1

(1� v2) d�32 dv

(1� ut�
p
1� u2

p
1� t2 v) d2

= Wd�1

Z �

0

sind�2 � d�

(1� ut�
p
1� u2

p
1� t2 cos �) d2

= Wd�1
2d=2

(1 + u)d=2(1� t)d=2

Z �

0

sind�2 � d�

(�2 � 2� cos � + 1) d2
; (3.16)
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where � :=
p
(1� u)(1 + t)=

p
(1 + u)(1� t). From [16, p. 400] we have that

Z �

0

sind�2 � d�

(�2 � 2� cos � + 1) d2
=

1

�d�2(�2 � 1)

Z �

0
sind�2 �d�;

which when substituted in (3.16) yields

I1 =Wd�1
2
d�2
2

(1� u) d�22 (1 + t) d�22 (t� u)

Z �

0
sind�2 �d�:

It is not di¢ cult to show that

Wd�1

Z �

0
sind�2 �d� =Wd;

thus reducing the integral in (3.16) to

Jr(x) =WdAs;d
(t0 � u)

s�d
2

2(1� u) d�22

Z 1

t0

(t� t0)
d�s
2 (1� t)

d�2
2

dt

t� u: (3.17)

Since d�(x) = d�d(x) = (1� u2)
d�2
2 dud�d�1(x), substituting v = (1 � t)=(1 � t0) in (3.17) we

get

d�r(x) =

 
(1� u2)

d�2
2 +WdAs;d

(1 + u)
d�2
2 (1� t0)d�

s
2

(t0 � u)
d�s
2

Z 1

0

v
d�2
2 (1� v) d�s2 dv

2(1� u� (1� t0)v)

!
dud�d�1(x):

(3.18)

Step 5. The norm k�rk.

We evaluate the norm as

k�rk = Wd

�Z t0

�1
(1� u2)

d�2
2 du

+ WdAs;d(1� t0)d�
s
2

Z t0

�1
(t0 � u)

s�d
2 (1 + u)

d�2
2

Z 1

0

v
d�2
2 (1� v) d�s2 dv

2(1� u� (1� t0)v)
du

!
: (3.19)
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4 The equilibrium problem for QN(x)

In this section we present the proof of Theorem 1.10. First, we need a lemma concerning the densi-

ties of the signed measures �r de�ned in (1.29). Since both �r and �r have densities with rotational

symmetry about the polar axis, �r can be written in polar coordinates as d�r = �
0
r(u)du d�d�1(x).

Lemma 4.1 Let d� 2 < s < d. If limu!t�0 �
0
r(u) � 0, then �0r(u) � 0 for all �1 � u � t0.

Proof From the de�nition (1.29) and the formulas (3.13) and (3.18) we get that

�0r(u) =
1 + k�rk

N�2
k�rk

 
(1� u2)

d�2
2 +WdAs;d

(1 + u)
d�2
2 (1� t0)d�

s
2

(t0 � u)
d�s
2

Z 1

0

v
d�2
2 (1� v) d�s2 dv

2(1� u� (1� t0)v)

!

� As;d
N � 2

�
1� t0
t0 � u

� d�s
2 (1 + u)

d�2
2

2d=2(1� u)
; (4.1)

which can also be written as

�0r(u) =
(N � 2 + k�rk)(1 + u)

d�2
2 (1� t0)d�

s
2

(N � 2)k�rk(t0 � u)
d�s
2 (1� u)

�"�
1� u
1� t0

� d
2
�
t0 � u
1� t0

� d�s
2

+
WdAs;d
2

Z 1

0

v
d�2
2 (1� v) d�s2 (1� u)

t0 � u+ (1� t0)(1� v)
dv

� k�rkAs;d
(N � 2 + k�rk)2d=2(1� t0)d=2

�
:

Observe that the �rst multiple is always positive when �1 � u < t0. Therefore, we focus on the

expression in the brackets. The �rst two terms depend on u and the third is a constant, so let us

denote them respectively f(u), g(u), and C. Since f(t0) = 0, the assumption of the lemma implies

that

lim
u!t�0

�
f(u) + g(u)� C

�
= g(t0)� C � 0: (4.2)

For future reference we note that (4.2) is equivalent to

WdAs;d B(d2 ;
d�s
2 )

2
� k�rkAs;d
(N � 2 + k�rk)2d=2(1� t0)d=2

; (4.3)
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where the Beta function has also the representation

B(x; y) =
Z 1

0

ux�1

(1 + u)x+y
du:

To �nish the proof of the lemma it is enough to establish the inequality

f(u) � g(t0)� g(u) for all u 2 [�1; t0); (4.4)

i.e. we have to show that

�
1� u
1� t0

� d
2
�
t0 � u
1� t0

� d�s
2

� WdAs;d
2

Z 1

0
v
d�2
2 (1� v)

d�s�2
2

�
1� (1� u)(1� v)

t0 � u+ (1� t0)(1� v)

�
dv

=
WdAs;d
2

�
t0 � u
1� t0

�Z 1

0

v
d
2 (1� v) d�s�22

t0�u
1�t0 + 1� v

dv: (4.5)

The formulas (1.25) and (3.6) yield that

WdAs;d
2

=
sin�(d� s)=2

�
=

1

B
�
d�s
2 ; 1�

d�s
2

� ; (4.6)

which together with the substitution x =
t0 � u
1� t0

transforms (4.5) to

(1 + x)d=2x(d�s�2)=2B
�
d� s
2
; 1� d� s

2

�
�
Z 1

0

v
d�s�2

2 (1� v) d2
x+ v

dv: (4.7)

Next, we divide (4.7) by (1 + x)d=2x(d�s�2)=2 and obtain that (4.4) is equivalent to

B
�
d� s
2
; 1� d� s

2

�
�
Z 1

0

�
v
x

� d�s�2
2

�
1�v
1+x

� d
2

1 + v=x
d(v=x) =

Z 1=x

0

v
d�s�2

2

�
1�vx
1+x

� d
2

1 + v
dv: (4.8)

Since 0 � 1� vx
1 + x

� 1

1 + x
< 1 and 0 � x � 1 + t0

1� t0
we can estimate the right-hand side as fol-

lows:

Z 1=x

0

v
d�s�2

2

�
1�vx
1+x

� d
2

1 + v
dv �

Z 1=x

0

v
d�s�2

2

1 + v
dv �

Z 1

0

v
d�s�2

2

1 + v
dv = B

�
d� s
2
; 1� d� s

2

�
;

which proves (4.8). Therefore, (4.4) holds and the proof is complete. 2
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We now present the proof of Theorem 1.10.

Proof of Theorem 1.10. From the uniqueness of the equilibrium measure �QN and the rotational

symmetry of the external �eld about the polar axis, we conclude that the equilibrium support SQN

shares the same rotational symmetry. Let r1 be de�ned as

r1 := maxfr : SQN � �rg; (4.9)

and let t1 = 1 � r21=2 (observe that the set �r1 is given in polar coordinates as u � t1). From

Theorem 1.2 (b) we have that r1 > 0. Let �1 be the equilibrium measure of �r1 . It is clear that

�1 = �r1=k�r1k. Thus, U�1s (x) = 1=cap(�r1) for all x 2 �r1 . In addition, from (3.8) we have that

U
�r1
N�2
s (x) = QN (x) when x 2 �r1 . Hence, the inequalities (1.3) and (1.4) from Theorem 1.2 yield

that

U
�QN
s (x) +QN (x) = U

�QN
+

�r1
N�2

s (x) � FQN = FQN cap(�r1)U�1s (x) q:e: on �r1 ; (4.10)

U
�QN
s (x) +QN (x) = U

�QN
+

�r1
N�2

s (x) � FQN = FQN cap(�r1)U�1s (x) for all x 2 SQN : (4.11)

But the measure �1 has clearly �nite energy, so inequality (4.10) also holds �1-a.e., and from Lemma

5.1 we deduce that it holds everywhere on Sd, and consequently equality holds in (4.11) everywhere

on SQN . Using (5.1) from the proof of the same lemma we could extend the inequalities (4.10) and

(4.11) to the Kelvin transforms of the two measures. Applying an extension of the de La Vallée

Poussin theorem (see [12, Theorem 2.5] or [8, Section 3]) we obtain,

(FQN cap(�r1)�1)
� jS�QN �

�
�QN +

�r1
N � 2

��
jS�QN ;
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where S�QN denotes the stereographic projection image of SQN . This inequality can be transferred

back to the original measures (see (3.4)) to get

(FQN cap(�r1)�1) jSQN �
�
�QN +

�r1
N � 2

�
jSQN :

By integrating the inequality (4.10) over �1 we obtain that

1

cap(�r1)

�
1 +

k�r1k
N � 2

�
� FQN ;

which can be used to derive that

�
1 +

k�r1k
N � 2

�
�r1
k�r1k

� FQN cap(�r1)�1 � �QN +
�r1
N � 2 on SQN :

This inequality together with the de�nition (1.29) implies that

�r1 jSQN � �QN jSQN : (4.12)

From the de�nition of r1 and (4.12) we easily obtain that limu!r�1 �
0
r1(u) � 0. Now Lemma 4.1

allows us to conclude that �r1 is a positive measure, which coupled with (1.30) and (4.9) shows

that r1 � r0. But then �QN is also an equilibrium measure for the external �eld QN (x) when

restricted to the set �r0 (see the remark after theorem 1.2). But �r0 is a positive measure on �r0 ,

whose weighted potential is constant on the entire �r0 , and hence, by uniqueness �QN = �r0 and

SQN = �r0 .

To �nish the proof we have to show that U
�r0
s (z) + QN (z) > FQN for all z 2 Sd n �r0 . With

x = (
p
1� u2 x; u) and z = (

p
1� �2 z; �), u � t0 < �, x; z 2 Sd�1, we write

U
�r0
s (z) +QN (z) =

Z t0

�1
�r0(u)

�Z
Sd�1

d�d�1(x)

jz � xjs

�
du+

1

(N � 2)ja� zjs

=:

Z t0

�1
�r0(u)�(u; �) du+

1

(N � 2)2s=2(1� �)s=2
; (4.13)
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where the density �r0(u) is given in (4.1). Clearly, the weighted potential has a rotational symmetry

about the polar axis, and thus it is a function of the variable � only. We will show that this function

is strictly convex on (t0; 1], and since it is constant on [�1; t0], and is greater or equal to that constant

on [t0; 1], it has to be strictly greater than that constant on (t0; 1]. Since the second term in (4.13)

is strictly convex in (t0; 1], it is enough to focus on the �rst term only. More precisely, we shall

establish the convexity of the kernel �(u; �) as a function of � 2 (t0; 1] for any u 2 [�1; t0], which

implies the convexity of the entire integral.

To evaluate the kernel, we utilize again the Funk-Hecke formula [17, p. 20] to deduce

�(u; �) =

Z
Sd�1

d�d�1(x)

jz � xjs =

Z
Sd�1

d�d�1(x)

(2� 2u� � 2
p
1� u2

p
1� �2 x � z)s=2

= Wd�1

Z 1

�1

(1� v2) d�32 dv

(2� 2u� � 2
p
1� u2

p
1� �2 v)s=2

:

Making the substitution v = cos � and denoting � :=

s
(1 + u)(1� �)
(1� u)(1 + �) we get that

�(u; �) =
Wd�1

(1� u)s=2(1 + �)s=2

Z �

0

sind�2 � d�

(�2 � 2� cos � + 1)s=2

=
Wd

(1� u)s=2(1 + �)s=2 2F1

�
s

2
;
s+ 2� d

2
;
d

2
;
(1 + u)(1� �)
(1� u)(1 + �)

�
; (4.14)

where we used [10, Formula 3.665 (2)] and the fact that Wd�1B
�
d�1
2 ;

1
2

�
= Wd. Here 2F1 is the

hypergeometric function

2F1(�; �; ;x) =

1X
k=0

(�)k(�)k
()kk!

xk: (4.15)

Observe, that for our choice of u and �, we have 0 < � < 1, so the hypergeometric function is well

de�ned. Thus, (4.14) becomes

�(u; �) =
Wd

(1� u)s=2
1X
k=0

( s2)k(
s+2�d
2 )k(1 + u)

k

(d2)k k! (1� u)k
(1� �)k

(1 + �)k+s=2
: (4.16)
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We shall establish that all the functions

gk(�) :=
(1� �)k

(1 + �)k+s=2
; k = 0; 1; 2; : : :

are convex. Since all coe¢ cients in the sum (4.16) are positive, and the series is uniformly convergent

for � 2 [t0 + �; 1], we deduce the convexity of the right-hand side in (4.16) by di¤erentiation.

For k = 0 the convexity of gk(�) is obvious. For k � 1, we shall establish the strict convexity

on (�1; 1) of the more general functions

h(�) =
(1� �)�
(1 + �)�

; � � 1; � > 0:

Indeed, the second derivative of h(�)

d2h

d�2
(�) =

(1� �)�
(1 + �)�

�
�(�� 1)
(1� �)2 +

2��

(1� �)(1 + �) +
�(� + 1)

(1 + �)2

�
;

is found to be positive for � 2 (�1; 1) whenever � � 1; � > 0.

This establishes that for any �xed u � t0, the kernel �(u; �) in (4.14) is convex as a function

of � in the interval [t0; 1], and therefore we deduce that the integral term in (4.13), and hence the

weighted potential, is also strictly convex for � 2 [t0; 1]. This shows that U
�r0
s (z) +QN (z) > FQN

on Sd n �r0 , which implies that SQN = S�QN . Therefore, �N;s;d � r0. 2

5 Minimal s-energy points on the sphere and their separation -

Proofs

Before we proceed with the proof of Theorem 1.4, we need the following restricted version of the

Principle of Domination to measures supported on Sd.
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Lemma 5.1 Let d�2 < s < d and let � and � be two measures supported on Sd nfag (recall that a

is the North Pole). Suppose further that U�s is �nite �-a.e. and that the inequality U
�
s (x) � U�s (x)

holds �-a.e. Then it holds everywhere on Sd.

Proof Under a stereographic projection with center a and radius
p
2 we transform the sphere Sd

into the hyperplane fx� = (x1; x2; : : : ; xd; 0)g. If x� is the image of x under the stereographic

projection, i.e. x and x� lie on one ray stemming from a and jx� ajjx� � aj = 2, then we have the

distance conversion formula jx� � y�j = 2jx � yj=(jx � ajjy � aj). For the Kelvin transform �� of

the measure � (see (3.4)) we have

U�
�

s (x
�) =

Z
S��

d��(y�)

jx� � y�js =
Z
S�

jx� ajs

2s=2jx� yjs
d�(y) =

jx� ajs

2s=2
U�s (x): (5.1)

Denote with E the exceptional set from S� where the inequality U
�
s (x) � U�s (x) does not hold, and

let E� be its image under the stereographic projection. We claim that ��(E�) = 0. Indeed,

��(E�) =

Z
E�
d��(x�) =

Z
E

2s=2

jx� ajs d�(x) �
2s=2

[dist(a; S�)]s

Z
E
d�(x) = 0:

Using (5.1) and the assumption in the lemma we obtain that the inequality U�
�

s (x�) � U�
�
s (x

�)

holds ��-almost everywhere. But �� and �� both are supported in the hyperplane, which can

be identi�ed with Rd. Therefore, we may use Theorem L with p = d to extend the inequality

everywhere in the hyperplane. Again using (5.1) we then have the inequality holding true on

Sd n fag. Since both potentials are continuous at a, we can extend the inequality there too. 2

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. We have that Q(x) = cQa(x). From the proof of Theorem 1.10 with c

instead of 1=(N � 2), we know that �Q = (1+ ck�rk)�r=k�rk� c�r (see (1.29)) and SQ = �r, where
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r is such that equality holds in (4.3). Suppose to the contrary, that there is s 2 (d � 2; d), � and

C� , such that

U �s (x) +Q(x) � C� > FQ q:e: on �r: (5.2)

Let �̂ = Bal(� ;�r) be the balayage measure of � onto SQ = �r (see [16, Chapter IV, §5, p. 260]),

which is well de�ned for s 2 (d � 2; d). We have that k�̂k � k�k = 1 (when we form the balayage

of measures supported on the sphere, the mass may decrease). Also U �̂s (x) = U
�
s (x) q.e. on �r and

U �s (x) � U �̂s (x) on Sd. So, from (5.2) we have consecutively

U �̂s (x) +Q(x) = U � (x)s +Q(x) � C� = U
�Q
s (x) +Q(x) + C� � FQ q:e: on �r:

Recall that �r is a multiple of the equilibrium measure of �r, so if � := (C� � FQ)cap(�r)�r=k�rk,

then U�s (x) = C� � FQ for all x 2 �r. Therefore,

U �̂s (x) � U
�Q+�
s (x) q:e: on �r

We now can apply Lemma 5.1 to extend this inequality on the entire sphere, in particular

U �̂s (a) � U
�Q+�
s (a) > U

�Q
s (a): (5.3)

On the other hand, the inequality U �s (x) + Q(x) � CQ holds q.e. on �Q, and thus �Q-a.e., so

after integration with respect to �Q we obtainZ
U �s (x) d�Q(x) + cU

�Q
s (a) � C� : (5.4)

Similarly, integrating with respect to �̂ the equality U
�Q
s (x) +Q(x) = FQ, x 2 �r, we getZ

U �̂s (x) d�Q(x) + cU
�̂
s (a) = FQk�̂k � FQ < C� : (5.5)

Recall that U �̂s (x) = U
�
s (x) q.e. on �r; henceZ

U �̂s (x) d�Q(x) =

Z
U �s (x) d�Q(x);
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which together with (5.4) and (5.5) implies that U �̂s (a) < U
�Q
s (a). This contradicts (5.3), which

proves (1.8) for the extended range of s.

To derive (1.9) for this extended range, assume to the contrary, that there is a measure � and

a constant C� such that

U �s (x) +Q(x) � C� < FQ for every x 2 supp(�):

Using (1.3), which holds everywhere for this choice of Q, we can extend this inequality and get

U�s (x) � U
�Q
s (x) for all x 2 supp(�). By Lemma 5.1 this holds everywhere on Sd, and in particular

U �s (a) � U
�Q
s (a): (5.6)

Integrating the inequality U �s (x) +Q(x) � C� with respect to � we obtain

Is(�) + cU
�
s (a) � C� : (5.7)

On the other hand we can integrate U
�Q
s (x) +Q(x) = FQ with respect to �Q, which yields

Is(�Q) + cU
�Q
s (a) = FQ: (5.8)

Combining (1.1), (5.6)-(5.8), we derive

IQ(�Q) = Is(�Q) + 2cU
�Q
s (a) = FQ + cU

�Q
s (a) � FQ + cU �s (a) > C� + cU �s (a) � IQ(�)

which contradicts the minimization property of �Q. 2

When Q(x) = cQa(x), c > 0, we invoke Theorem 1.4 to extend the range of the parameter s in

Theorem 1.8.

Proof of Theorem 1.8. As in the proof of Theorem 1.7 we can utilize Theorem 1.4 to derive

that M � FQ, and then apply (1.4) to (1.18) to get

U
�En
s (x) + FQ �M � U�Qs (x) q:e: on SQ:
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Now let � be a multiple of the Lebesgue surface measure � on Sd, so that U�s (x) = FQ�M for

all x 2 Sd. Then

U
�En+�
s (x) � U�Qs (x) q:e: on SQ:

Using Lemma 5.1 we extend this inequality to all of Sd, which establishes (1.23). 2

The proof of Corollary 1.9 proceeds as follows.

Proof of Corollary 1.9. Let Rn = fy1; y2; : : : ; yng be a weighted Riesz set. Let hE(x) be

the function de�ned in (1.18), associated with the set E := fy1; y2; : : : ; yn�1g. From De�nition

1.6 it is clear that the point yn is a global minimum of hE over Sd. Then (1.19) holds with

M = hE(yn) = U
�E
s (yn) +Q(yn). Thus, (1.20) implies that

U
�E
s (x) � U�Es (yn) +Q(yn) + U

�Q
s (x)� FQ:

In particular, when x = yn we obtain U
�Q
s (yn) +Q(yn) � FQ, which yields that yn 2 S�Q.

In the particular case when Q = cQa in the argument above we use (1.22) and (1.23) instead.

2

We now are ready to show the separation result in Theorem 1.5.

Proof of Theorem 1.5. The starting point in our proof is that the weighted equilibrium measure

�QN = �r0 from Theorem 1.10 satis�es the condition (4.2), which implies that r0 satis�es (4.3).

With the relation r20 = 2(1� t0) in mind we write

(N � 2 + k�r0k)(2(1� t0))d=2 �
2

B(d2 ;
d�s
2 )

� k�r0k
Wd

: (5.9)
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Using (3.19) and the substitutions 1 + u = (1� t0) ~w and 1 + u = (1 + t0)w we have

k�r0k
Wd

= B
�
d

2
;
1

2

�
�
Z 1

t0

(1� u2)
d�2
2 du

+WdAs;d(1� t0)d�
s
2

Z t0

�1
(t0 � u)

s�d
2 (1 + u)

d�2
2

Z 1

0

v
d�2
2 (1� v) d�s2 dv

2(1� u� (1� t0)v)
du

= B
�
d

2
;
1

2

�
� (2(1� t0))

d=2

2

Z 1

0
~w
d�2
2 (1� (1� t0) ~w=2)

d�2
2 d ~w (5.10)

+
WdAs;d
2

(1� t0)d�
s
2 (1 + t0)

s
2

Z 1

0
w

d�2
2 (1� w)

s�d
2

 Z 1

0

v
d�2
2 (1� v) d�s2 dv

2� (1 + t0)w � (1� t0)v

!
dw

The �rst integral can be estimated asZ 1

0
~w
d�2
2 (1� (1� t0) ~w=2)

d�2
2 d ~w �

Z 1

0

~w
d�2
2

(1� ~w)
s+2�d

2

d ~w = B
�
d

2
;
d� s
2

�
: (5.11)

Interchanging the order of integration in the double integrable in (5.11) yieldsZ 1

0
w

d�2
2 (1� w)

s�d
2

 Z 1

0

v
d�2
2 (1� v) d�s2 dv

2� (1 + t0)w � (1� t0)v

!
dw

=

Z 1

0
v
d�2
2 (1� v)

d�s
2

 Z 1

0

w
d�2
2 (1� w) s�d2 dw

2� (1 + t0)w � (1� t0)v

!
dv

�
Z 1

0
v
d�2
2 (1� v)

d�s
2

 Z 1

0

w
d�2
2 (1� w) s�d2 dw

2� (1 + t0)w

!
dv

= B
�
d

2
;
d� s+ 2

2

�Z 1

0

w
d�2
2 (1� w) s�d2
2� (1 + t0)w

dw

=
d� s
2d� s B

�
d

2
;
d� s
2

�Z 1

0

w
d�2
2 (1� w) s�d2
2� (1 + t0)w

dw : (5.12)

Substituting (5.11) and (5.12) back in (5.10), and using formula (3.14), we derive the estimate

k�r0k
Wd

� B
�
d

2
;
1

2

�
� (2(1� t0))

d=2

2
B
�
d

2
;
d� s
2

�
+
(2(1� t0))d=2

2

d� s
2d� s B

�
d

2
;
d� s
2

�
k�r0k :

(5.13)

In light of (5.13) and (5.9) we obtain

2B(d2 ;
1
2)

B(d2 ;
d�s
2 )

�
�
N � 1 + k�r0k

d

2d� s

�
rd0 � Nrd0 ;

where we used the fact that k�r0k � 1. This proves the theorem. 2
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