THE SUPPORT OF THE LOGARITHMIC EQUILIBRIUM MEASURE ON SETS OF REVOLUTION IN \mathbb{R}^{3}

D. P. HARDIN ${ }^{1}$, E. B. SAFF 2, AND H. STAHL ${ }^{3}$

Abstract

For surfaces of revolution B in \mathbb{R}^{3}, we investigate the limit distribution of minimum energy point masses on B that interact according to the logarithmic potential $\log (1 / r)$, where r is the Euclidean distance between points. We show that such limit distributions are supported only on the "out-most" portion of the surface (e.g., for a torus, only on that portion of the surface with positive curvature). Our analysis proceeds by reducing the problem to the complex plane where a non-singular potential kernel arises whose level lines are ellipses.

1. Introduction

For a collection of $N(\geq 2)$ distinct points $\omega_{N}:=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{3}$ and $s>0$, the Riesz s-energy of ω_{N} is defined by

$$
E_{s}\left(\omega_{N}\right):=\sum_{1 \leq i \neq j \leq N} k_{s}\left(x_{i}, x_{j}\right)=\sum_{i=1}^{N} \sum_{\substack{j=1 \\ j \neq i}}^{N} k_{s}\left(x_{i}, x_{j}\right),
$$

where, for $x, y \in \mathbb{R}^{3}, k_{s}(x, y):=1 /|x-y|^{s}$. As $s \rightarrow 0$, it is easily verified that

$$
\left(k_{s}(x, y)-1\right) / s \rightarrow \log (1 /|x-y|)
$$

and so it is natural to define $k_{0}(x, y):=\log (1 /|x-y|)$. For a compact set $B \subset \mathbb{R}^{3}$ and $s \geq 0$, the N-point s-energy of B is defined by

$$
\begin{equation*}
\mathcal{E}_{s}(B, N):=\inf \left\{E_{s}\left(\omega_{N}\right)\left|\omega_{N} \subset B,\left|\omega_{N}\right|=N\right\}\right. \tag{1}
\end{equation*}
$$

[^0]

Figure 1. Near optimal Riesz s-energy configurations ($N=1000$ points) on a torus in \mathbb{R}^{3} for $s=0,1$, and 2 .
where $|X|$ denotes the cardinality of a set X. Note that the logarithmic $(s=0)$ minimum energy problem is equivalent to the maximization of the product

$$
\prod_{1 \leq i \neq j \leq N}\left|x_{i}-x_{j}\right|,
$$

and that for planar sets, such optimal points are known as Fekete points. (The fast generation of near optimal logarithmic energy points for the sphere S^{2} is the focus of one of S . Smale's "mathematical problems for the next century"; see [14].)

If $0 \leq s<\operatorname{dim} B$ (the Hausdorff dimension of B), the limit distribution (as $N \rightarrow \infty$) of optimal N-point configurations is given by the equilibrium measure $\lambda_{s, B}$ that minimizes the continuous energy integral

$$
I_{s}(\mu):=\iint_{B \times B} k_{s}(x, y) d \mu(x) d \mu(y)
$$

over the class $\mathcal{M}(B)$ of (Radon) probability measures μ supported on B. In addition, the asymptotic order of the Riesz s-energy is N^{2}; more precisely we have $\mathcal{E}_{s}(B, N) / N^{2} \rightarrow I_{s}\left(\lambda_{s, B}\right)$ as $N \rightarrow \infty$ (cf. [11, Section II.3.12]). In the case when $B=S^{2}$, the unit sphere in \mathbb{R}^{3}, the equilibrium measure is simply the normalized surface area measure. If $s \geq \operatorname{dim} B$, then $I_{s}(\mu)=\infty$ for every $\mu \in \mathcal{M}(B)$ and potential theoretic methods cannot be used. However, it was recently shown in [7] that when B is a d-rectifiable manifold of positive d-dimensional Hausdorff measure and $s \geq d$, optimal N-point configurations are uniformly distributed (as $N \rightarrow \infty$) on B with respect to d-dimensional Hausdorff measure restricted to B. (The assertion for the case $s=d$

Figure 2. Minimum logarithmic energy points on various toroidal surfaces.
further requires that B be a subset of a C^{1} manifold.) For further extensions of these results, see [3]. Related results and applications appear in [5] (coding theory), [13] (cubature on the sphere), and [1] (finite normalized tight frames).

In Figure 1, we show near optimal Riesz s-energy configurations for the values of $s=0,1$, and 2 for $N=1000$ points restricted to live on the torus B obtained by revolving the circle of radius 1 and center $(3,0)$ about the y-axis. (For recent results on the disclinations of minimal energy points on toroidal surfaces, see [4].) The somewhat surprising observation that there are no points on the "inner" part of the torus in the case $s=0$ (and, in fact, as well for s near 0) is what motivated us to investigate the support of the logarithmic equilibrium measure $\lambda_{0, B}$. In this paper we show that, in fact, this is a general phenomenon for optimal logarithmic energy configurations of points restricted to sets of revolution in \mathbb{R}^{3} (see Figure 2).

2. Preliminaries

In this paper we focus on the logarithmic kernel k_{0}. Let $B \subset \mathbb{R}^{3}$ be compact. As in the previous section, the logarithmic energy of a measure $\mu \in \mathcal{M}(B)$ is given by

$$
\begin{equation*}
I_{0}(\mu)=\iint_{B \times B} \log \frac{1}{|p-q|} d \mu(p) d \mu(q) \tag{2}
\end{equation*}
$$

and the corresponding potential U^{μ} is defined by

$$
\begin{equation*}
U^{\mu}(p):=\int_{B} \log \frac{1}{|p-q|} d \mu(q) \quad\left(p \in \mathbb{R}^{3}\right) \tag{3}
\end{equation*}
$$

Let $V_{B}:=\inf _{\mu \in \mathcal{M}(B)} I_{0}(\mu)$. The logarithmic capacity of B, denoted by $\operatorname{cap}(B)$, is $\exp \left(-V_{B}\right)$. A condition $C(p)$ is said to hold quasi-everywhere on B if it holds for all $p \in B$ except for a subset of logarithmic capacity zero. ${ }^{1}$ If $\operatorname{cap}(B)>0$, then there is a unique probability measure $\mu_{B} \in \mathcal{M}(B)$ (called the equilibrium measure on B) such that $I\left(\mu_{B}\right)=V_{B}$ (this is implicit in the references [11, 12]). Furthermore, the equality $U^{\mu_{B}}(p)=V_{B}$ holds quasi-everywhere on the support of μ_{B} and $U^{\mu_{B}}(p) \geq V_{B}$ quasi-everywhere on B.

We now turn our attention to sets of revolution in \mathbb{R}^{3}. Let $\mathbb{R}_{+}:=$ $[0, \infty)$ and, for $t \in[0,2 \pi)$, let $\sigma_{t}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ denote the rotation about the y-axis through an angle t :

$$
\sigma_{t}(x, y, \zeta)=(x \cos t-\zeta \sin t, y, x \sin t+\zeta \cos t)
$$

For a compact set A contained in the right half-plane $H^{+}:=\mathbb{R}_{+} \times \mathbb{R}$, let $\Gamma(A) \subset \mathbb{R}^{3}$ be the set obtained by revolving A around the y-axis, that is,

$$
\Gamma(A):=\left\{\sigma_{t}(x, y, 0) \mid(x, y) \in A, 0 \leq t<2 \pi\right\}
$$

We say that $A \subset H^{+}$is non-degenerate if $\operatorname{cap}(\Gamma(A))$ is positive. For example, if A contains at least one point not on the y-axis, then A is non-degenerate.

3. Reduction to the $x y$-Plane

A Borel measure $\tilde{\nu} \in \mathcal{M}\left(\mathbb{R}^{3}\right)$ is rotationally symmetric about the y axis if $\tilde{\nu}=\tilde{\nu} \circ \sigma_{t}$ for all $t \in[0,2 \pi)$. If $\tilde{\nu}$ is rotationally symmetric about the y-axis, then $d \tilde{\nu}=\frac{1}{2 \pi} d t d \nu$, where $\nu:=\tilde{\nu} \circ \Gamma \in \mathcal{M}\left(H^{+}\right)$and $d t$ denotes Lebesgue measure on $[0,2 \pi)$. Identifying points $z, w \in H^{+}$ as complex numbers $z=x+i y=(x, y, 0)$ and $w=u+i v=(u, v, 0)$ we have

$$
\begin{align*}
I_{0}(\tilde{\nu}) & =\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \log \frac{1}{|p-q|} d \tilde{\nu}(p) d \tilde{\nu}(q) \\
& =\iint_{H^{+} \times H^{+}} K(z, w) d \nu(z) d \nu(w) \tag{4}\\
& =: J(\nu),
\end{align*}
$$

where

$$
\begin{equation*}
K(z, w):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{1}{\left|\sigma_{t}(z)-w\right|} d t \tag{5}
\end{equation*}
$$

[^1]Notice that

$$
\begin{align*}
\left|\sigma_{t}(z)-w\right|^{2} & =(x \cos t-u)^{2}+(y-v)^{2}+x^{2} \sin ^{2} t \tag{6}\\
& =x^{2}+u^{2}+(y-v)^{2}-2 x u \cos t .
\end{align*}
$$

Let $w_{*}:=-u+i v=-\bar{w}$ denote the reflection of w in the y-axis. Then, using (6) and the formula

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log (a+b \cos t) d t=\log \frac{a+\sqrt{a^{2}-b^{2}}}{2}
$$

with $a=(y-v)^{2}+x^{2}+u^{2}$ and $b=-2 x u$, we obtain

$$
\begin{equation*}
K(z, w)=-\frac{1}{2} \log \frac{a+\sqrt{a^{2}-b^{2}}}{2}=\log \frac{2}{|z-w|+\left|z-w_{*}\right|}, \tag{7}
\end{equation*}
$$

where we have used

$$
2\left(a+\sqrt{a^{2}-b^{2}}\right)=(\sqrt{a+b}+\sqrt{a-b})^{2}=\left(|z-w|+\left|z-w_{*}\right|\right)^{2}
$$

3.1. Equilibrium measure $\lambda_{A} \in \mathcal{M}(A)$. For a non-degenerate compact set $A \subset H^{+}$, the uniqueness of the equilibrium measure $\mu_{\Gamma(A)}$ and the symmetry of the revolved set $\Gamma(A)$ imply that $\mu_{\Gamma(A)}$ is rotationally symmetric about the y-axis and so $d \mu_{\Gamma(A)}=\frac{1}{2 \pi} d t d \lambda_{A}$, where for any Borel set $B \subset H^{+}$

$$
\begin{equation*}
\lambda_{A}(B):=\mu_{\Gamma(A)}(\Gamma(B)) . \tag{8}
\end{equation*}
$$

Furthermore, if $\nu \in \mathcal{M}(A)$, then $d \tilde{\nu}:=\frac{1}{2 \pi} d t d \nu$ is rotationally symmetric about the y-axis and so we have

$$
J\left(\lambda_{A}\right) \geq \inf _{\nu \in \mathcal{M}(A)} J(\nu)=\inf _{\nu \in \mathcal{M}(A)} I_{0}(\tilde{\nu}) \geq I_{0}\left(\mu_{\Gamma(A)}\right)=J\left(\lambda_{A}\right),
$$

which leads to the following proposition.
Proposition 1. Suppose A is a non-degenerate compact set in H^{+}and let $\lambda_{A} \in \mathcal{M}(A)$ be defined by (8). Then λ_{A} is the unique measure in $\mathcal{M}(A)$ that minimizes $J(\nu)$ over all measures $\nu \in \mathcal{M}(A)$. That is, λ_{A} is the equilibrium measure for the kernel K and set A.

For $\nu \in \mathcal{M}(A)$, we define the (K-)potential W^{ν} by

$$
\begin{align*}
W^{\nu}(z) & :=\int_{A} K(z, w) d \nu(w) \tag{9}\\
& =\int_{A} \log \frac{2}{|z-w|+\left|z-w_{*}\right|} d \nu(w) \quad\left(z \in H^{+}\right) .
\end{align*}
$$

Then, for $z=(x, y, 0) \in H^{+}$, we have

$$
\begin{aligned}
U^{\mu_{\Gamma(A)}(z)} & =\int_{\Gamma(A)} \log \frac{1}{|z-q|} d \mu_{\Gamma(A)}(q) \\
& =\frac{1}{2 \pi} \int_{A} \int_{0}^{2 \pi} \log \frac{1}{\left|z-\sigma_{t}(w)\right|} d t d \lambda_{A}(w) \\
& =\int_{A} K(z, w) d \lambda_{A}(w)=W^{\lambda_{A}}(z) .
\end{aligned}
$$

From the properties of $U^{\mu_{\Gamma(A)}}$, we then infer the following lemma.
Lemma 2. Suppose A is a non-empty compact set in the interior of H^{+}. Let λ_{A} be the equilibrium measure for A with respect to the kernel K. Then the potential $W^{\lambda_{A}}$ satisfies $W^{\lambda_{A}}(z)=J\left(\lambda_{A}\right)$ for z in the support of λ_{A} and $W^{\lambda_{A}}(z) \geq J\left(\lambda_{A}\right)$ for $z \in A$.

Remark: In Lemma 2 we no longer need a quasi-everywhere exceptional set, since each point of A generates a circle in \mathbb{R}^{3} with positive logarithmic capacity.

Figure 3. Level curves for $K(z, w)$ for w a fixed point on the unit circle centered at $(2,0)$.
3.2. Properties of K. Let $s(z, w):=|z-w|+\left|z-w_{*}\right|$. Then $K(z, w)=-\log (s(z, w) / 2)$ and so, for fixed $w \in H^{+}$, the level sets of $K(\cdot, w)$ are ellipses with foci w and w_{*} as shown in Figure 3. Since the foci have the same imaginary part $v=\operatorname{Im}[w]=\operatorname{Im}\left[w_{*}\right]$, it follows from geometrical considerations that $K(\cdot, w)$ is strictly decreasing along horizontal rays $[i y, \infty+i y)$ for $y \neq v$. Along the horizontal ray
$[i v, \infty+i v)$, we have that $K(\cdot, w)$ is constant on the line segment $[i v, w]$ and strictly decreasing on the ray $[w, \infty+i v)$.

Furthermore, K is clearly continuous at any $(z, w) \in H^{+} \times H^{+}$unless $z=w=i y$ for some $y \in \mathbb{R}$. Since $\left|z-w_{*}\right|=\left|\left(z-w_{*}\right)_{*}\right|=\left|w-z_{*}\right|$, it follows that K is symmetric, that is, $K(z, w)=K(w, z)$ for $z, w \in H^{+}$. We summarize these properties of K in the following lemma.

Lemma 3. The kernel $K: H^{+} \times H^{+} \rightarrow \mathbb{R}$ in (7) has the following properties:
(a) K is symmetric: $K(z, w)=K(w, z)$ for $w, z \in H^{+}$.
(b) K is continuous at all points $(z, w) \in H^{+} \times H^{+}$except points (z, z) such that $\operatorname{Re}(z)=0$.
(c) Let $u \geq 0$ and $y \neq v \in \mathbb{R}$ be fixed. Then $K(x+i y, u+i v)$ is a strictly decreasing function of x for $x \in[0, \infty)$. Furthermore, $K(x+i y, u+i y)$ is constant for $x \in[0, u]$ and is strictly decreasing for $x \in[u, \infty)$.

The following lemma is then a consequence of Lemma 3.
Lemma 4. Suppose $\nu \in \mathcal{M}(A)$ is not a point mass (that is, the support of ν contains at least two points). Then the potential $W^{\nu}(z)$ is strictly decreasing along the horizontal rays $[i y, \infty+i y)$ for all $y \in \mathbb{R}$.

If A is a non-degenerate compact set in H^{+}, let $P(A)$ denote the projection of the set A onto the y-axis and for $y \in P(A)$, define $x_{A}(y)=$ $\max \{x \mid(x, y) \in A\}$. We then let A_{+}denote the "right-most" portion of A, that is,

$$
A_{+}:=\left\{\left(x_{A}(y), y\right) \mid y \in P(A)\right\}
$$

Using Lemmas 2 and 4 we then obtain the following result.
Theorem 5. Suppose A is a compact set in H^{+}such that A_{+}is contained in the interior of H^{+}. Then the support of the equilibrium measure $\lambda_{A} \in \mathcal{M}(A)$ is contained in A_{+}.

4. Convexity

Recall that a function $f:[a, b] \rightarrow \mathbb{R}$ is strictly convex on $[a, b]$ if $f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y)$ for all $a \leq x<y \leq b$ and $0<\theta<1$.

Theorem 6. Suppose A is a compact set in H^{+}such that A_{+}is contained in the interior of H^{+}and $\gamma:[a, b] \rightarrow H^{+}$is continuous. Further suppose that
(a) $A_{+} \subset \gamma^{*}:=\{\gamma(s) \mid a \leq s \leq b\}$ and
(b) $K(\gamma(\cdot), \gamma(s))$ is a strictly convex function on the intervals $[a, s]$ and $[s, b]$ for each fixed $s \in[a, b]$.
Then there is some closed interval $I \subset[a, b]$ such that $\operatorname{supp} \lambda_{A}=\gamma(I) \cap$ A_{+}.

Proof. Suppose A and γ satisfy (a) and (b). From Theorem 5 we have $\operatorname{supp} \lambda_{A} \subset \gamma^{*}$. Let $t_{1}:=\min _{a \leq t \leq b}\left\{t \mid \gamma(t) \in \operatorname{supp} \lambda_{A}\right\}$ and $t_{2}:=$ $\max _{a \leq t \leq b}\left\{t \mid \gamma(t) \in \operatorname{supp} \lambda_{A}\right\}$. Suppose that G is an open interval in $I:=\left[t_{1}, t_{2}\right]$ such that $\gamma(G) \cap \operatorname{supp} \lambda_{A}=\emptyset$. Then $W^{\lambda_{A}} \circ \gamma$ is strictly convex on G and $W^{\lambda_{A}}(z)=J\left(\lambda_{A}\right)$ for $z \in \operatorname{supp} \lambda_{A}$ and so we have $W^{\lambda_{A}}(\gamma(t))<J\left(\lambda_{A}\right)$ for $t \in G$. Hence, Lemma 2 implies that $\gamma(G) \cap A=$ \emptyset which then implies supp $\lambda_{A}=\gamma(I) \cap A_{+}$.

We next consider several examples where we can verify that the hypotheses of Theorem 6 hold. In these examples, γ is a smooth curve, but note that A_{+}is only required to be a compact subset of γ^{*}. For example, A_{+}may be a Cantor subset of γ^{*}.

We first consider a case where we can completely specify the support of λ_{A}.

Corollary 7. Suppose A is a non-degenerate compact subset in H^{+} such that A_{+}is contained in a vertical line segment $[R+c i, R+d i]$ for some $R>0$. Then $\operatorname{supp} \lambda_{A}=A_{+}$.

Proof. Consider the parametrization $\gamma(t)=R+i t, c \leq t \leq d$, of the line segment $[R+c i, R+d i]$. For $s, t \in[c, d], s \neq t$, direct calculation shows $K(\gamma(t), \gamma(s))=-\log \left(|s-t|+\sqrt{4 R^{2}+(s-t)^{2}}\right)+\log 2$ and

$$
\begin{align*}
\frac{d}{d t} K(\gamma(t), \gamma(s)) & =\frac{\operatorname{sgn}(s-t)}{\sqrt{4 R^{2}+(s-t)^{2}}} \tag{10}\\
\frac{d^{2}}{d t^{2}} K(\gamma(t), \gamma(s)) & =\frac{|s-t|}{\left(4 R^{2}+(s-t)^{2}\right)^{3 / 2}} \tag{11}
\end{align*}
$$

Then (11) shows that condition (b) of Theorem 6 holds and therefore there is some interval $I=\left[t_{1}, t_{2}\right]$ such that $\operatorname{supp} \lambda_{A}=\gamma(I) \cap A_{+}$. Furthermore, from (10) we see that $W^{\lambda_{A}}(R+i t)$ is strictly increasing on $\left(-\infty, t_{1}\right]$ and is strictly decreasing on $\left[t_{2}, \infty\right)$. By Lemma 2 , we can take $I=[c, d]$ and so supp $\lambda_{A}=A_{+}$.

Even in the case when A is a circle in H^{+}(so that $\Gamma(A)$ is a torus in \mathbb{R}^{3}), it is difficult to directly verify the hypothesis (b) of Theorem 6. We next develop sufficient conditions for (b) that, at least in the case A is a circle, are relatively simple to verify.

For $w \in H^{+}$and $t \in[a, b]$, let $r_{w}(t):=|\gamma(t)-w|$, and $s_{w}(t):=$ $r_{w}(t)+r_{w_{*}}(t)$. Assuming γ is twice differentiable at t we have

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} K(\gamma(t), w)=\frac{-s_{w}^{\prime \prime}(t) s_{w}(t)+s_{w}^{\prime}(t)^{2}}{s_{w}(t)^{2}} \quad(t \in[a, b]) \tag{12}
\end{equation*}
$$

Then for fixed w, we have that $K(\gamma(t), w)$ is strictly convex on any interval where $s_{w}^{\prime \prime}<0$. Let $u_{w}(t)$ denote the unit vector $(\gamma(t)-w) / r_{w}(t)$. Differentiating the dot product $r_{w}(t)^{2}=(\gamma(t)-w) \cdot(\gamma(t)-w)$ we obtain

$$
\begin{align*}
r_{w}^{\prime}(t) & =\gamma^{\prime}(t) \cdot u_{w}(t) \\
u_{w}^{\prime}(t) & =\left(\gamma^{\prime}(t)-\left(\gamma^{\prime}(t) \cdot u_{w}(t)\right) u_{w}(t)\right) / r_{w}(t), \text { and } \tag{13}\\
r_{w}^{\prime \prime}(t) & =\gamma^{\prime \prime}(t) \cdot u_{w}(t)+\left(\left|\gamma^{\prime}(t)\right|^{2}-\left(\gamma^{\prime}(t) \cdot u_{w}(t)\right)^{2}\right) / r_{w}(t) \tag{14}
\end{align*}
$$

In the event that γ is parametrized by arclength the above equations can be simplified. In this case $\left|\gamma^{\prime}(t)\right|=1$. We further assume that $\gamma^{\prime \prime}(t) \neq 0$ for any $t \in[a, b]$. Then $T(t)=\gamma^{\prime}(t)$ denotes the unit tangent vector, $\kappa(t)=\left|T^{\prime}(t)\right|$ denotes the curvature, and $N(t)=T^{\prime}(t) /\left|T^{\prime}(t)\right|=$ $\gamma^{\prime \prime}(t) / \kappa(t)$ denotes the unit normal vector to the curve γ for $t \in[a, b]$. Substituting these expressions into (13) and (14) we obtain

$$
\begin{align*}
r_{w}^{\prime \prime}(t) & =\gamma^{\prime \prime}(t) \cdot u_{w}(t)+\gamma^{\prime}(t) \cdot u_{w}^{\prime}(t) \tag{15}\\
& =\left(N(t) \cdot u_{w}(t)\right)\left[\kappa(t)+\frac{N(t) \cdot u_{w}(t)}{r_{w}(t)}\right] . \tag{16}
\end{align*}
$$

From this last representation deduce the following.
Lemma 8. Let $\gamma:[a, b] \rightarrow H^{+}$be a twice differentiable curve such that $\left|\gamma^{\prime}(t)\right|=1$ and $\gamma^{\prime \prime}(t) \neq 0$ for all $t \in[a, b]$. Suppose that for all $s, t \in[a, b], s \neq t$, and $w \in\left\{\gamma(s), \gamma(s)_{*}\right\}$ we have

$$
\begin{equation*}
N(t) \cdot u_{w}(t)<0 \text { and }\left[\kappa(t)+\frac{N(t) \cdot u_{w}(t)}{r_{w}(t)}\right]>0 . \tag{17}
\end{equation*}
$$

Then γ satisfies hypothesis (b) of Theorem 6.
We now apply Lemma 8 to the case when A_{+}is a subset of a circle.
Corollary 9. Suppose $C \subset \mathbb{C}$ is a circle of radius $r>0$ and center a with $\operatorname{Re}[a]>0$ and suppose A_{+}is a compact set in H^{+}such that $A_{+} \subset C_{+}$. Then $\operatorname{supp} \lambda_{A}=A_{+}^{\theta}:=A_{+} \cap\left\{a+r e^{i t}| | t \mid \leq \theta\right\}$ for some $\theta \in[0, \pi / 2]$. In particular, if A_{+}is a circular arc contained in C_{+}, then so is $\operatorname{supp} \lambda_{A}$; consequently, supp $\mu_{\Gamma(A)}$ is connected.

Remark: In the case when $\Gamma(A)$ is a torus (that is, if $A=C$), it follows from Corollary 9 that $\operatorname{supp} \lambda_{A}$ is a connected strip of $\Gamma(A)$ of the form $\Gamma\left(C_{+}^{\theta}\right)$ for some $\theta \in[0, \pi / 2]$.

Proof. Without loss of generality we may assume that C has radius $r=1$ and center $a=R$ for some $R>0$. We then consider the parametrization of C given by $\gamma(t):=a+e^{i t}$ for $t \in[-\pi / 2, \pi / 2]$. By direct calculation (assisted by Mathematica) we find, for $w=\gamma(s)$,

$$
N(t) \cdot u_{w}(t)=-\left|\sin \frac{s-t}{2}\right| \text { and }\left[\kappa(t)+\frac{N(t) \cdot u_{w}(t)}{r_{w}(t)}\right]=\frac{1}{2}
$$

and for $w=\gamma(s)_{*}$ we find

$$
N(t) \cdot u_{w}(t)=-\frac{2 R \cos t+\cos (s+t)+1}{\sqrt{(2 R+\cos s+\cos t)^{2}+(\sin s-\sin t)^{2}}}
$$

and

$$
\left[\kappa(t)+\frac{N(t) \cdot u_{w}(t)}{r_{w}(t)}\right]=\frac{1}{2}+\frac{2 R(R+\cos s)}{(2 R+\cos s+\cos t)^{2}+(\sin s-\sin t)^{2}}
$$

Then it is easy to verify that the inequalities (17) hold for both $w=$ $\gamma(s)$ and for $w=\gamma(s)_{*}$ for all $s, t \in[-\pi / 2, \pi / 2]$ with $s \neq t$.

5. Kernel in limit $R \rightarrow \infty$

One might well conjecture looking at Figure 1 and in light of Theorem 5 or Corollary 7 that for the case of the circle $A=\{z| | z-R \mid=1\}$, $R>0$, the support of λ_{A} is the right-half circle A_{+}, or equivalently, that the support of the equilibrium measure on the torus $\Gamma(A)$ is the portion of its surface with positive curvature. However, as we see in the limiting case $R \rightarrow \infty$, this is not correct.

Define the kernels $K_{R}: H^{+} \times H^{+} \rightarrow \mathbb{R}, R>0$, and $K_{\infty}: H^{+} \times H^{+} \rightarrow$ \mathbb{R} by

$$
\begin{align*}
K_{R}(z, w) & :=2 R(K(R+z, R+w)+\log R), \tag{18}\\
K_{\infty}(z, w) & :=-\left(\operatorname{Re}\left[z-w_{*}\right]+|z-w|\right) . \tag{19}
\end{align*}
$$

Using

$$
\frac{|z-w|+\left|2 R+z-w_{*}\right|}{2 R}=1+\frac{\operatorname{Re}\left[z-w_{*}\right]+|z-w|}{2 R}+\mathcal{O}\left(R^{-2}\right)
$$

we obtain

$$
\begin{aligned}
K_{R}(z, w) & =-2 R \log \frac{|z-w|+\left|2 R+z-w_{*}\right|}{2 R} \\
& =-2 R \log \left(1+\frac{\operatorname{Re}\left[z-w_{*}\right]+|z-w|}{2 R}+\mathcal{O}\left(R^{-2}\right)\right) \\
& =-\left(\operatorname{Re}\left[z-w_{*}\right]+|z-w|\right)+\mathcal{O}\left(R^{-1}\right)
\end{aligned}
$$

and hence

$$
\lim _{R \rightarrow \infty} K_{R}(z, w)=K_{\infty}(z, w)
$$

where the convergence is uniform on compact subsets of $H^{+} \times H^{+}$. We let $J_{K_{R}}(\mu)$ and $J_{K_{\infty}}(\mu)$ denote the associated energy integrals defined for compactly supported measures $\mu \in \mathcal{M}\left(H^{+}\right)$.

From the definition of K_{R} we see that the equilibrium measure λ_{A}^{R} on a compact set $A \subset H^{+}$with respect to the kernel K_{R} is equal to $\lambda_{A+R}(\cdot+R)$, that is, $\lambda_{A}^{R}(B)=\lambda_{A+R}(B+R)$ where, for a set $B \subset H^{+}$ and $R>0, B+R$ denotes the translate $\{b+R \mid b \in B\}$.
5.1. The existence and uniqueness of an equilibrium measure for K_{∞}. The weak-star compactness of $\mathcal{M}(A)$ and the continuity of $J_{K_{\infty}}$ imply the existence of a measure $\lambda_{A}^{\infty} \in \mathcal{M}(A)$ such that $J_{K_{\infty}}\left(\lambda_{A}^{\infty}\right)=$ $\inf _{\mu \in \mathcal{M}(A)} J_{K_{\infty}}(\mu)$.

We follow arguments developed in [2] to prove the uniqueness of λ_{A}^{∞}. First, note that $K_{\infty}(z, w)=-k_{1}(z, w)-k_{2}(z, w)$ where $k_{1}(z, w):=$ $|z-w|$ and $k_{2}(z, w)=\operatorname{Re}[z]+\operatorname{Re}[w]$ and so

$$
J_{K_{\infty}}(\mu)=-I_{1}^{*}(\mu)-I_{2}^{*}(\mu),
$$

where I_{1}^{*} and I_{2}^{*} are the energy integrals associated with the kernels k_{1} and k_{2}, respectively. We need the following lemma of Frostman ([6], also see [2, Lemma 1]).

Lemma 10. Suppose ν is a compactly supported signed Borel measure on H^{+}such that $\int d \nu=0$ and $I_{1}^{*}(\nu) \geq 0$. Then $\nu \equiv 0$.

For compactly supported Borel measures μ and ν on H^{+}, let

$$
J_{K_{\infty}}(\mu, \nu):=\iint K_{\infty}(z, w) d \mu(z) d \nu(w)
$$

Lemma 11. Suppose A is a compact set in H^{+}and $\mu^{*} \in \mathcal{M}(A)$ satisfies $J_{K_{\infty}}\left(\mu^{*}\right)=\inf _{\mu \in \mathcal{M}(A)} J_{K_{\infty}}(\mu)$. For any signed Borel measure ν with support contained in A such that $\nu(A)=\int_{A} d \nu=0$ and $\mu^{*}+\nu \geq 0$, we have $J_{K_{\infty}}\left(\mu^{*}, \nu\right) \geq 0$.

Proof. With ν and μ^{*} as above, we have $\mu^{*}+\epsilon \nu \in \mathcal{M}(A)$ for $0 \leq \epsilon \leq 1$ and so
(20) $J_{K_{\infty}}\left(\mu^{*}\right) \leq J_{K_{\infty}}\left(\mu^{*}+\epsilon \nu\right)=J_{K_{\infty}}\left(\mu^{*}\right)+2 \epsilon J_{K_{\infty}}\left(\mu^{*}, \nu\right)+\epsilon^{2} J_{K_{\infty}}(\nu)$.

Since (20) holds for all $0 \leq \epsilon \leq 1$, then $J_{K_{\infty}}\left(\mu^{*}, \nu\right) \geq 0$.
Theorem 12. Suppose A is a compact set in the interior of H^{+}. There is a unique equilibrium measure λ_{A}^{∞} minimizing $J_{K_{\infty}}(\mu)$ over all $\mu \in \mathcal{M}(A)$. The support of λ_{A}^{∞} is contained in A_{+}. Furthermore, λ_{A}^{R} converges weak-star to λ_{A}^{∞} as $R \rightarrow \infty$.

Remark: Recall that λ_{A}^{R} converges weak-star to λ_{A}^{∞} (and we write $\lambda_{A}^{R} \xrightarrow{*} \lambda_{A}^{\infty}$) as $R \rightarrow \infty$ means that

$$
\lim _{R \rightarrow \infty} \int_{A} f d \lambda_{A}^{R}=\int_{A} f d \lambda_{A}^{\infty}
$$

for any function f continuous on A.
Proof. Suppose μ^{*} and $\tilde{\mu}^{*}$ are measures in $\mathcal{M}(A)$ such that $J_{K_{\infty}}\left(\mu^{*}\right)=$ $J_{K_{\infty}}\left(\tilde{\mu}^{*}\right)=\inf _{\mu \in \mathcal{M}(A)} J_{K_{\infty}}(\mu)$. Then $\nu:=\tilde{\mu}^{*}-\mu^{*}$ satisfies the hypotheses of Lemma 11 and thus $J_{K_{\infty}}\left(\mu^{*}, \nu\right) \geq 0$. On the other hand,

$$
J_{K_{\infty}}\left(\tilde{\mu}^{*}\right)=J_{K_{\infty}}\left(\mu^{*}+\nu\right)=J_{K_{\infty}}\left(\mu^{*}\right)+2 J_{K_{\infty}}\left(\mu^{*}, \nu\right)+J_{K_{\infty}}(\nu),
$$

which, since $J_{K_{\infty}}\left(\mu^{*}\right)=J_{K_{\infty}}\left(\tilde{\mu}^{*}\right)$, implies that $J_{K_{\infty}}(\nu)=-2 J_{K_{\infty}}\left(\mu^{*}, \nu\right) \leq$ 0 . Now, $J_{K_{\infty}}(\nu)=-I_{1}^{*}(\nu)-I_{2}^{*}(\nu)=-I_{1}^{*}(\nu)$ since

$$
I_{2}^{*}(\nu)=\iint(\operatorname{Re}[z]+\operatorname{Re}[w]) d \nu(z) d \nu(w)=0
$$

Hence, $I_{1}^{*}(\nu)=-J_{K_{\infty}}(\nu)=2 J_{K_{\infty}}\left(\mu^{*}, \nu\right) \geq 0$ and so, by Lemma 10, it follows that $\nu \equiv 0$ and thus $\mu^{*}=\tilde{\mu}^{*}$.

The fact that $\operatorname{supp} \lambda_{A}^{\infty} \subset A_{+}$follows from the observation that $K_{\infty}(z, w)$ is strictly decreasing for z varying along all horizontal rays $[i y, \infty+i y)$ for $y \neq \operatorname{Im}[w]$ and along the ray $[w, \infty+i v)$ for $v=\operatorname{Im}[w]$, and is constant along the line segment $[i v, w]$.

The weak-star convergence of λ_{A}^{R} to λ_{A}^{∞} follows from the weak-star compactness of $\mathcal{M}(A)$ and the uniqueness of the equilibrium measure λ_{A}^{∞}.

Remarks:

(1) The level sets of $K_{\infty}(\cdot, w)$ are parabolas with focus w and directrix $x=a$ for $a>\operatorname{Re}[w]$ (in the case $a=\operatorname{Re}[w]$, the level set is the line segment $[i v, w]$ where $v=\operatorname{Im}[w]$). Notice that these parabolas can also be viewed as arising from the elliptical level curves illustrated in Figure 3 by letting the real part of the focus w_{*} tend to $-\infty$.
(2) One may also consider $K_{\infty}(z, w)$ on $\mathbb{C} \times \mathbb{C}$ rather than $H^{+} \times H^{+}$ (in effect, the line $\operatorname{Re}[z]=-\infty$ may be considered the axis of rotation).
Let W_{∞}^{μ} denote the potential for a measure $\mu \in \mathcal{M}\left(H^{+}\right)$and kernel K_{∞} :

$$
W_{\infty}^{\mu}(z)=\int_{A} K_{\infty}(z, w) d \mu(w) \quad\left(z \in H^{+}\right)
$$

Then W_{∞}^{μ} is continuous on H^{+}. Furthermore, if $W_{\infty}^{\mu}(z)$ is not constant for $z \in \operatorname{supp} \mu$, then one may construct a signed Borel measure ν with
support contained in A such that $\nu(A)=\int_{A} d \nu=0, \mu+\nu \geq 0$, and such that $J_{K_{\infty}}(\mu, \nu)<0$ (cf. [2]). Lemma 11 then implies that $J_{K_{\infty}}(\mu, \nu)$ cannot be minimal, which gives the following result.

Lemma 13. The equilibrium potential $W_{\infty}^{\lambda_{A}^{\infty}}$ satisfies

$$
\begin{equation*}
W_{\infty}^{\lambda_{A}^{\infty}}(z) \geq J_{K_{\infty}}\left(\lambda_{A}^{\infty}\right) \quad(z \in A) \tag{21}
\end{equation*}
$$

with equality if $z \in \operatorname{supp} \lambda_{A}^{\infty}$.
5.2. Properties of the equilibrium measure for a circle. We next consider the support of the K_{∞}-equilibrium measure in the case that A_{+}is contained in the right-half of a circular arc (as in Corollary 9). Recall that if C is the circle with center a and radius r and $B \subset C$, we define $B^{\theta}:=B \cap\left\{a+r e^{i t} \mid-\theta \leq t \leq \theta\right\}$.

Theorem 14. Suppose $C \subset \mathbb{C}$ is a circle of radius $r>0$ and center a with $\operatorname{Re}[a]>0$ and suppose A is a non-empty compact set in H^{+}such that $A_{+} \subset C_{+}$. Then supp $\lambda_{A}^{\infty}=A_{+}^{\theta}$ for some $\theta \in[0, \pi / 2]$.

Furthermore, if A_{+}is also symmetric about the line $y=\operatorname{Im}[a]$ and $A_{+}^{\theta_{c}}$ is non-empty, where $\theta_{c}:=2 \arctan 1 / 2 \approx 53.13^{\circ}$, then $\operatorname{supp} \lambda_{A}^{\infty}=$ A_{+}^{θ} for some $\theta \in\left[0, \theta_{c}\right]$. Moreover, if A_{+}is also symmetric about the line $y=\operatorname{Im}[a]$ and $A_{+}^{\theta_{c}}$ is empty, then $\lambda_{A}^{\infty}=\left(\delta_{a+\zeta}+\delta_{a+\bar{\zeta}}\right) / 2$ where $\zeta:=r e^{i \theta_{m}}$ and $\theta_{m}:=\min \left\{\theta \geq 0 \mid a+r e^{i \theta} \in A_{+}\right\}$.
Proof. Without loss of generality we may assume that C has radius $r=1$ and center $a=0$. We then consider the parametrization of C given by $\gamma(t):=e^{i t}$ for $-\pi / 2 \leq t \leq \pi / 2$. Then, using $\left|e^{i t}-e^{i s}\right|=$ $2|\sin ((s-t) / 2)|$, we find

$$
K_{\infty}(\gamma(t), \gamma(s))=-\cos (t)-\cos (s)-2\left|\sin \frac{s-t}{2}\right| \quad(s, t \in(-\pi, \pi)) .
$$

Differentiating twice with respect to s we obtain

$$
\frac{\partial^{2}}{\partial s^{2}} K_{\infty}(\gamma(t), \gamma(s))=\frac{1}{2}\left|\sin \frac{s-t}{2}\right|+\cos (s)
$$

which is positive for $-\pi / 2<s, t<\pi / 2$. Then (as in the proof of Corollary 9) it follows that $\operatorname{supp} \lambda_{A}=A_{+}^{\theta}$ for some $\theta \in[0, \pi / 2]$.

Now suppose A_{+}is symmetric about the x-axis. Then the uniqueness of λ_{A}^{∞} shows that λ_{A}^{∞} is also symmetric about the x-axis, that is, $d \lambda_{A}^{\infty}(w)=d \lambda_{A}^{\infty}(\bar{w})$ for $w \in H^{+}$. Thus we have

$$
W_{\infty}^{\lambda_{A}^{\infty}}(\gamma(t))=\int_{A_{+}} K_{\infty}^{s}(z, w) d \lambda_{A}^{\infty}(w),
$$

where

$$
K_{\infty}^{s}(z, w):=\left(K_{\infty}(z, w)+K_{\infty}(z, \bar{w})\right) / 2 \quad\left(z, w \in H^{+}\right)
$$

Then, for $0 \leq s<t \leq \pi / 2$, we have

$$
\begin{aligned}
& K_{\infty}^{s}(\gamma(t), \gamma(s)) \\
& \quad= \begin{cases}-\cos (s)-\cos (t)-2 \cos (s / 2) \sin (t / 2), & 0 \leq s<t \leq \pi / 2, \\
-\cos (s)-\cos (t)-2 \cos (t / 2) \sin (s / 2), & 0 \leq t<s \leq \pi / 2\end{cases}
\end{aligned}
$$

and differentiating with respect to t we obtain

$$
\begin{align*}
& \frac{\partial}{\partial t} K_{\infty}^{s}(\gamma(t), \gamma(s)) \tag{22}\\
& \quad= \begin{cases}\sin (t)-\cos (s / 2) \cos (t / 2), & 0 \leq s<t \leq \pi / 2 \\
\sin (t)+\sin (s / 2) \sin (t / 2), & 0 \leq t<s \leq \pi / 2\end{cases}
\end{align*}
$$

We claim that

$$
\begin{equation*}
\frac{\partial}{\partial t} K_{\infty}^{s}(\gamma(t), \gamma(s))>0 \quad\left(-\pi / 2 \leq s \leq \pi / 2, t>\theta_{c}\right) \tag{23}
\end{equation*}
$$

Clearly (23) holds in the second case of (22) when $0<t<s \leq \pi / 2$. If $\theta_{c}<t \leq \pi / 2$ and $0 \leq s<t$, then using the first case of (22),

$$
\sin (t)-\cos (s / 2) \cos (t / 2)=\cos (t / 2)(2 \sin (t / 2)-\cos (s / 2))
$$

and $2 \sin (t / 2)-\cos (s / 2)>2 \sin (t / 2)-\cos (t / 2)>0$ for this range of s and t, we see that (23) holds in this case as well. Hence, we have

$$
\frac{d}{d t} W_{\infty}^{\lambda_{A}^{\infty}}(\gamma(t))=\int_{A_{+}} \frac{\partial}{\partial t} K_{\infty}^{s}(\gamma(t), w) d \lambda_{A}^{\infty}(w)>0 \quad\left(t>\theta_{c}\right)
$$

Thus, in light of Lemma 13, we have $\operatorname{supp} \lambda_{A}^{\infty} \subset A_{+}^{\theta_{c}}$ if $A_{+}^{\theta_{c}} \neq \emptyset$, while if $A_{+}^{\theta_{c}}=\emptyset$, then $\lambda_{A}^{\infty}=\left(\delta_{a+\zeta}+\delta_{a+\bar{\zeta}}\right) / 2$.
5.3. The vertical line segment. In this section we consider sets $A \subset$ H^{+}such that A_{+}is contained in a vertical line segment $[a+i c, a+i d]$ and further suppose the endpoints $a+i c$ and $a+i d$ are in A_{+}. Then

$$
K_{\infty}(a+i t, a+i s)=-2 a-|t-s| \quad(s, t \in[c, d])
$$

which falls into the class of kernels studied in [2] and it follows from results there that $\lambda_{A}^{\infty}=\left(\delta_{a+i c}+\delta_{a+i d}\right) / 2$ where δ_{w} denotes the unit point mass at w. In particular, for the "infinite washer" in \mathbb{R}^{3} obtained by rotating $[a+i c, a+i d]$ about the y-axis and letting $a \rightarrow \infty$, the support of the equilibrium measure degenerates to two circles. We contrast this with the finite R case where, by Corollary 7, we have $\operatorname{supp} \lambda_{A}^{R}=A_{+}$.

6. Discrete Minimum Energy Problems on $A \subset H^{+}$

Suppose $A \subset H^{+}$is compact, $k: A \times A \rightarrow \mathbb{R}_{+}$is continuous and nonnegative, and that there is a unique equilibrium measure $\lambda_{k, A}$ minimizing the k-energy

$$
I_{k}(\mu):=\iint_{A \times A} k(x, y) d \mu(x) d \mu(y)
$$

over measures $\mu \in \mathcal{M}(A)$. In this case we say that k is a continuous admissible kernel on A. In particular, we have in mind the reduced kernel K as defined in (5) or the limiting kernel K_{∞} as defined in (19).

We consider the following discrete minimum k-energy problem. The arguments in this section closely follow those in [11, pp. 160-162]; however, the continuity of k here allows for some simplification. For a collection of $N \geq 2$ distinct points $\omega_{N}:=\left\{x_{1}, \ldots, x_{N}\right\} \subset A$, let

$$
E_{k}\left(\omega_{N}\right):=\sum_{1 \leq i \neq j \leq N} k\left(x_{i}, x_{j}\right)=\sum_{i=1}^{N} \sum_{\substack{j=1 \\ j \neq i}}^{N} k\left(x_{i}, x_{j}\right),
$$

and

$$
\begin{equation*}
\mathcal{E}_{k}(A, N):=\inf \left\{E_{k}\left(\omega_{N}\right)\left|\omega_{N} \subset A,\left|\omega_{N}\right|=N\right\} .\right. \tag{24}
\end{equation*}
$$

Since

$$
\begin{equation*}
\mathcal{E}_{k}(A, N) \leq \sum_{1 \leq i \neq j \leq N} k\left(x_{i}, x_{j}\right) \tag{25}
\end{equation*}
$$

for any configuration of N points $\left\{x_{1}, \ldots, x_{N}\right\} \subset A$, integrating (25) with respect to $d \lambda_{k, A}\left(x_{1}\right) d \lambda_{k, A}\left(x_{2}\right) \cdots d \lambda_{k, A}\left(x_{N}\right)$ we find $\mathcal{E}_{k}(A, N) \leq$ $N(N-1) I_{k}\left(\lambda_{k, A}\right)$ and so we have

$$
\begin{equation*}
\frac{\mathcal{E}_{k}(A, N)}{N(N-1)} \leq I_{k}\left(\lambda_{k, A}\right) \quad(N \geq 2) \tag{26}
\end{equation*}
$$

On the other hand, the compactness of A and continuity of k imply that for each $N \geq 2$ there exists some optimal k-energy configuration $\omega_{N}^{*} \subset A$ such that $E_{k}\left(\omega_{N}^{*}\right)=\mathcal{E}_{k}(A, N)$. Let $\lambda_{A, N}=\frac{1}{N} \sum_{x \in \omega_{N}^{*}} \delta_{x} \in$ $\mathcal{M}(A)$ (where δ_{x} denotes the unit point mass at x). Then

$$
\begin{equation*}
I_{k}\left(\lambda_{k, A}\right) \leq I_{k}\left(\lambda_{A, N}\right)=\frac{\mathcal{E}_{k}(A, N)+\sum_{i=1}^{N} k\left(x_{i}, x_{i}\right)}{N^{2}} \quad(N \geq 2) \tag{27}
\end{equation*}
$$

Combining (26) and (27) we have

$$
\begin{equation*}
\frac{\mathcal{E}_{k}(A, N)}{N(N-1)} \leq I_{k}\left(\lambda_{k, A}\right) \leq I_{k}\left(\lambda_{A, N}\right) \leq \frac{\mathcal{E}_{k}(A, N)}{N^{2}}+\frac{\|k\|_{A}}{N} \quad(N \geq 2) \tag{28}
\end{equation*}
$$

where $\|k\|_{A}:=\sup _{z \in A} k(z, z)$. Since $\mathcal{E}_{k}(A, N) / N^{2} \leq I_{k}\left(\lambda_{k, A}\right)<\infty$, the inequalities in (28) show that there is some constant C such that $0 \leq I_{k}\left(\lambda_{A, N}\right)-I_{k}\left(\lambda_{k, A}\right) \leq C / N$ for $N \geq 2$, and so

$$
\begin{equation*}
I_{k}\left(\lambda_{A, N}\right) \rightarrow I_{k}\left(\lambda_{k, A}\right) \text { as } N \rightarrow \infty . \tag{29}
\end{equation*}
$$

If μ^{*} is a weak-star limit point of the sequence $\left\{\lambda_{A, N}\right\}$, then (29) shows that $I_{k}\left(\mu^{*}\right)=I_{k}\left(\lambda_{k, A}\right)$ and so $\mu^{*}=\lambda_{k, A}$. By the weak-star compactness of $\mathcal{M}(A)$, any subsequence of $\left\{\lambda_{A, N}\right\}$ must contain a weak-star convergent subsequence. Hence, we have the following result.

Proposition 15. Suppose A is a compact set in H^{+}and that k : $A \times A \rightarrow \mathbb{R}_{+}$is a continuous admissible kernel on A. For $N \geq 2$, let ω_{N}^{*} be an optimal k-energy configuration of N points $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \subset A$. Then $\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}} \xrightarrow{*} \lambda_{k, A}$ as $N \rightarrow \infty$.

Figure 4 shows (near) optimal K-energy configurations for $N=30$ points restricted to various ellipses in H^{+}.
Acknowledgement. We thank Rob Womersley for performing the computations and providing the resulting images shown in Figures 1 and 2. We also extend our appreciation to Johann Brauchart his careful reading of the original manuscript.

Figure 4. Near optimal K-energy configurations ($N=$ 30 points) on various ellipses in H^{+}.

References

[1] J. Benedetto and M. Fickus, Finite normalized tight frames, Adv. Comput. Math. 18 (2003), 357-385.
[2] G. Björck, Distributions of positive mass which maximize a certain generalized energy integral, Ark. Mat. 3 (1956), 255269. MR 17, 1198.
[3] S. Borodachov, D. P. Hardin, and E. B. Saff, On asymptotics of the weighted Riesz energy for rectifiable sets, submitted (2005).
[4] M. Bowick, D. R. Nelson, and A. Travesset, Curvature-induced defect unbinding in toroidal geometries, Phys. Rev. E 69, (2004), 041102-041113.
[5] J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer Verlag, New York: 3rd ed., 1999.
[6] Frostman, O., Potentiel d'équilbre et capacité des ensembles, Medd. Lunds Univ. Mat. Sem. 3 (1935).
[7] D.P. Hardin and E.B. Saff, Minimal Riesz energy point configurations for rectifiable d-dimensional manifolds, Adv. Math. 193 (2005), 174-204.
[8] D.P. Hardin and E.B. Saff, Discretizing manifolds via minimum energy points, Notices of the AMS. 51 (2004), no. 10, 1186-1194.
[9] A.B.J. Kuijlaars and E.B. Saff, Asymptotics for minimal discrete energy on the sphere, Trans. Amer. Math. Soc. 350 (1998), no. 2, 523-538.
[10] P. Mattila, Geometry of sets and measures in Euclidian spaces. Fractals and Rectifiability, Cambridge Univ. Press, 1995, 344 pages.
[11] N.S. Landkof, Foundations of modern potential theory. Springer-Verlag, Berlin-Heidelberg-New York, 1972, 426 pages.
[12] E.B. Saff and V. Totik, Logarithmic potentials with external fields, SpringerVerlag, Berlin-Heidelberg-New York, 1997, 508 pages.
[13] I.H. Sloan and R.S. Womersley, Extremal systems of points and numerical integration on the Sphere, Adv. Comp. Math. 21 (2004), 102-125.
[14] S. Smale, Mathematical problems for the next century, Mathematical Intelligencer, 20 (1998), 7-15.
D. P. Hardin and E. B. Saff: Center for Constructive Approximation, Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA

E-mail address: Doug.Hardin@Vanderbilt.Edu
E-mail address: Edward.B.Saff@Vanderbilt.Edu
H. Stahl: TFH-Berlin/FBII, Luxemburger Strasse 1013353 Berlin, Germany

E-mail address: stahl@tfh-berlin.de

[^0]: 1991 Mathematics Subject Classification. Primary 11K41, 70F10, 28A78; Secondary 78A30, 52A40.

 Key words and phrases. Potential, Equilibrium measure, Logarithmic potential, Surfaces of revolution, Riesz energy.
 ${ }^{1}$ The research of this author was supported, in part, by the U. S. National Science Foundation under grants DMS-0505756 and DMS-0532154.
 ${ }^{2}$ The research of this author was supported, in part, by the U. S. National Science Foundation under grant DMS-0532154.
 ${ }^{3}$ The research of this author was supported, in part, by INTAS Research Network NcCCA 03-51-6637.

[^1]: ${ }^{1}$ The logarithmic capacity of a Borel set E is the sup of the capacities of its compact subsets. Any set that is contained in a Borel set of capacity zero is said to have capacity zero.

