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T
here are a variety of needs for the dis-
cretization of a manifold—statistical
sampling, quadrature rules, starting
points for Newton’s method, computer-
aided design, interpolation schemes, fi-

nite element tessellations—to name but a few. So
let us assume we are given a d-dimensional mani-
fold A in the Euclidean space Rd

′
and wish to de-

termine, say, 5,000 points that “represent A”. How
can we go about this if A is described by some geo-
metric property or by some parametrization of the
unit cube Ud := [0,1]d in Rd? Naturally, we must be
guided by the particular application in mind.

For a historical perspective as well as a brief mo-
tivational journey, let us look at the simple case
when A is the interval [−1,1] ⊂ R . One obvious
choice for N points that discretize A is the set of
equally spaced points

xk,N = −1+ 2k
N − 1

, N ≥ 2, k = 0, . . . ,N − 1.

These points also enjoy the property of solving
the “best-packing” problem on [−1,1]; in general,
a set of distinct points ω∗

N = {x∗1 , . . . , x∗N} ⊂ A
solves the N-point best-packing problem on a com-
pact set A if

min
i≠j

|x∗i − x∗j | = max
ωN⊂A

min
i≠j

|xi − xj|,

where the maximum is taken over all N-point 
subsets ωN = {xi}N1 of A . But suppose our inter-
est is in selecting N points for quadrature or for
polynomial interpolation of a smooth function f (x)
on [−1,1]. Then, as shown by Runge, the choice of
equally spaced points (or, indeed, any asymptoti-
cally uniformly distributed sets of points) can be
disastrous (in fact, the norm of the polynomial 
interpolation operator grows geometrically large
with N). Rather, choosing N points of [−1,1] that
asymptotically (as N →∞) have the arcsine 
distribution (1/π )dx/

√
1− x2 (such as the zeros 

of the classical Chebyshev polynomials TN (x) =
cos(N arccosx) shown in Figure 1) does a much 
better job—one can achieve polynomial interpola-
tion operator norm O(logN) .

The connection between efficient univariate poly-
nomial interpolation (or Gaussian quadrature) and
the arcsine distribution becomes clearer on observ-
ing that any monic polynomial pN (x) =∏N

i=1(x− xi)
satisfies

(1)
1
N

log
1

|pN (x)| =
∫

log
1

|x− t| dνN (t),

where νN is the normalized counting measure

νN := 1
N

N∑
i=1

δxi

with δx denoting the unit point mass at x. In other
words, (1/N) log(1/|pN (x)|) is a logarithmic potential

D. P. Hardin is associate professor of mathematics at Van-
derbilt University. His email address is hardin@math.
vanderbilt.edu.

E. B. Saff is professor of mathematics at Vanderbilt
University. His email address is esaff@math.
vanderbilt.edu. The research of this author was sup-
ported in part by the U. S. National Science Foundation
under grant No. DMS-0296026.



NOVEMBER 2004 NOTICES OF THE AMS 1187

for a discrete probability measure. Classical poten-
tial theory shows that the energy integral

(2) I0[µ] :=
∫∫

log
1

|x− t| dµ(x)dµ(t),

where µ is any probability measure (normalized,
positive, Radon measure) supported on [−1,1], 
attains its minimum when dµ is the arcsine dis-
tribution, which is called the equilibrium measure
or Robin measure for A = [−1,1] .

It was M. Fekete who explored the connection 
between polynomial interpolation and the dis-
cretized version of (2), which, for given N, consists
in finding an N-point set ωF

N = {xFk,N}N1 ⊂ A that
minimizes the logarithmic energy

(3)

E0(ωN ) :=
∑
i≠j

log
1

|xi − xj|
= 2

∑
1≤i<j≤N

log
1

|xi − xj|

over all N-point subsets ωN = {xi}N1 of A . (For
A = [−1,1], such points are the zeros of the Jacobi
polynomial P (1,1)

N−2(x) together with x = ±1.) Provided
that a compact set A ⊂ R2 has positive logarithmic
capacity, the sequence of normalized counting
measures for the Fekete point sets {ωF

N} converges
in the weak-star topology (as N →∞) to the unique
measure µA that minimizes the energy integral (2)
over all probability measures supported on A
(cf. [17]); moreover,

lim
N→∞

E0(ωF
N )

N2
= I0[µA] .

(So, in particular, the Fekete point sets for A = [−1,1]
asymptotically have the arcsine distribution.) The
condition that A have positive logarithmic capacity
simply means that there is at least one probability
measure µ on A for which the energy integral is 
finite. This condition will play a crucial role as we
discuss point sets that minimize other energy 
functionals.

Both the equally spaced points and the Fekete
points for A = [−1,1] can be regarded as limiting
cases of point sets that minimize the discrete Riesz
energy. For a fixed parameter s > 0, the Riesz 
s-energy of a set ωN = {xi}N1 of N distinct points
in Rd

′
is given by

(4) Es (ωN ) :=
∑
i≠j

1
|xi − xj|s

,

where | · | denotes Euclidean distance. For s = 0,
we use the definition in (3). Given a compact set
A ⊂ Rd′ with infinitely many points, we denote the
N-point minimal s-energy over A by

(5) Es (A,N) := inf
ωN⊂A

Es (ωN ).

Notice that as s →∞, with N fixed, the s -energy (5)
is increasingly dominated by the term(s) involving

the smallest of pairwise distances and, in this
sense, leads to the best-packing problem on A. On
the other hand, as s → 0, it is easily verified that
for each N ≥ 2,

Es (A,N)−N(N − 1)
s

→ E0(A,N).

So natural questions that arise are:
Q1: How are minimal s-energy configurations for

Adistributed for large N?
Q2: How does the asymptotic behavior of

Es (A,N) in (5) depend on Aand s?
For A = [−1,1] and 0 ≤ s < 1, explicit answers

can be found in [11], where it is shown using 
potential theoretic arguments that optimal s-energy
points have the limit distribution (as N →∞)

(6) dλs =
cs

(1− x2)(1−s)/2
dx, x ∈ (−1,1),

where cs is a normalizing constant. Furthermore,

(7)

lim
N→∞

Es ([−1,1],N)
N2 =

√
π Γ (1+ s/2)

cos(πs/2)Γ ((1+ s)/2)
, 0 < s < 1.

The potential theoretic argument proceeds as in 
the case of Fekete points by showing that any limit
distribution of optimal s -energy points minimizes
the energy integral

(8) Is [µ] :=
∫∫

1
|x− y|s dµ(x)dµ(y)

over all probability measures µ supported on [−1,1]
and then appealing to the fact that such a measure
is unique and given by (6). The limit in (7) is sim-
ply Is [λs ] .

But What If s ≥ 1 ? In this case we have Is [µ] = ∞
for all probability measures µ on [−1,1], and so the
preceding argument fails. Yet a glance at the distri-
bution (6) reveals that as s increases from 0 to 1,
the equilibrium distributions λs transform from the
arcsine to the uniform (normalized Lebesgue) dis-
tribution, which is the distribution of the best-
packing points corresponding to s = ∞. Thus we
might expect that for every fixed s ≥ 1, optimal 
s -energy points are uniformly distributed in the

Figure 1. Chebyshev polynomial zeroes (blue dots) have
arcsine limit distribution.
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limit, and this turns out to be true in a much more
general context that we describe below. The predicted
analog of (7) is, however, less obvious.

Minimal Energy Points on Curves. For the case
when A is a rectifiable Jordan arc or curve in Rd

′
,

answers to Q1 and Q2 are given by A. Martinez-
Finkelshtein et al. [12]. They show that for s = 1

(9) lim
N→∞

E1(A,N)
N2 logN

= 2
L

and for s > 1

(10) lim
N→∞

Es (A,N)
N1+s = 2ζ(s)

Ls
,

where L is the arclength of A and ζ(s) denotes the
classical Riemann zeta function. Moreover, for each
s ≥ 1, the limit distribution of asymptotically op-
timal s -energy configurations for A is uniform
with respect to arclength measure on A . The situ-
ation for 0 ≤ s < 1 on such curves is treated, as
above, via potential theory; the limit distribution
of asymptotically optimal points is the unique mea-
sure λA,s that minimizes the energy integral Is [µ]
in (8) (or (2)) over all probability measures µ sup-
ported on A, and the energy Es (A,N) grows like N2

(more precisely, Es (A,N)/N2 → Is [λA,s] as N →∞ ).
Hence as s increases from zero, the minimum en-
ergy growth switches from order N2 to order N1+s ,
with the transition occurring at s = 1 where the en-
ergy growth is of order N2 logN. This transition is
signaling a change from global to local effects,
with the influence of nearby neighbors becoming
more and more dominant as s increases beyond 1
(indeed, at s = ∞ , only the nearest neighbors are
significant).

The (curious) appearance of the zeta function in
(10) arises from the following observation: For any
set of points ωN = {xk}N1 that are listed in con-
secutive order along a Jordan arc A, we can get a
lower bound for Es (ωN ) by setting di,j equal to the
length of the subarc from xi to xj and noting that

Es (ωN ) ≥
N−1∑
k=1

Êk, where Êk :=
∑

|i−j|=k

1
dsi,j

.

From the convexity of xs for s ≥ 1, together with
the harmonic-arithmetic mean inequality, we 
deduce that

Êk = 2
N−k∑
j=1

1
dsj,j+k

≥ 2(N − k)1−s

N−k∑
j=1

1
dj,j+k

s

≥ 2(N − k)1+s(∑N−k
j=1 dj,j+k

)s ≥ 2(N − k)1+s

(kL)s
.

Adding these lower estimates, dividing by N1+s, and
letting N →∞ give rise to 

∑∞
k=1 k−s = ζ(s). In the

case of a piecewise smooth Jordan curve without
cusps, equally spaced points along A provide an
asymptotically sharp upper bound. (The upper
bound for general Jordan curves requires finer
analysis.)

By way of illustration, consider the (affinely
scaled) Cassinian oval A given parametrically by

(x(t), y(t)) := r (t)(2 cos t,3 sin t) (0 ≤ t ≤ 2π ),
(11)

where r (t) := cos(2 t)+
√
a4 + cos2(2 t) and a = 0.6.

Figure 2 shows numerically computed optimal 
s-energy configurations for A with N = 100 points
for s = 0.2 and s = 2, demonstrating the depen-
dence of the limit distribution on s . The case s = 2
clearly indicates nearly uniformly distributed points
on A as is expected for any s ≥ 1. In contrast, the
configuration for s = 0.2 is distributed according
to the (nonuniform) equilibrium measure for the 
corresponding Riesz energy integral.

Moving to Higher-Dimensional Manifolds.
Here a canonical choice for the manifold A is the
sphere Sd = {x ∈ Rd+1 : |x| = 1}, for which optimal
point configurations have been the subject of con-
siderable investigation. Indeed, the case s = ∞ of
best-packing is the famous Tammes’s problem or
hard-spheres problem, which has its origin in a
botanist’s attempt to describe patterns of pores on
spherical pollen grains (optimal configurations for
this problem are known explicitly only for a handful
of integers N). The case s = 0, which is the same 
as maximizing the product of pairwise distances∏
i≠j |xi − xj| over all N -point sets ωN ⊂ Sd , 

-4 -2 0 2 4
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-1

-0.5
0

0.5
1

1.5 s=.2

-4 -2 0 2 4
-1.5
-1

-0.5
0
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1
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Figure 2. Near optimal energy configurations for s = 0.2 (left) and for s = 2 (right) with 100 points for the affinely
scaled Cassinian oval given by (11).
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arises, for example, in the study of computational
complexity, where M. Shub and S. Smale [18] investi-
gate good starting points for Newton’s method 
on the sphere. Smale, in his list [19] of problems 
for the current century, states as Problem #7 the 
challenge to design a fast algorithm for generating
“nearly optimal” logarithmic energy points: namely,
to compute (in polynomial time with respect to N)
an N-point set ωN ⊂ S2 so that

(12) E0(ωN ) ≤ E0(S2,N)+ C logN , N = 2,3, ...,

for some positive constant C. While far from meet-
ing this challenge, a variety of fast methods have
been devised (see, e.g., the algorithms for “spiral
points” in [14], [16] and for “equal area points” in
[14], [20], the latter being downloadable from
http://math.vanderbilt.edu/~esaff/
sphere_points.html and recently extended to
Sd for arbitrary d by I. Sloan, R. Womersley, and 
P. Leopardi).

We further note that for s = 1 and A = S2, the
minimization in (5) is the classical Thomson prob-
lem of electrons restricted to the sphere and in-
teracting through the Coulomb potential (see, e.g.,
[7], [4]), which is relevant not only in electrostat-
ics but also in molecular modeling (crystallography,
stable carbon molecules, fullerenes) as well as in
the study of certain viral structures. Extensive com-
putations of optimal configurations appear in a
number of articles spanning the physics, chem-
istry, and mathematics literature. A particularly
convenient listing is provided by Hardin, Sloane,
and Smith, whose findings are accessible via the 
Internet address http://www.research.att.
com/~njas/electrons/ (see also [15]).

For large N the numerical determination of 
minimum energy points is a difficult constrained

optimization problem. Indeed, it appears (cf. [7],
[15]) that the number of relative minima (ignoring 
rotations and reflections) grows exponentially with
N (at least for certain subsequences of integers). 
Beyond a few hundred points, finding a global min-
imum of energy is always accompanied with some
uncertainty. Yet ad hoc numerical methods devised
by Alar Toomre and others for N in the thousands
have generated configurations on the sphere that
reveal rather startling features. Figure 3 provided
by R. Womersley shows (near) optimal s-energy con-
figurations for N = 1,600 points when s = 1 and
s = 4. These illustrations display the tessellations

Figure 3. Near optimal s -energy configurations for s = 1 (left) and s = 4 (right) with 1,600 points on
the sphere S2.

Figure 4. The point energies for the near optimal
1-energy configuration shown in Figure 3.

http://math.vanderbilt.edu/~esaff/sphere_points.html
http://math.vanderbilt.edu/~esaff/sphere_points.html
http://www.research.att.com/~njas/electrons/
http://www.research.att.com/~njas/electrons/
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of the sphere created by the Voronoi cells (“school
districts”) corresponding to these optimal points.
Notice that the vast majority of cells are nearly 
regular hexagons (imitating best coverings of the
plane). But there also appear spherical pentagons
(as in the standard soccer ball design; see red cells)
as well as heptagons (see blue cells). The heptagons
seem not to be present for N less than 300, but for
thousands of points they do occur in significant
number and are paired with pentagonal cells. 
Furthermore, the nonhexagonal cells (called defects
or disclinations) appear to form 12 “scars” (or some-
times “buttons”) roughly centered at the vertices 
of an inscribed icosahedron (cf. Figure 3). As illus-
trated in Figure 4, the point energies Es (xi) :=∑N
j=1, j≠i |xi − xj|−s are nearly equal for the sea of

“hexagonal points”, while the “pentagonal 
points” have relatively elevated energies and 
the “heptagonal points” have relatively lower 
energies.

The appearance of nonhexagonal cells is no sur-
prise, since an Euler characteristic computation
readily implies that the sphere cannot be covered
by hexagons alone. But what is fascinating is that
the twelve formations of these five and seven near-
est neighbor points appear to be independent of
the ground potential (e.g. independent of the pa-
rameter s for the Riesz potential). These observa-
tions by Bowick et al. [4] have also been confirmed
by laboratory experiments in which polystyrene
beads (one micron in diameter) attach themselves
to a water droplet suspended in an oily mixture (cf.
[2]). Focusing on these twelve scars has the con-
siderable advantage of reducing the number of
variables in the optimization problem and may in

the future lead to fast generation of nearly optimal
configurations for N in the thousands. Whether
such scars persist for even larger orders of N is as
yet unknown but may be of crucial importance for
asymptotic results.

Questions Q1 and Q2 for the d -Sphere. The as-
ymptotics for the minimal energy Es (Sd,N) is (as
one would suspect from the above discussion for
curves) quite different for the three cases 0 ≤ s < d,
s = d, and s > d. Indeed, for 0 ≤ s < d, the energy
integral (8) or (2) for probability measures sup-
ported on Sd attains its finite minimum when µ is
normalized surface area σd on the sphere and 
potential theory then gives

(13) lim
N→∞

Es (Sd,N)
N2

= Is (σd)

= Γ ((d + 1)/2)Γ (d − s)
Γ ((d − s + 1)/2)Γ (d − s/2)

, 0 < s < d,

as well as the fact that optimal s -energy configu-
rations are asymptotically uniformly distributed
with respect to σd. For s ≥ d, however, Is (µ) = +∞
for all probability measures on Sd and different
methods are needed for analysis. Using spherical
harmonics and positivity results, it is shown by 
Kuijlaars and Saff [10] that for s = d

lim
N→∞

Ed(Sd,N)
N2 logN

= Γ ((d + 1)/2)
d
√
π Γ (d/2)

= Vol(Bd)
Area(Sd)

,

where Bd is the unit ball in Rd, from which it follows
that d-optimal configurations are asymptotically
uniformly distributed. For s > d, it is not difficult
to show that the order of growth of the minimal 
energy becomes N1+s/d, again signaling the increas-
ing dominance of local interactions. Yet more 
precise limit formulas such as the analogue of 
(13) as well as a rigorous proof that optimal
configurations for s > d are asympotically uniformly 
distributed (as symmetry would tend to dictate) 
require a completely different approach that we will
describe below. Unlike the simple case d = 1 for a 
rectifiable curve where we can consider points in 
the systematic order described earlier, handling 
nearest neighbors in higher dimensions can present
quite a challenge. What is fortuitous is that attempts
to deal with the sphere for s > d have led to a 
general argument that resolves questions Q1 and
Q2 for a large class of d-manifolds in Rd

′
.

A General Result. For an arbitrary compact set
A ⊂ Rd′ with Hausdorff dimension dH, potential
theory provides answers to Q1 and Q2 for
0 ≤ s < dH via the s -energy equilibrium measure
λA,s that minimizes (8) over all probability measures
supported on A (cf. [11] and [13]). For s ≥ dH , 
the following recent result applies to rectifiable 
manifolds A .

Recall that a mapping φ : B → Rd
′
is said to be

bi-Lipschitz on B ⊂ Rd with constant L > 0 if

s = 0.2 s = 1.0

s = 2.0 s = 4.0

Figure 5. Near optimal s -energy configurations for s = 0.2,
s = 1 , s = 2 , and s = 4 with 4,000 points for a torus in R3.
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(1/L)|x− y| ≤ |φ(x)−φ(y)| ≤ L|x− y|, x, y ∈ B.
We say that A ⊂ Rd′ is a d-rectifiable manifold if it
is a compact subset of a finite union of bi-
Lipschitz images of open sets in Rd.

Theorem 1 ([9]). Suppose s ≥ d and A ⊂ Rd′ is a d-
rectifiable manifold. When s = d we further assume
A is a subset of a d-dimensional C1 manifold. Let
Hd denote d-dimensional Hausdorff measure on
Rd

′
. Then for s = d we have

(14) lim
N→∞

Ed(A,N)
N2 logN

= Hd(Bd)
Hd(A)

,

while for s > d , the limit limN→∞ Es (A,N)/N1+s/d

exists and is given by

(15) lim
N→∞

Es (A,N)
N1+s/d = Cs,d

Hd(A)s/d
,

where Cs,d is a finite positive constant independent
of A and d′.

If Hd(A) > 0 , then for each s ≥ d, any sequence
of optimal (or asymptotically optimal) s-energy con-
figurations ωN is uniformly distributed (as N →∞)
with respect to d-dimensional Hausdorff measure
restricted to A .

In particular, the theorem holds for any compact
subset A of Rd as well as any compact subset of a
smooth d-dimensional manifold. It is interesting to
note that the limit (14) is simply 1/ρd when A is a
ball in Rd with radius ρ.

The constant Cs,d in (15) certainly depends on
the normalization for Hausdorff measure. Here we
choose Hd on Rd

′
normalized so that any isomet-

ric image of the unit cube Ud := [0,1]d in Rd
′

has
Hd-measure 1. Then, for s > d,

(16) Cs,d = lim
N→∞

Es (Ud,N)
N1+s/d .

For d = 1 we deduce from (10) that Cs,1 = 2ζ(s) for
s > 1; however, for d ≥ 2, the determination of the
constant Cs,d for s > d remains an open problem.
For d = 2 (as seen for the sphere) the hexagonal 
lattice L ⊂ R2 consisting of points of the form
m(1,0)+ n(1/2,

√
3/2) for m,n ∈ Z appears to play

the central role in determining Cs,2. Assuming that
most points in optimal configurations live in 
the “hexagonal sea” and are centers of regular
hexagons with area ≈H2(A)/N, it is natural to 
conjecture that the constant Cs,2 is given by(√

3/2
)s/2 ζL(s) , where ζL(s) :=∑X∈L,X≠0 |X|−s is

the zeta function for the lattice L. It is shown in
[10] that for the sphere S2

(17) lim sup
N→∞

Es (S2,N)
N1+s/2 ≤

(√
3

8π

)s/2
ζL(s), (s > 2),

which implies that 
(√

3/2
)s/2 ζL(s) is an upper

bound for Cs,2.
Theorem 1 provides the order of growth of

Es (A,N) and the limit distribution of optimal con-
figurations for a d-rectifiable manifold A only if
Hd(A) > 0. If Hd(A) = 0, then the right-hand side
of (15) is understood to be ∞, and, in this case, The-
orem 1 provides only a lower bound on the order
of growth of Es (A,N). When 0 <Hd(A) <∞, we ob-
serve, as with the sphere Sd, that the minimum en-
ergy experiences a transition in order of growth as
s increases from values less than d to values greater
than d (that is, from N2 to N1+s/d with the transi-
tion value of s = d giving growth of order N2 logN ).
Moreover, as s increases, the limit distribution of
optimal (or near optimal) points becomes and re-
mains the uniform distribution when s ≥ d. The lat-
ter is particularly significant with regard to appli-
cations that involve integration with respect to
Hausdorff (Lebesgue) measure.

For example, let A be the torus in R3 obtained
by revolving about the z -axis the circle in the xz-
plane of radius 1 centered at (3,0,0). Figure 5 shows
near optimal s -energy configurations for A with
s = 0.2, s = 1, s = 2, and s = 4 with N = 4000
points. In contrast to the case of the sphere, the
equilibrium measure λA,s for s < 2 is no longer
uniform, and thus we find qualitatively different
s -energy configurations for s < 2 (points are dis-
tributed more densely around the outer ring) from
those for s ≥ 2 (points are distributed uniformly
on A in accordance with Theorem 1). The pictures
in Figure 4, together with animations prepared by
R. Womersley showing near optimal s -energy con-
figurations for the torus A , are available at the In-
ternet address http://www.maths.unsw.edu.au/
~rsw/Torus/.1 Because the Euler characteristic
for a torus is 0, nonhexagonal “defects” are not re-
quired as they are for the sphere. In [5] Bowick et
al. investigate configurations on the torus with
long-range bond-orientational order. For such
“hexatic” phase configurations they predict that
pentagonal and heptagonal defects should be pre-
sent in optimal configurations when N is below a
critical value Nc depending on the “aspect ratio”
and that there should be no defects when N > Nc.
For the torus A with aspect ratio 3, they predict
Nc ≈ 104 .

So how does one go about proving Theorem 1,
given that our potential theoretic tools are no
longer available when s ≥ d ? Here we focus our 
discussion on the s > d case, since the s = d
case is more technical, relying on the previously

1A natural question suggested by the configurations shown
in Figure 5 (and even more so by the animations of Wom-
ersley) is whether s∗ = 1 is the critical value of s such that
for s < s∗ the support of the equilibrium measure λA,s is
a proper subset of A .

http://www.maths.unsw.edu.au/~rsw/Torus/
http://www.maths.unsw.edu.au/~rsw/Torus/
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mentioned result for the d-sphere. The first step
in the proof is to show the existence of the limit
(15) for the cube.

The Argument for the Unit Cube Ud. We begin
with an optimal arrangement ω∗

N minimizing the
s -energy of N points in Ud and use it to obtain an
upper bound for the minimal energy of mdN points
of Ud. So let m ∈ N and set Zdm := {0,1, ...,m− 1}d.
For 0 < γ < 1 and i = (i1, ..., id) ∈ Zdm, consider the
md disjoint subcubes

Ui =
1
m

(γU + i)

=
[ 1
m
i1,

1
m

(i1 + γ)
]
× · · · ×

[ 1
m
id,

1
m

(id + γ)
]
.

Then we obtain mdN points of Ud by scaling and
translating ω∗

N to each Ui (see Figure 6), yielding

ωmdN :=
⋃

i∈Zdm

1
m

(γω∗
N + i),

and we note that 1
m (γω∗

N + i) is an optimal N-point
configuration for Ui. To estimate Es (ωmdN ), we
separate the energy terms arising from pairs of
points in the same subcube (the terms involving in-
teractions between distinct subcubes will turn out
to be relatively negligible):

(18) Es (Ud,mdN) ≤ Es (ωmdN )

≤
∑

i∈Zdm

{
Es (Ui,N)+

∑
j∈Zdm, j≠i

N2dist(Ui, Uj)−s
}
.

Next, from the translation invariance and scaling
properties of the Riesz s -energy we can write
Es (Ui,N) =msγ−sEs (Ud,N) , which we use along

with the inequality dist(Ui, Uj) ≥ 1−γ
m |i−j| to de-

duce from (18) the estimate

(19) Es (Ud,mdN)

≤ms+d{γ−sEs (Ud,N)+K(1− γ)−sN2},
where K :=∑k∈Zd ,k≠0 |k|−s <∞ for s > d.

Let Lt denote a subsequence for which

gs,d := lim sup
N→∞

Es (Ud,N)/N1+s/d

= lim
t→∞

Es (Ud, Lt )/L1+s/d
t

and choose N∗ so that

N1−s/d
∗ < (1− γ)2s and(20)

Es (Ud,N∗)/N1+s/d
∗ ≤ gs,d + (1− γ),

where gs,d := lim infN→∞ Es (Ud,N)/N1+s/d. Selecting
mt so that (mt − 1)dN∗ < Lt ≤md

t N∗, we have from
(19)  and  (20)  that

gs,d = lim
t→∞

Es (Ud, Lt )
L1+s/d
t

≤ lim sup
t→∞

Es (Ud,md
t N∗)

[(m∗
t − 1)dN∗]1+s/d

≤ lim sup
t→∞

( mt

mt − 1

)s+d (
γ−s

Es (Ud,N∗)

N1+s/d
∗

+K(1− γ)−sN1−s/d
∗

)
≤γ−s [gs,d + (1− γ)]+K(1− γ)s .

Taking γ → 1 gives gs,d ≤ gs,d, proving the existence

of the limit (15) for A = Ud.
It remains to show that the limit gs,d := gs,d = gs,d

is positive and finite. This follows for the upper
estimate by considering the configurations
ωmd = 1

mZ
d
m , m = 2,3, . . . , and for the lower 

Figure 6. Scaling an optimal configuration of N points in the unit cube Ud to disjoint subcubes
provides bounds for the minimal Riesz s-energy for mdN points in terms of the minimal Riesz

s -energy for N points.

⇒
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estimate by using the convexity of f (r ) = r s/d and
the arithmetic-harmonic mean inequality.

From the Unit Cube to Compact Sets in Rd. For
s > d, we define

gs,d(A) := limN→∞ Es (A,N)/N1+s/d

for any compact set A for which the limit exists.
As we have seen, for s > d it is the near neighbor
terms that dominate the Riesz s -energy. If B and
C are disjoint compact sets such that both gs,d(B)
and gs,d(C) exist and A = B ∪ C, then by neglecting
terms in Es (A,N) involving pairs of points x ∈ B
and y ∈ C and considering optimal s -energy con-
figurations for B and C separately, one can show
that gs,d(A) exists and satisfies

(21) gs,d(A)−d/s = gs,d(B)−d/s + gs,d(C)−d/s .

For an arbitrary compact set A ⊂ Rd we use 
finite unions of cubes with pairwise disjoint inte-
riors to approximate A to show that gs,d(A) exists
and satisfies gs,d(A) = gs,d(Ud)Hd(A)−s/d (the latter
equation clearly holding for arbitrary cubes). The
Besicovitch Covering Theorem and the Lebesgue
Density Theorem play key roles in this argument.
Letting Cs,d = gs,d(Ud) gives (15) in the case A is a
compact set in Rd.

From Compact Sets in Rd to d-Rectifiable Man-
ifolds in Rd

′
. Clearly, if A ⊂ Rd′ is exactly the iso-

metric image of some compact set B ⊂ Rd , then
gs,d(A) exists and equals

gs,d(B) = Cs,dHd(B)−s/d = Cs,dHd(A)−s/d.

Moreover, if A is the union of a finite collection of
pairwise disjoint compact sets {Ki}Li=1 where each
Ki is the isometric image of some compact set
Bi ⊂ Rd , then using (21) (which also holds when
d < d′), one may conclude that gs,d(A) exists and

gs,d(A) = Cs,d
 L∑
i=1

Hd(Ki)

−s/d = Cs,dHd(A)−s/d.

Finally, we appeal to a basic result of Federer [8]
that for every d-rectifiable manifold A , Hd-almost
all of A can be covered by a countable union of pair-
wise disjoint images of bi-Lipschitz mappings 
of compact sets in Rd with bi-Lipschitz constants 
uniformly close to 1. This completes an outline of
the proof of Theorem 1.

Other Energy Functions. Although the Riesz 
s -energy is relevant to a variety of physical and
mathematical problem areas, there are many other
energy functionals that have significant application.
For example, Benedetto and Fickus [3] show how
to generate finite normalized tight frames by 
minimizing the energy

(22)
∑
i≠j
f (|xi − xj|),

for N points on the sphere Sd , where f (t) =
t4/4− t2. J. Brauchart has shown that for a suit-
able function f depending on N , the minimum 
energy points on the sphere give spherical designs
for cubature. A further recent example arises in 
the work of M. Atiyah and P. Sutcliffe [1], where the
energy is minimized over R3 for a function of the
form log 1/|D|, where D : CN (R3) → C is a smooth
function on the space of N distinct unordered
points in R3. Du, Gunzburger, and Ju [6] consider
point sets on a surface A obtained by minimizing
the energy function

N∑
i=1

∫
x∈Vi

ρ(x)|x− xi|2 dx,

where Vi denotes the Voronoi regions on A gen-
erated by {x1, . . . , xN} ⊂ A and ρ is a weight func-
tion. Many of these energy functionals provide 
fertile ground for asymptotic analysis.

A natural generalization that is currently being
investigated is that of the weighted Riesz s -energy
problem:

min
{xi}Ni=1⊂A

∑
i≠j

ρ(xi, xj )
|xi − xj|s

,

where ρ(x, y) is a given weight function on a 
d-dimensional manifold A . The methods described
above can be adapted to show that under suitable
conditions on the weight and manifold, the limit
density (with respect to Hd) for optimal s -energy
configurations is a multiple of ρ(x, x)−d/s when
s > d.

Acknowledgments. We thank R. Womersley for
providing the images for Figures 3–5, M. Bowick 
for helpful discussions, and S. Borodachov for his
useful comments.

Added in proof: The authors, together with 
S. Borodachov, have recently shown that Theorem 1
holds for a more general class of rectifiable sets.
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About the Cover

Approximating minimal Riesz
This month’s cover originated with the arti-

cle by Doug Hardin and Ed Saff in this issue. It
shows 1,000 points on a torus distributed so
as to minimize the total energy determined by
an interaction through Riesz potentials − log r
(labeled s = 0) as well as 1/rs for 0.5, 0.8, 1, 2,
and 4. As explained in the article, the limit dis-
tribution as the number of points becomes in-

finite is, remark-
ably, just the
uniform distribu-
tion for all values
of s ≥ 2 (the di-
mension of the
torus). This is also
shown by the his-
tograms on the
cover, displaying
the distribution in
somewhat care-
fully selected ra-
dial bands. If the
uniformity for
s = 2 doesn’t seem

to be quite valid in the figure, that’s because
convergence to the equilibrium is very slow at
the transitional s -value.

The data for all images, and indeed the ac-
tual images of all those blue & green bagels with
red poppy seeds (as Saff refers to them), were
produced by Rob Womersley of the University
of New South Wales. Asked how he produced
the pictures, Womersley said it had been “by a
combination of local and global large-scale op-
timization techniques running on a Linux clus-
ter to find close to minimum energy point sets,
as well as visualization using Matlab.” He added,
“Numerical experiments such as these help il-
lustrate theoretical results, but also suggest
new results waiting to be proved.”

—Bill Casselman
Graphics Editor

(notices-covers@ams.org)


