GEOMETRIC OVERCONVERGENCE OF RATIONAL
FUNCTIONS IN UNBOUNDED DOMAINS

E. B. SAFF AND R. S. VARGA

Reprinted from Pacific Journal of Mathematics Vol. 62, No. 2
1976



PACIFIC JOURNAL OF MATHEMATICS
Vol. 62, No. 2, 1976

GEOMETRIC OVERCONVERGENCE OF RATIONAL
FUNCTIONS IN UNBOUNDED DOMAINS

E. B. SarrF anD R. S. VArGa
Dedicated to the memory of our teacher, Professor Joseph L. Walsh

The basic aim of this paper is to study the phenomenon of
overconvergence for rational functions converging geometrically
on [0, + ).

1. Imntroduction. The classical results of Bernstein, Walsh,
Goncar, and others concerning the overconvergence of rational functions
are roughly of the following type (cf. [18]): It is assumed that

(i)  f(z)is defined (finite) on some compact set E in the complex
plane C;

(i) {r.(z)}5-1 is a sequence of rational functions of respective
degrees n which converge geometrically to f on E, i.e.,

@ {”f_ r, ”Lx(E)}Un <1;
and

(iii) the set of poles of the sequence {r,(z)};-, has no accumulation
points on E.
It is then concluded that

(iv) the sequence {r,(z)}:-, converges geometrically to an analytic
extension of f on some open set in the plane containing E.

The aim of the present paper is to investigate the phenomenon of
overconvergence in the case where E is a closed line segment [a, b] and
the hypothesis (iii) above is weakened to allow accumulation points of
poles at the endpoints of E, i.e., assumption (iii) is replaced by

(iii) the set of poles of the sequence {r,(z)}r-; has no accumulation
points on the open subinterval (a, b) of E =[a, b].

Of course with the hypotheses (i), (ii), and (iii), we must modify
conclusion (iv) to read

(ivy the sequence {r.(z)}.- converges geometrically to an analytic
extension of f on some open set in the plane containing (a, b).
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For the precise statements of such results on ‘“‘angular overcon-
vergence” it is sufficient to take E = [0, + o), because any interval [a, b]
can be mapped onto [0, +®) by means of a bilinear transformation, and
such bilinear transformations preserve rational functions of degree
n. For example, one of the results which we prove asserts that if rational
functions r,(z) of respective degrees n converge geometrically on
E = [0, + =), and the poles of the r,(z) lie outside an infinite sector of the
form

{zeC:l|argz| < ¢}, 0< ¢ =m,
then the r,(z) converge geometrically on some smaller infinite sector
{zeCilargz| < ¢}, 0< <.

It is important to note that a number of results have appeared in the
literature ([8], [10], [11]) which give classes of functions f and examples of
approximating rational functions r,(z) for which condition (ii) above is
satisfied on E = [0, + ). Furthermore, for some special sequences of
approximating rational functions, the existence of pole-free open sets (in
the plane) containing (0, + <) follows from the results in [17], [12], [13],
among others. Hence the main results of this paper, which we state in
§2, have immediate applications. These applications will be discussed
primarily in §3.

2. Statements of main results. We now introduce the
necessary notation and state our main results. Their proofs will be given
in §4.

For an arbitrary set A in the complex plane C we denote by || -||4 the
sup norm on A, i.e.,

Iflla:=sup{[f(z)]: z € A}.

We use the symbol 7, to denote the set of all complex polynomials in the
variable z having degree at most n, and let ., denote the set of all
complex rational functions r,(z) of the form

r.(z) = p:(2) , where p,€mwm, q.€m, q=0.
4.(2)
The first three results which we state concern pole-free regions whose
boundaries are parallel to the ray E = [0, + ©) at x = + o, It is conve-
nient in this regard to introduce the set # which consists of all real
nonnegative continuous functions & on [0, +«) such that for x large,
h(x)>0, and h'(x) exists, is nonnegative, and satisfies
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2.1) lim A'(x)=0.

x—+o

Corresponding to each h € ¥ we define generically the set E,(h),
0=s =1, in the complex plane by

(2.2) E(h):={z=x+iy:x=0 and |y|=sh(x)}.

Notice that, by condition (2.1), the boundary of each set E,(h) defined in
(2.2) makes an angle of zero with the positive real axis at x = +x,

Our first result is the following:

THEOREM 2.1. Assume that for a function f, deﬁned and finite on
[0, + ), there exists a sequence of rational functions {r,}._., withr, € m, ,
for all n =z 1, and a real number q > 1 such that

_ 1
(2.3) lim {[|f = r. flo.+}"" < 7 < 1.

Assume further that for some function h € J the interior of the region E,(h)
(defined in (2.2)) contains no poles of the r,(z) for all n sufficiently
large. Then for every d satisfying the inequality

2.4 O<d<i‘1—<1

there exists a bounded subset K, of E;(h) and an analytic function F(z) on
E;(h)— K, with F(x)= f(x) for all real x in this set, such that {r,(z)};_,
converges geometrically to F(z) on E,(h)— K,. Moreover

_ 1 /1+dy
25) 0 F = ol <2 (1) <1

The next result shows that in certain cases the conclusion of
Theorem 2.1 can hold on the whole set E,(h), rather than on E,;(h) — K,

COROLLARY 2.2. Assume that for a continuous function g(#0) on
[0, + ) there exists a sequence of polynomials {p.}-:, with p, € m, for all
n =1, and a real number q > 1 such that

1/n

A

< 1.

1
2.6 11m ” -——— —
(2.6) o +m> p

—
n n
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Then, as is known [7, Theorem 3], there exists an entire function G(z) of
finite order with G(x)=g(x) for all x Z0. Next assume that for some
function h € ¥, with h(x) >0 for all x > 0, the interior of the region E,(h)
(defined in (2.2)) contains no zeros of p,(z) for all n large. If d satisfies
(2.4) and if G is nonzero on the vertical segment {z = iy: |y |= dh(0)},

then
”"< 1 <1+d>2<1
Ea(h) T gqg\l-d

As a concrete application of Corollary 2.2, we first recall from
Meinardus and Varga [8] that
}]/n
o)

where s,(z) = 2}_,z*/k ! denotes the familiar nth partial sum of e*. Itis
further known from Saff and Varga [12] that for

x

e‘ —_

Do —=

(2.8) lim { s, gx)

(2.9) h(x)=2(x + 1),
the region
(2.10) Eh)={z=x+iy:x =0, |y|=2(x + D"}

contains no zeros of the s,(z) for all n. Note that A € %, and that with

G(z)= e’ (so that G is nonzero at every finite point z), with p, = s, for

all n=1, and with g =2, the hypotheses of Corollary 2.2 are all

fulfilled. Thus for any d satisfying 0 < d < (V2-1)/(V2+ 1), we have
1

from (2.7) that
}”"<1 <1+d 2<1
se(Z)eann) T2 1—d> ’

which is effectively the result of [11, Theorem 4.1]. We remark that for
any d >0 the set

@.11) Iim { e —

n—w

(2.12) Eh)={z=x+iy: x =0, |y|=2d(x + 1))

is an unbounded parabolic region truncated at the origin.

As a consequence of Corollary 2.2 and of the results in [12], similar
overconvergence results in unbounded parabolic regions also hold for
each column of the Padé table for e, i.e., for the Padé approximants
{R, .(2)}.-; where the degree, v, of the numerator is fixed.
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Applications of Corollary 2.2 can in fact be made to a certain class of
entire functions which contains the above example, and this will be
described in the next section.

From Corollary 2.2 it is possible to deduce the following result which
concerns geometric convergence on related unbounded sets whose
widths grow more slowly at infinity.

CoROLLARY 2.3. With the hypotheses of Corollary 2.2, assume that
c(x) is a nonnegative continuous function on [0, + ©) with c(x) < h(x) for
all x >0, such that

. c(x) _
(2.13) x]_l}g 7 (x) 0,
and let
(2.14) C:={z=x+iy:x=0,]|y|=c(x)}

If G is nonzero on the segment {z = iy: |y |= c(0)}, then

/n

= hm ”———

€ n-s>0m

e mifepll

The remaining results concern overconvergence on regions having a
positive angle at infinity. In stating them it is convenient to introduce

the sets S(0, w) and S(6) defined by

[0, +°°)

(2.16) SO, w):={z:|argz|< 8, |z|>pn},
(2.17) S(0):={z:|arg z| < 0}.

THEOREM 2.4. Assume that for a function f, defined and finite on
[0, + ), there exists a sequence of rational functions {r,}»-,, with r, € w, ,
for all n =1, and a real number q > 1 such that

_ 1
(2.18) lnl_I;Il {”f— r,, ”[U,+w)}1/" < a < 1.

Assume further that for some 6, and ., with 0 < 8, = m, o, >0, the region
S(00, o) (defined in (2.16)) contains no poles of the r.(z) for all n
large. Then for every 8 satisfying the inequality

@)

(2.19) 0< @ <4tan™ {(%%—;—1) - tan
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there exists a u = u(0)>0 and an analytic function F(z) on the closure
S(6, ) with F(x)=f(x) for all real x in this set, such that {r,(z)} -
converges geometrically to F(z) on S(6, ). Moreover

— o L (sin[i(6,+ ())]}2
(2.20) fm (1 F 1™ <o {————Smu o <1

It is interesting to note that while Theorem 2.1 cannot be deduced
from Theorem 2.4, the former result can be considered as a limiting case
of the latter. Indeed, for the situation of Theorem 2.1, we regard 6, and
6 as functions of x which tend to zero as x — + o; specifically, we define
6, and 6 by the equations

tan00=ﬂx£), tan0=d—hx(x—).

Then, on writing (2.19) in the equivalent form

tan(6/4) _ V-1
tan(8,/4) Vgq+1’

and taking the limit as x — + o, we derive the condition

m tan(6/4) _ lim tan 6 _ d < \/g—l ,
s=+o tan(0y/4)  x—o+= tan 6, Vg+1

which is the same as inequality (2.4) of Theorem 2.1.
Using Theorem 2.4 we can deduce the following analogs of Corol-
laries 2.2 and 2.3:

CoROLLARY 2.5. Let the functions g, G, and the sequence of polyno -
mials {p,}:-: be as in Corollary 2.2 (so that, in particular, inequality (2.6)
holds). Assume further that no zeros of p, lie in the infinite sector S(8,)
(defined in (2.17)), 0 < 8, = r, for all n sufficiently large, and that g (0) # 0.
If 8 satisfies (2.19), then on the closure §(8),

(2.21) lim ”— -

i sin[1(6, + 6)]
([ L], et

sin[4(68,— 6)]

S(f))

COROLLARY 2.6. Let the functions g, G, and the sequence of polyno-
mials {p,}.-1 be as in Corollary 2.2 (so that, in particular, inequality (2.6)
holds). Assume that no zeros of p, lie in S(8,), 0< 6,=m, for all n
sufficiently large, and that g(0) # 0. Then for any nonnegative continuous
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function c(x) on [0, + ) such that c(x) = o(x) as x — +© and such that
(1) c(0)=0if 8,=7/2, (ii)) c(x) < x tan(@,) for x >0 if 0< 6, < 7/2, we
have

I/n

222 lim ”——— “———
(2:22) e |G palle . § D

where the region € is defined as in (2.14).

[, +w>

If, in Corollary 2.5, we weaken the hypothesis by replacing the
reciprocals of polynomials, 1/p,, by arbitrary rational functions r, € m,
whose poles omit a full sector, then we obtain the following less specific
conclusion:

THEOREM 2.7. Assume that for a function f, defined and finite on
[0, + ), there exists a sequence of rational functions {r,}n-,, with r, € m, ,
for all n=z1, and a real number q >1 such that inequality (2.18)
holds. Suppose further that the infinite sector S(6,) (defined in (2.17)),
0 < 6, = m, contains no poles of the r,(z) for all n large. Then there exists
a 0,0< 8 < 8,, and a function F(z) analytic on the sector S(8), continuous
on S5(6), with F(x)=f(x) for all x =0, such that {r.(z)};-, converges
geometrically to F(z) on $(8).

Theorem 2.7 has an important application to the problem (raised at
the International Conference on Approximation Theory, Maryland,
1970) of finding a sequence of rational functions which converges
geometrically to e in an infinite sector. It is well-known that the
sequence 1/s,(2), s,(z) =25 z*/k!, does not have this property because
no infinite sector is devoid of zeros of s,(z) for all n large (cf. [3] or
[14]). However, it is shown by the authors in [11] and [13], that certain
sequences of Padé approximants of e * converge geometrically on
[0, + ) to e, and furthermore have all their poles outside some infinite
sector {z: |arg z | < 6,}. Hence, by Theorem 2.7, such a sequence must
cenverge geometrically to e on some infinite sector {z: |arg z | < 8},
0< 6 < 6, The precise details of this application shall be reserved for a
later occasion.

The last result of this section concerns rational functions which
converge faster than geometrically on [0, + ), i.e.,

=0.

(2.23) lim {||f -

CoroLLARY 2.8. If in Theorem 2.7, the assumption of inequality
(2.18) is replaced by (2.23), then the sequence {r,(z)};-; converges faster
than geometrically on every closed sector S(8), 0< 8 < 8,, i.e.,
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(2.24) Li_{f; {IF = r.lls}"™ = 0.

3. Some applications. In order to apply results such as
Corollaries 2.2 and 2.3 we first need conditions on the entire function
G (z) which insure that there exists a sequence of polynomials p,, with
p. € m, for all n = 1, such that

l/n

(3.1) 11m “——— <1.

n—w G pn

[0, +oo)

Second, we need a specific result, like that of (2.9), which asserts that for
an appropriate function h € ¥, the interior of the region E,(h) defined in
(2.2) is free of zeros of the polynomials p, in (3.1) for all n large. Results
of both these types are already known for the case where the p, are the
nth partial sums of the Maclaurin expansion for G. In order to state
these results we remind the reader of some standard terminology.

If g(z)=Z%0az® is an entire function, we let M,(r): =
max{|g(z)|:|z|=r} denote its maximum modulus function, and let
p = p, denote the order of g (for nonconstant g), i.e., (cf. [2, p. 8], [15, p.
34])

(3.2) p:E M

ro>to Inr

Furthermore, an entire function g(z) of order p, 0 < p < o, is said to be
of perfectly regular growth (cf. [15, p. 44]) if there exists a real B >0 such
that

In M, (r

re

(3.3) 0<B = lim

r—+x

We remark that if a nonconstant entire function g satisfies a linear
differential equation with rational function coeflicients, then g is neces-
sarily of perfectly regular growth (cf. [15, p. 108]).

We now state a result which gives sufficient conditions for geometric
convergence on [0, + ).

THEOREM 3.1 (Meinardus and Varga [8]). Let g(z)=27_,a.z* be

an entire function of perfectly regular growth (p, B) with real nonnegative
coefficients a,. Then

(3.4) lim {

1n 1
=——<1
Sy [0,+oc)} 21 ’
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where s5,(z)=Z}.oa:z* denotes the nth partial sum of the Maclaurin
expansion for g.

Concerning zero-free regions for the partial sums s, we state a
previously unpublished result from one of the author’s thesis [17]. For
related published results see [16].

THEOREM 3.2. Let & denote the set of all entire functions g(z)=
Zi-oaz® for which

(i) ao>0and a, =0 for all k = 1;

(i) if a, =0, then a,.,; =0 for every j = 1;

(i) if K:={k: a. >0 and a,.,>0} is nonempty, then

. ay
(3-5) inf {(k Tk +2)am} > 0.
Then, for g € &, there exists a nondecreasing continuous function h,

defined on [0, + o) with h,(0) >0, such that g(z) and all its partial sums
s.(2)=Zi0az¥, n =1, have no zeros in

(3.6) {z=x+iy:x=0 and |y|=h(x)}.
Moreover, for each g € &, the order p, of g satisfies 0 = p, = 1.

We remark that the set & of Theorem 3.2 contains many familiar
elements. For example, u(z) = e, v(z)=cosh(Vz)= 35 z*/(2k)!, the
modified Bessel functions J,(iz)/(iz)" for any n =0, and the hyper-
geometric function ,Fi(c; d; z) with ¢ >0, d >0, are easily seen to be

elements of &.
If W, denotes the nonempty (from Theorem 3.2) collection of all

positive nondecreasing continuous functions k, on [0, +) for which
g(z) and all its partial sums s,(z), n = 1, have no zeros in the region
defined by (3.6), then we define the (maximal) width function H,(x) by

3.7 H,(x):= sup{h,(x): h, € W,}, for each x=0.

The function H,(x) so defined is clearly nondecreasing on [0, + <), and
g(z) and all its partial sums s,(z) have no zeros in the interior of the
region defined by

(3.8) {z=x+iy: x=0 and |y|=H,(x)}.

Moreover, if g is of order p, >0, then a result of Carlson [3] states that no
proper sector, with vertex at the origin, can be devoid of zeros of the
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partial sums s,, for all n large. Consequently, when p, >0, H,(x) is
finite for all finite x = 0.

The next corollary provides lower bounds for H,(x) for particular
elements in .

COROLLARY 3.3. Let g(z) =25 a,z* be an entire function such that
ar >0 for all k and such that

. a,
(3.9) inf {ET“} > 0.

Then g € & and its associated width function H, of (3.7) satisfies, for some
constant ¢ >0,

(3.10) H,(x)=Zcx'"?, for all x=0.

Proof. 1t is trivial to verify that g(z) = 2§ a.z* € &. Furthermore, it
follows from the hypotheses above that the entire function f defined by

f(z): = Z:akzz" is also in & Thus, from Theorem 3.2, we can as-

sociate with f a continuous nondecreasing function h; defined on [0, + ),
with h; (0) > 0, such that f and all its partial sums S, (z) have no zeros in

F:={z=x+iy:x=0 and |y|=h(x)}.
But if s,(z) denotes the nth partial sum of g(z), then s,(z%) = S,.(z) for
all n =1,2,---, which allows us to relate the corresponding zeros of the
partial sums of g with those of f. Thus, defining
Y. = {z% z € F},

then g and all its partial sums s, have no zeros in 4. Now, since
h;(0)>0 and A, is nondecreasing on [0, + «), then evidently

4D{z%z=x+iy, x=0 and |y|=h 0)}

Thus, if H, is the associated width function for g, the above inclusion
implies that

H,(t)z2h;(0)(t + h7(0))"? = 2h, (0)t"”, for all (=0,
which is the desired result of (3.10).

As previously noted, u(z)=e’, of order p,=1, and v(z)=
cosh (\/z), of order p, = 1/2, are elements of the set &, and furthermore
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each is of perfectly regular growth. Moreover, for u(z)=e? the
authors’ result of (2.9) implies that

H,(x)=2(x +1)”, for all x=0.
Also, applying Corollary 3.3 to v(z)= cosh(Vz) gives
H,(x)=z cx'?, for all x=0.
However, we believe that this last inequality can be improved. In fact,
we conjecture more generally that, for any element g € & of perfectly
regular growth, its associated width function satisfies

H,(x)= cx®*"? for all x =0.

As a consequence of Theorems 3.1 and 3.2, which apply to both e*
and cosh (V z), we have the following application of Corollary 2.2.

CoroLLARY 3.4. For any g € & of order p >0 which is of perfectly
regular growth, let H, be its associated nondecreasing width function of

(3.7), and let h € ¥ be any positive function for which h(x)= H,(x) for all
x=Z0. Then for

0<d<@%-1)/@2" +1),

we have

lIA

Un 1 /1+d\2 ]
Ed(h)} 21 (1'—61) <L

where the region E,(h) is defined as in (2.2), and s,(z) denotes the nth
partial sum of g(z).

11
o Bl

Proof. Because g € & implies that the Maclaurin coefficients of g
are all nonnegative, and because g is assumed to be of perfectly regular
growth, then the conclusion (3.4) of Theorem 3.1 is valid. Next, by the
definition of H,(x) and the fact that h(x) = H,(x) for all x =0, it follows
that g and all its partial sums s, have no zeros in the interior of the region
E\(h). Consequently, applying Corollary 2.2, with q =2, gives the
desired result of (3.11).

We remark that the existence of a function h € ¥ satistying the
conditions of Corollary 3.4 is obvious. As a simple example, take h, of
Theorem 3.2 and set h(x)= h,(0).
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Concerning rational approximation to entire functions of order
p =0, it has been shown in [7, Thm. 7] and in [4, Thm. 2] that if g is an
entire function of order zero and satisfies certain growth and coefficient
restrictions, then
1/n
<o
[0, +cc)

As an illustration of how our techniques apply to such situations, we
present

(3.12) Hm{M

n—% pPE N

l_%
g p

ProPOSITION 3.5. Let g(z)=2%.,z%/a", where a=2, and let
5.(z)=Zi_0z%/a*’. Then, on every closed sector S(8) (defined in (2.17))
with 0< 6 <, we have

(3.13) nmﬂﬁ—i

}l/n2 1
5(0) \/a

n—®»

Of course, for the functions of Proposition 3.5, we see that the
conclusion of (3.13) is far stronger, and implies the result of (3.12), as a
special case.

As the proof of Proposition 3.5 follows from the methods of proof of
the main results in §2, we shall defer it to the next section.

4. Proofs of new results. We now present the proofs of the
main results given in §2. It is convenient in this regard to first state a
particular case of Walsh’s Lemma [18, p. 250].

Lemma 4.1. Let r.(z) € m,, have poles in the extended complex
plane at the points B, B ", Bw m=n, (listed according to
multiplicity). If

I ()= M <e,
then for z&[—1, +1],

1—P(B) P(z)
D(z) — D(B)

where w = ®(z) is the inverse of the function

(4.1) 1n@n§M£[

3

z=\lf(w):%(w+%),
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which maps |w|>1 in the w-plane one-to-one onto the exterior of
[—1, +1] in the z-plane, so that W(«)=o. Moreover, if Cr denotes
generically the elliptical level curve |®(z)| = R >1 in the z-plane, and if
all the points B; lie on or exterior to C,, then for any 1=S=A,

(42) ) = M (55 )’

where Cs denotes the closed interior of Cs in the z-plane.

We remark that if r, = p, € m,, then (4.2) is valid for any A > S, and
letting A — o in (4.2) gives the familiar result of Bernstein (cf. [6, p. 92]),

”pn (Z)”a‘ = MS"’ if Ipn (Z)"[*lﬂl] = M7

which can also be deduced from (4.1) with all 8; = .

Proof of Theorem 2.1. For 6 >0,set q,:=q + 8, q.: = q +28, and
select & > 0 sufficiently small so that (cf. (2.3))

n 1 1
o4} ™ < — < — <

_ 1
4.3 lim - r, -
(43) fim (| f a3

Next, for any 8 = 1, define

(4.4) A*(B): = é + \/%+ 1, and p*(B):= A*(B/d),

where d is fixed and satisfies (2.4). An easy calculation with these
definitions then shows that

. A*Bp*B)—=1\ _ 1+d
(*5) im () ~Td

o=

Thus, we can choose a finite B = 1, dependent on 8, such that

AP -1y’ g (Lrd).

(46) te <A*(é)—p*(é) g \—d

From (4.3) there exists an n,, depending on §, such that

1
= rilloen < rk for all n = n,.
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Thus, by the triangle inequality, it follows that

(4.7) 7 =t oo < Zq-;] , for al n>n,.

Since by hypothesis h € ¥, there exists a ¢, = 0 such that h(¢) >0 for all
t = t;. Consider then the line segment of the real axis

m(1):= [t = Bh(1), t + Bh(1)]

forany ¢t = ¢,. With L’'Hospital’s rule, the condition of (2.1) then implies
that

4.8) tim 28 = tim K1) =0,

1+ t—>+oc

and consequently, there exists a f,, t, = t,, dependent on é and hence on
8, such that for all ¢+=1, the segment m(¢) is a segment of the
nonnegative real axis, i.e.,

m(t) C[0, +x), for all r=y¢,.

Next, for any u =1 and for any ¢t =1, let m,(¢) denote the following
ellipse in the complex plane:

m,(t): = {z=x+iy:£x—_—tz+£=1},

a2 b2
where
s 3h(t
a=a(tBu): :!ﬂzj (m+u),
4.9)

; 3h (1 g
b=>b(tB ur): =§§—2 (m=p™),
and let m,(t) denote the closed interior of m,(¢), i.e.,

rﬁu(t):={z=x+iy:§uf+*z—z 1}.

al
Foreach t 2 1,, let A(t) denote the largest value of u = 1 such that

fIA

(4.10) i, (1) C Ey(h).
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We claim that
(4.11) lim A(t)= A*(B).

To prove (4.11) we establish upper and lower bounds for A (t). Geometri-
cally, the value for u derived by setting b = h(t) is obviously an upper
bound for A(t). But, using (4.9), this implies that

B - oy = o),

and, upon solving for w, it follows (cf. (4.4)) that

n=A*p).
Thus
A()=A*), for each t=1,.

Next, since h € ¥, the function h(t) is nondecreasing for, say, all
t=t;=t, Thus,the value for u derived by setting b = k(¢ — a) is again
seen geometrically to be a lower bound for A(¢), i.e., from (4.9)

A A

(4.12) M(p—i—)zh{t—w(u+—l—)}.

2 2 “

It is not difficult to see in fact that (4.12) has a unique solution wu *(t)
satisfying 1 < pu *(t)= A *(B) for all ¢ sufficiently large. Indeed, on the
interval 1 = = A*(B) it is clear from (4.8) that the right-hand side of
(4.12) is a well-defined positive nonincreasing function of u for all ¢, say,
with ¢t = t, = t;, while the left-hand side of (4.12) is a strictly increasing
function of u. Moreover, for u =1 the left-hand side vanishes and is
thus less than the positive value of the right-hand side for ¢ = 1, while for
p = A *(B), the left-hand side reduces by definition to k (r), which cannot
be less than the corresponding value of the right-hand side for u =
A *(B)since h(t)is nondecreasing for t = t;. Thus, there exists a unique
solution p *(¢) of (4.12) which satisfies 1 < u*(t) = A *(B), and w*(¢) is a
lower bound for A(#), i.e.,

p*()=A(W)=A*(B), for all r=1,.
We now show that w*(¢), the unique solution of (4.12), satisfies

lim,_..u*(t)= A*(B). As w*(t) is bounded, i.e., u*(t)=A*(B), we
see from (4.8) that
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t—mhzg< (1) + *(t)> as t—> + o,

Therefore, since h' exists for all sufficiently large values of the
argument, we can apply the Mean Value Theorem to deduce

(4.13) hm—hb—é%ﬂ<*m+ w&}

= we) B (o) + )
where
4.14) - ‘éﬂzﬂ (w* () +(u*()) ) <c <t for all ¢ large.

Dividing the expression in (4.13) by h(t) and observing that
lim,..c, = +, it follows from hypothesis (2.1) that

e = B (ur)+ (o) g
- T = w(e) £ (0 + w0~ 0

as t — + . But, using the defining relation (4.12) for u *(¢), the above
gives us that

tim £ () - eyt =1,

which implies, from the definition of A *(8) in (4.4), that
lim p*(0)=A*(B).

Hence, as pu*(H)=A(H)=A *(B) for all rz1, then evidently
lim_..A(t)= A*(B), as claimed in (4.11).

In order to “fill out” the region E,(h), where d is fixed and satisfies
(2.4), it suffices to work with ellipses m, (), defined by setting

b = dh(t).

From (4.9) and (4.4), the corresponding value of u turns out to be
p=p*(B)=A*(B/d). Geometrically, this implies that the elliptical
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region M, () covers the vertical segment {z = x +iy: x =t and |y | =
dh(t)} of E;(h). Next, using (4.11) and the fact that 0 <d <1, then
1<p*(B)=A*(B/d)< A(t) for all r sufficiently large, say ¢ = ts=1,.
But from (4.7), we trivially have, since m (¢) C [0, + =) for all ¢ = 1,, that

(g +1)
q:

for all n>n, all t=t,.

k4

(70 = tucillmeny <

Next, since the interior of E,(h) by hypothesis contains no poles of r, for
all n sufficiently large, say n = n, = n,, the same is evidently true for
(e = 1u-1) € Tany 201 Thus, applying (4.2) of Walsh’s Lemma 4.1 with
[—1, +1] replaced by m(t), gives us that

= (g2t 1) {A(t)p*(é)t 1}211—1
M =@)(t) q; A(t)_ p*(B) ,

” rn(z)— rn~1(z)

for all n>n, all r=t. Since lim_.A(t)=A*(B) from (4.11), it
follows from (4.6) that, for all n > n, and all ¢ sufficiently large, say

L= = s,

B §g2+1)(1+d>2"
ll T (Z) rﬂfl(z)”iﬁp'(m(f) = qut 1-4d ’
where ¢, is dependent on 8. But, since m,.;(t) covers the vertical
segment of E,(h) with abscissa f, then the set U, m,.(t) evidently
covers E,(h), with the possible exception of a bounded subset K, of
E,(h), where K, depends upon the choice of 8, as well as d. Hence,

2n
4.15) |r(2) = r-i(2)||panyxs = %ﬂ) Gf—g) for all n > n,,
1

which implies that the sequence {r.(z)}:-, converges geometrically on
E,(h)— K, to an analytic extension F(z) of f (x), defined by means of

F(z):=r,(z)+ i (rii(z2) — 1 (2)).

n=n

Indeed, it follows from (4.15) that

2n
[ 7azi5(2) = Fecil2) | Eah)-ka = (1((1_2:)1‘1),, (;fj) ,foralln>n,, all s 21,
1

where
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1 /1+dY 1 [1+dY
y"q,<1—d><q(1—d><1’

so that letting s — o,

+1) (1+d\*
1 F(2) = tuer2)||Bath)-xa én(l(q_z y)q)i‘ (1—d> , for all n>n,.
This in turn implies that
Tiom i/n 1 1 + d :
i (1FG) = (el <5 (7))

which is the desired final inequality, (2.5), of Theorem 2.1.

Proof of Corollary 2.2. The existence of the entire function G(z),
of finite order, with G(x)= g(x) for all x =0 is a consequence of [7,
Theorem 3], even though the result given there is only stated for the case
when g is real on [0, +®). Moreover, a careful examination of the
proof of Theorem 3 of [7] shows that the sequence {p,(z)}:-, converges
uniformly and geometrically to G(z) on any bounded set T in the
complex plane, the degree of convergence on T being at least 1/g, i.e.,

(4.16) i (16 - pu()lei" =

Next, as no p, by hypothesis has zeros in the interior of E,(h) for all n
sufficiently large, the uniform convergence of {p,}»-, to G on any
bounded set gives us that G is nonzero at any interior point of E,(h) by
Hurwitz’s Theorem. Also, because h(x)>0 for all x >0, it is clear
from the definition of the set E,(h) in (2.2) that every point in E,(h), for
each d with 0 <d <1, is an interior point of E,(h), except for the vertical
segment {z = iy: |y | = dh(0)}. Hence, since G(z) is given to be nonzero
on this segment, then G(z) is nonzero on all of E,(h). We remark that
if h(0)=0, then the assumption that G is nonzero on the segment
{z =1iy:|y|=dh(0)} reduces simply to the assumption that G(0)=
g(0)#0.

We are now in a position to apply Theorem 2.1 with f(x)=1/g(x)
for all x 20, and with r, = 1/p, for all n = 1. First, fix any d which
satisfies (2.4), and let q' be any number with 1<q'<gq such that
d <(Vq'-1)/(Vq'+1). Then, it follows from (2.6) that

n 1
q

= (e 7o

[0, +22)
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Hence, from (2.5) of Theorem 2.1, there exists a bounded subset K, of

E,(h) such that
}”"< 1 (1+d>2< |
Ea(h)-Ka q’ 1-d

Now, since G(z) is nonzero on E,(h), it is evidently nonzero on the
closure of its bounded subset K, Thus, it follows from (4.16) with
T = K, that
I/n
Kd}

Then, simply combining the results of (4.17) and (4.18) gives us that

}”"< 1 <1+d>2<1
Ea(h) :q’ 1-d

But as this inequality holds for all ¢’ sufficiently close to ¢ with 1 < g’ <g,

then
' }”" 1 <1+d>2<1
Ea(h) q\1-d ’

an  memac

(4.18) w{lew o

A

1
a 4

e

Ini—in;{ﬂﬁl(z_)_pné)

A

the desired result of (2.7).

Proof of Corollary 2.3. Because € is, from (2.13), contained in
every E,(h), 0<d, except for some compact set, it follows from (4.16)

and (2.7) that
1 1+dy .
} :q<1—d><’

for each d >0 sufficiently small. But as € is independent of d, then
letting d — 0 in the above inequality yields

% {6t e
m ~7N T T~
2 UG nG)

6w 5

n 1
Preloy
%’ q

On the other hand, the ray [0, +«) is a subset of €, so that

1/n
‘6}

1

5 ) = e
=lm3|—=r————<
[0, +=) no G(z) p.(z)

g(x)  pa(x)

IA

Q|

n—o

g;:m{




542 E. B. SAFF AND R. S. VARGA

Thus, if 0 <o <1, we can choose ¢ from (2.6) with 1 < g < + ® so that
q = 1/o, and equality holds throughout in the above expression, which
yields the desired result of (2.15). If, however ¢ = 0, then (2.6) is valid
for every ¢ > 1, and letting g — +  in the above expression again gives
(2.15).

For the proofs of the theorems on overconvergence in regions
having a positive angle at infinity, it is convenient to first establish

LEMMA 4.2, Let 2= < Pp.=m, and, fori=1,2, let A*(P,p)
denote generically the open circular sector (in the w-plane) with vertex
— 1, radius p, and opening 2¢, (= m) symmetric about the ray [ — 1, + ),
i.e.,

A*(¢;,p)l={WI ’arg(W+1)’ < d)i’ IW+1l<p};

its closure being denoted by A*(¢.,p). Then, for each pair of positive
numbers €, m, there exists a 8 >0 such that the inequality

1— aw sin3 (¢, + ¢ — )
(4.19) ‘ P ‘ S sinl(g- by €

holds whenever w € A*(¢,, 8) and a & A*(¢», 1), a# — 1.

Proof. First, we fix « in the infinite sector P:={w: ¢, =
arg(w +1)=27 — ¢,} which is contained in the complement of
A*(¢aym), le.,

a=—1+re" r>0, G, =60 =27 — ¢,

and we consider the image of the closed infinite sector S:=
{w:|arg(w + 1)| = ¢} under the bilinear transformation

1—aw

w—a

£ = T(w): =
Let £* and &~ denote, respectively, the lines

Lri={w:arg(w+1)=¢, or ¢ + 7}
L i={wrarg(w+1)=7— ¢, or 27 — ¢}.
Since these lines do not pass through «, they are mapped by T to true

(intersecting) circles C;, and C, in the ¢-plane. Furthermore, since a € S,
the image T(S) is the union of the closed interiors of these circles.
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To estimate the moduli of points on C, we find the center ¢ and
radius r} of this circle. As T(a)=®, we have ¢, = T(a*), where

a*= —1+re'® "
is the reflection of «a in the line £*. Thus,

. 1— aa* 3 e Q1m0 4 =i po2i(6:-0)

C, = a*—a e Ch-0) _ i s
and so,
— COS ¢, r
4.2 == - .
(4.20) IC“,_sm(0—¢1)+25m(9—¢1)
Furthermore, since T(x)= —a € C;, we have

la’—1 _  —cos@ N r
la*—a| sin(0—d¢,) 2sin(6—¢,)"

421) ri=|ci+al=

Now, (4.20) and (4.21) imply that, for £ on C,,
—CoS ¢, —cos 0 n r
sin(6 — ¢,) sin(6 — ¢,)

_sinz(8 + ¢, — ) r
T sinl(8 - ¢) sin(f — ¢,)’

&l =eal+ri=

and it is easy to verify that the next to last term is a nonincreasing
function of 6 on [¢,, 27 — ¢,], and that sin(6 — ¢,) = sin(d, — ¢;) > 0.
Hence,

- sin%(qﬁz+¢b— 77') r .
1= "Gt oy  Tsm(d—dy’ S0

and, by a symmetry argument, the same inequality holds for ¢ € C..
Therefore, for any w €S, « € P, and |a + 1|=r, we have

1—aw
w—a

<Siﬂ%(§lz+j>1_77)+ r
= sini(d.— @) sin(¢,— ¢1)

Consequently, given € and 7, fix = =min{n, € -sin(¢,— ¢,)}, so that
inequality (4.19) holds whenever w €S, « €P, and 0< |a +1|< 7.

Finally, assume |a + 1| = 7 and suppose that w € S with [w +1| =
& <. It is easy to verify that
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w+1
w+D)=(at1)

|i-

Writing w = — 1+ 8e”, 0=48 =8, with [9]|=¢,, it follows that [w]|=
(1-28cos B+ 8°)*=(1-28cos ¢, + 6°)'”. Substituting this into the
above display then yields

1—aw 2 )
'w—a’§1+6<r cos¢>1>+@‘(8)<l+e

for all 8 sufficiently small. But, as the right side of (4.19) is greater than
1+ ¢, then (4.19) must hold for w € A*(¢,, 8) and a € A*(¢p», 1), a # — 1.

We now prove an overconvergence result for circular sectors with
vertex at z = — 1.

LEMMA 4.3. Assume that f, defined and finite on [ —1,1], is such

that there exists a sequence of rational functions {r,},_,, with r, € m, . for
all n = 1, and a real number q > 1 such that

_ 1
(4.22) tm ()f = et < o <1

Let A(¢, p) denote generically the open circular sector

A(d,p):={z:|arg(z + )| < ¢, |z + 1| < p},

and assume that A(0,, ), where 0 < 0, = 7 and pn,> 0, contains no poles
of the r,(2) for all n sufficiently large. Then, for each fixed 6,0 < 6 < 8,,
satisfying

sin(6,+ )

(4.23) sini(6,=8) = Va,
ie.
(4.24) 0< 68 <4tan”’ {(%) - tan (%)} )

there exists a w = u(0)>0 and a function F(z) analytic on A(8, ),
continuous on the closure A(6, w), with F(x)=f(x) forall x of [— 1, + 1]
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in [—1, =1+ u], such that {r,(z)};-; converges geometrically to F on
A6, ). Moreover,

1 (sini(8,+ 0))2
4 - _ _ I/n YT 17a A~
(4.25) lim {[| F = 1, flso.}"" < q {sm%(()o— 9)} <!

Proof. First, choose q, > q so that
1

. 1
(4.26) lm {1f = el < - < o

and let vy satisfy
(4.27) 1<y <(q/q)".

From (4.26) and the triangle inequality, we have for n sufficiently large,
say n = n,, that

+1
(4.28) TN e C I

n

q:

Let 0 be fixed and satisfy (4.23), and choose 6, and 6 so that

L
(429) 6<b<b,<8, and w y,S{n?60+0 .
sm4(00 ) SIHZ(O() - 0)

Since the derivative of the function W(w) of Walsh’s Lemma 4.1 has a
simple zero at w = — 1, an angle 6 at z = — 1 is sent into 3(6 + ) by the
inverse mapping w = ®(z). Consequently, as 6, < 6,, the i image of the set
A(6y, o) — [ — 1, 1] under ® must, for some 7n >0, contain the set

A* (020 R >n{w [w|>1},

where the asterisk denotes that the circular sector is in the w-
plane. Since y >1, Lemma 4.2 (with ¢, = 02+ /2, dy=0o/2+ /2)
implies that there exists a 6 >0 such that the inequality

(4.30) 1-D(B) (2 <y_s%nig(i0+0:)
D(z) - D(B) sin{(6,— 0)

holds whenever B& A(6,, uo), BZ[—1,1], and
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431) w =d(z)€ A* <§+ga)

But, as 6 > 6, we can find a g, 0<p <2, so that (4.31) holds for all
2 €A0,u)—[—1,1]. Now, by hypothesis, no poles of r,(z) — r,_(z) lie
in A(6,, no) for all n large, say n = n, = n,, and thus, from (4.28), (4.30),
and (4.1) of Lemma 4.1, we deduce that

(4.32) 11— Foillsto ) = (. +1) { Csind(6,+ é)}%‘l

; sin} (6, — 6)

for n > n,. Hence, by the argument used in the proof of Theorem 2.1,
the sequence {r,(z)}»-, converges geometrically on A(6, 1) to an analytic
extension F(z)of f(x). Furthermore, from (4.32), (4.29), and (4.27), we
have

T, 1 sini(8,+ 6))2
lim {|F =1, |50} = — {Y _41(—0‘—)}
" q sini(6,— @)

1 {sin%{&&@)}z
< — {04 <1,
q lsini(6,— 6)

which is the desired inequality (4.25).

Proof of Theorem 2.4. Observe that Lemma 4.3 trivially remains
valid if the line segments of the circular sectors A(6,, w,) and A(6, w) are
replaced by smooth arcs making angles of 6, and 6, respectively, with the
segment [—1,1] at z= —1. Also, condition (4.22) is invariant under
bilinear transformations of [ — 1, 1], and therefore so is Lemma 4.3. As
a consequence of these facts we obtain Theorem 2.4.

The proofs of Corollaries 2.5 and 2.6 are similar to those of
Corollaries 2.2 and 2.3, and hence we omit them.

Proof of Theorem 2.7. Applying Lemma 4.3 (with the interval
[—1,1] translated to the interval [0, 2]), and applying Theorem 2.4, we
know that there exists a §* >0 and a p, 1 < p <, such that the sequence
{r.(z)}>-: converges geometrically on the set

A:=8(0*)-{l/p=|z|=p}
But, as the r.(z) (trivially) converge geometrically on the segment

[1/p, p], and have poles a positive distance (independent of n) from this
segment, it follows from a theorem of Walsh (see §9.8 of [18]) that the
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r.(z) must converge geometrically in the closed interior of some non-
degenerate ellipse € with foci at 1/p and p. Consequently, by choosing
6, 0*>6 >0, so small that $(§) C A U &, the sequence of rational
functions will converge geometrically on S(8), necessarily to an analytic
extension F of f.

Concerning the proof of Corollary 2.8 we remark that if rational
functions r,(z) converge faster than geometrically on [0, + ), then it is
known (see Aharonov and Walsh [1], and Goncar [5]) that the r.(z)
converge uniformly on any closed bounded set K of the plane which
contains no limit points of the poles of the r,(z), the convergence on K
being faster than geometrically.

Proof of Corollary 2.8. 1In this case, inequality (2.18) holds for every
q >1. Hence, given 6, 0 < 6 < §,, and given € >0, we can choose g so
large that

_— s
l{s.ln;‘§00+0!}<€’
q lsini(6,— 6)

and so (as in the proof of Theorem 2.7) there exists a p = p(e)>1 such
that

(4-33) ‘ @ {HF— Tn ”5(9)—1(}“" < g,

where
K:={z€SO):1/p=|z|=p}.

Since, for all n large, K is a positive distance from the poles of the r,(z),
we have by the result of [1] and [5] mentioned above that

(4.34) lim {|F —r, g} =0.
Therefore, from (4.33) and (4.34) we obtain
EUE {IIF = rllsat"™ <€,

and as € >0 is arbitrary, equation (2.24) follows.

This completes the proof of the main results stated in §2. It
remains to verify Proposition 3.5. The proof requires three lemmas, the
first of which concerns approximation on the ray [0, + ).
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LEMMA 4.4,  Under the assumptions of Proposition 3.5

RS
glx)  si(x)

(4.35) lim H

n—soc

}I/n2 _ 1
[0, +2) \/E

The proof of (4.35) follows from a straightforward modification of
the argument used by Meinardus and Varga [8] in their proof of Theorem
3.1. See also Erdés and Reddy [4].

LEMMA 4.5. Let T be any bounded set in the complex plane. Then,
with the assumptions of Proposition 3.5,

— 1
(4.36) lim {|[g — s [} = e

Proof. 1f p:=sup{|z|: z € T}, then direct calculations show that

n+l

% -1
g s@l= 3 ptat s Loy (1-£5)

=nt+

for all n large and all z € T, from which (4.36) directly follows.
The final lemma can be found in Pélya and Szegé ([9], vol. 2, p. 69,
prob. 176).

LemMMmA 4.6. The function g(z) and the partial sums s,(z) of
Proposition 3.5 have all their zeros on the negative real axis.

Proof of Proposition 3.5. Using the above lemmas and applying the
techniques of this section, it is easy to show that, for 1< g < V'a and for
0 < 6 < 7, the inequality

11 (@' +1)
- g e . T2n~1
Sn Sn-1 S q

is valid for all n sufficiently large, where 7>1 is some constant
independent of n.
This last inequality together with the arbitrariness of q implies that

— 1 1 I/n? 1
i {|=-] | =—=.
noe g 5,05 a

But, by Lemma 4.4, we also have

A
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1 1

1/n2 1/n?
w2
\/a noe g Su Hjo,+x) n—we g Sy 150y

and so equation (3.13) follows.
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