APPROXIMATION BY RATIONAL AND MEROMORPHIC
FUNCTIONS HAVING A BOUNDED NUMBER OF
FREE POLES

BY
E. B. SAFF()

1. Imtroduction. If a function g(z) defined on a smooth Jordan curve I' of the
z-plane is the uniform limit on I' of a sequence of polynomials p,(z) of respective
degrees n, say

[g(z) _pn(z)l = sn(_> 0): z on F,

then one can deduce certain properties of the function g(z) and the sequence
pa(2). As a consequence of the Maximum Principle g(z) is the set of boundary
values on I" of a function f(z) which is analytic in the interior D of I" and continuous
on the closed region D+T. It is also clear that the sequence p,(z) converges to
f(2) at each point of D. In addition, some continuity properties of g(z) on I' may
be deduced if an estimate is known on the rapidity of convergence of the sequence
e,. Indeed, the inequality e, < A/n***, where k is a nonnegative integer and O<e <1,
implies that the kth derivative of g(z) exists on I' (in the one-dimensional sense) and
satisfies there a Lipschitz condition of order «.

In this paper we make the weaker assumption that the function g(z) is the uniform
limit on T" of a sequence of rational functions each having at most » free poles,
and we establish analogues of the above mentioned conclusions. Specifically we
shall deal with rational functions of type (#, »), i.e., rational functions of the form

v

_a"+a 2" ta,
D) = B b Tt b, Z 164 # 0,

for fixed v.
In §2 we show that the condition

|g(2)—ru(2)] £ 2,(—0), zonT,

implies the existence of a function f(z) which is meromorphic with at most » poles
in D, is continuous on D+ T, and is equal to g(z) for z on I'. If the function f(z2) is
known to have precisely » poles in D, it is further shown that the rational functions
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r(z) must converge to f(z) at each point of D. The last result is similar to one
obtained by J. L. Walsh [1, p. 3].

In §3 and §4 we establish theorems on the Lipschitz continuity and analyticity
of g(z) on T' as a consequence of certain hypotheses on the degree of convergence
of the r,,(z) and on the location of the limit points of their poles.

2. Uniform convergence of meromorphic functions. An easy extension of a
theorem on polynomial approximation is

TaeoreM 1. Let E be a closed bounded point set whose complement is connected
and whose interior is nonempty. Suppose f(z) is meromorphic in the interior of E
with precisely v poles there and is otherwise finite and continuous on E. Then there
exists a sequence of rational functions r,,(z) of respective types (n, v) which converges
uniformly to f(z) on the boundary of E.

Proof. Let g(z)=2"+a;2"~*+ - - - +a, be the polynomial of the form indicated
having as its zeros the » poles of f(z) in the interior of E. By a well-known theorem
of Mergelyan [2, §A1] the analytic function g(2)f(z) can be uniformly approximated
on E as closely as desired by a polynomial, and hence [2, p. 89] there exists a
sequence of polynomials p,(z) of respective degrees n which converges uniformly
on the boundary of E to ¢(2)f(z). Theorem 1 now follows by taking r,,(2)=
P(2)]q(2).

If a function g(z) defined merely on the boundary 9E of E is the uniform limit
of polynomials, then as mentioned in §1 there exists a function f(z) analytic in the
interior of E and continuous on E such that f(z)=g(z) for z on 0E. Hence the
converse to Theorem 1 is valid for »v=0. To establish a converse result for v>0
we appeal to the following special case of a result due to S. Warschawski [3]:

THEOREM 2. Let h(z) be analytic in a Jordan region Do and continuous on Do+ oD,.
For fixed o on 8D, let

M |h(2)—h()| = Liz—q
hold for all z on 2D,. Then (1) holds for all z on Do+ 9.Do.
We may now prove

TuEOREM 3. Let D be a Jordan region and g(z) a function defined on 0D.
Suppose f,(2) is a sequence of functions each meromorphic with at most v poles in D
and otherwise finite and continuous on D+0D. If lim,_, , fi(z)=g(2) uniformly for
z on 8D, then there exists a function f(z) which is meromorphic with at most v poles
in D gnd is otherwise finite and continuous on D+ 8D such that f(z) = g(z) for z on
oD.

Proof. Theorem 3 holds for »=0, so assume that it holds for v=k—1 and suppose
that each of the functions f,(z) has at most k poles in D. Clearly we may assume
that each f,(z) has at least one pole in D, say at a point «,. Let « be a limit point
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of the «, and let «, be a subsequence which converges to «. Then {(z—ay,)/f5(2)}
is a sequence of functions each meromorphic with at most k—1 poles in D-which
converges to the function (z—«)g(z) uniformly for z on 9.D. Thus by the induction
hypothesis there exists a function A(z) which is meromorphic in D with at most
k—1 poles there and continuous on D+ 8D such that A(z) = (z—«)g(z) for z on 9D.
Set
f@) = h(@)(z—«), zin D,
= g(2), zon 6D.

If € D, then clearly f(z) is the desired function. If « € 2D, it remains to show that
f(z) is continuous at «.

Let I'; be a closed subarc of 0D which contains the point « and terminates at
the distinct points 8; and B,, where B; #«, Bz # . Join the points g, S by an open
Jordan arc ', which lies in D, contains no pole of A(z), and is such that A(z) and
hence f(z) is-analytic in the Jordan region D, bounded by I';+TI';. Since g(2) is
continuous on I'; it is bounded there, say by a constant M, and so

@ |A(@)| = M|z—q

for z on T';. For M large enough inequality (2) also holds for z on I', since
h(z2)/(z— «) is finite and continuous on the closure of I';. Theorem 2 thus implies
that for an appropriate choice of the constant M inequality (2) is valid for z in
D,, and hence f(z) is bounded in D,. Finally, note that f(z) is continuous on
Dy+T;+ T, —4{a}, and that

lim f(@) = flo),

Fiad'4

and hence the continuity of f(z) at « follows from a theorem of Lindel6f {4, p. 460].

Theorem 3 equivalently states that the family D(v) composed of all those func-
tions which are meromorphic with at most » poles in D and which are otherwise
finite and continuous on D+3D is complete with respect to the Tchebycheff
(uniform) norm taken over ¢D.

COROLLARY 1. Let D be a Jordan region and let the function F(z) be analytic
in D except for a finite number of isolated singularities at the points z,, . . ., z. in D,
where at least one z, is an essential singularity of F(z). Suppose F(z) is con-
tinous on D+08D—{zy, ..., z,}, and suppose F,(2) is a sequence of functions each
meromorphic in D and continuous on D+ 8D which converges uniformly to F(z) on
oD. Then if p(n) denotes the number of poles of F,(z) in D, ‘we have p(n) — o as
n — 0. :

Proof. The contrary assumption implies that there exists an integer » and a
subsequence #; such that p(n)sv for i=1,2,.... Since the subsequence F,(2)
converges uniformly to F(z) on 8D, Theorem 3 asserts the existence of a function
f(2) € D(v) such that f(z) = F(z) for z on &D. But then f(z) =F(z) for z in D, which
is absurd.
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- We remark that although Corollary 1 is presented here as a consequence of
Theorem 3, it may be proved directly from the theory of normal families.
Theorem 1 and Theorem 3 yield

THEOREM 4, Let T' be a Jordan curve with interior D and let g(z) be a function
defined (finite) on T'. A necessary and sufficient condition that g(z) be the set of
boundary values on T of a function which is meromorphic with at most v poles in D
and which is otherwise finite and continuous on D+ is that there exist a sequence
of rational functions r,,(z) of respective types (n,v) such that lim,_, o r.(2)=g(2)
uniformly for z on T.

If the function g(z) is the set of boundary values of a meromorphic function
f(2) known to have precisely v poles in D, then any sequence of rational functions
of respective types (n, v) which converges uniformly to g(z) on I' necessarily con-
verges to f(z) in D. More generally we prove

THEOREM 5. Suppose fy(z) is meromorphic with precisely v poles in a bounded
domain D and is otherwise finite and continuous on D+ 0D. If f,(2) is a sequence of
functions each meromorphic with at most v poles in D and continuous on D+0D
which satisfies

3 [fo2)—fu(@)| = ea(—>0),  zon D,

then:

(i) For n sufficiently large each f,(z) has precisely v poles in D, and these poles
approach respectively the v poles of fo(2) in D.

(i) The £,(2) converge to fo(2) in the domain D' obtained from D by deleting the

v poles of f(2).
(ii) For each closed set S< D' we have for n large

[max | fo(2) —fu(@)]; z on S] < M(S)es,
where M(S) is a constant dependent only on S, D, and on the sequence f,(z).

Proof. For n=0,1,2,..., let g,(2)=2z"+ - - - +a, denote the polynomial of the
form indicated having as its zeros the poles of f,(z) in D. Since D is bounded and
since p,<v for each n, the sequence g,(z) is uniformly bounded in D. A well-
known application of Lagrange’s Interpolation Formula thus implies that the
¢.(2) form a normal family in the finite plane and that each limit function of the
family is a polynomial of the form z*+ .- +a, 0Su=v.

Let g(z) be any such limit function and ¢,,(z) a subsequence which converges
uniformly to ¢(z) on compact sets of the plane. From (3) we have

lim ¢, (2)fn(2) = 4(2)fol2),

uniformly for z on @D, and so the analyticity of the functions g¢,,(z2)/,,(z) implies
that ¢(2)/o(z) is analytic in D. Hence the polynomial ¢4(z) must be a factor of
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q(2); and since ¢(z) is monic and has at most » zeros, it follows that g(z) =q,(2).
Thus the only limit function of the g,(z) is go(2), and hence the sequence g¢,(z)
converges to go(z) uniformly on compact sets of the plane. Conclusion (i) now
follows from Hurwitz’s Theorem.

Now let S< D’ be closed. Since the ¢,(z) are uniformly bounded on 8D we obtain

from (3)
“@ |90(2)9:(2) fo(2) ~40(2)qn(2)f3(2)| = As,,  z On D.

The function whose absolute value appears in (4) is analytic in D, and so (4) holds
for z on S. By conclusion (i) the set S contains no limit points of the poles of the
Ja(2) and hence for » large enough we have |¢,(z)gq(z)| 2m >0 for z on S. There
follows

[fo(@)—fu(2)| £ Ae,fm,  zon S,

which completes the proof of Theorem 5.
From conclusion (i) we deduce

COROLLARY 2. If fo(z) and D are as in Theorem 5 and f,(z) is a sequence of
Sfunctions each meromorphic with at most p (<v) poles in D and continuous on
D+ 8D, then the f,(2z) do not converge uniformly to fo(z) on dD.

The assumption that the number of poles of the functions f,(z) not exceed the
number of poles of the limit function fy(z) cannot be weakened in Theorem 5.
Indeed the sequence f,(z)=(z—1-1/n)/z(z—1) converges uniformly to 1/z on
1z] =2, but does not converge to 1/z for z=1. The method of proof of Theorem 5

does however yield

COROLLARY 3. Suppose fi(z) and D are as in Theorem 5 and f,(2) is a sequence
of functions each meromorphic with at most 4 poles in D and continuous on D+8D.
Iflim, _, o fu(2) =fo(2) uniformly for z on & D, then each pole of fy(z) in D is a limit point
of poles of the f,(2), and lim,_, » f,(2) =fo(2) uniformly on each closed subset of D
which contains no limit points of the poles of the f,(z).

An easy generalization of Hurwitz’s Theorem is

COROLLARY 4. Suppose, in addition to the hypotheses of Theorem 5, that the
Junction fo(z) does not vanish on 0D. Then for n sufficiently large f,(z) and fo(z)
have the same number of zeros in D.

The proof of Corollary 4 is left to the reader. ‘

If the function fy(z) of Theorem 5 has a pole at a point « in D, then we can apply
Corollary 4 to obtain an estimate on the degree of divergence of the sequence
Ja(x). We choose a constant 8 (>0) so small that fi(z) is analytic and nonzero in
0<|z—«| = 8. From conclusion (iii) of Theorem 5 there follows

®) 1[fo@)—1/fu@)| S Men,  |z—0o| = 3.
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Since for n sufficiently large f,(z) and fo(z) have the same number of poles in
|z—a| <8, Corollary 4 implies that the f.(z) do not vanish there for » large. Hence
inequality (5) holds for z=«, and so |f(e)| 2 1/Me,.

Theorem 3 and Theorem 5 yield the following dual theorems which are obtained
by interchanging the poles and zeros of the functions Ja(2):

TuEOREM 6. Let D be a Jordan region and let G(z) be defined and different
from zero on 8D. Suppose F,(z) is a sequence of functions each meromorphic with at
most v zeros in D, continuous on D+9D, and finite on 8D. If lim,_, , Fo(z)=G(z)
uniformly for z on 8D, then G(z) is the set of boundary values on 8D of a func-
tion which is meromorphic with at most v zeros in D and continuous on D+0D.

THEOREM 7. Suppose the function Fo(z) is meromorphic with precisely v zeros
in a bounded domain D, and is continuous on D+0D and finite and different from
zero on 0D. If F,(2) is a sequence of functions each meromorphic with at most v
zeros in D and continuous on D+ 0D which satisfies

|Fo(2)— Fp(2)] &, (=0, z on 8D,
then:
(i) For n sufficiently large each F,(z) has precisely v zeros in D, and these zeros
approach respectively the v zeros of Fy(z) in D.

(i) Each pole of Fo(z) in D is a limit point of poles of the F,(2), multiplicity
included, and the F,(z) have no other limit point of poles in D.

(iii) Lim,_, » F,(z)=F,(z) uniformly on each closed set S=D which contains no
poles of F(z), and for n large

_ [max |[Fo(z)— F.(2)|; z on ST = M(S)e,,
where M(S) is a constant dependent only on S, D, and on the sequence F,(z).

The proofs of Theorem 6 and Theorem 7, which follow from methods used by
J. L. Walsh [5], are left to the reader.

3. Lipschitz continuity. We now apply the results of §2 to obtain theorems
which relate the boundary continuity of a meromorphic function f(z) to the degree
of approximation of f(z) by rational functions.

Let T' be an analytic Jordan curve and D its interior. We say that a function f(z)
belongs to class L,(k, @) on T', where v and k are nonnegative integers and 0 <« <1,
if f(z) is meromorphic with at most » poles in D and is otherwise finite and con-
tinuous on D+ T, and if f*(z) exists on I' in the one-dimensional sense and satis-
fies there a Lipschitz condition of order «, i.e.,

6 |/¥(z)—f®(2)| S Llzi—20[% 21, z50n I,
where L is a constant independent of z; and z,.
It is of importance to mention here that the property of a function that it has a

kth derivative satisfying condition (6) is invariant under conformal mapping.
This fact is well-illustrated by the following theorem [6, p. 24]:
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THEOREM 8. Let the function g(z) be defined on an analytic Jordan curve T'. A
necessary and sufficient condition that g(z) possess a kth derivative on 1" which
satisfies a Lipschitz condition of order o (0<a<1) on I' is that there exist a region
D, containing T and a sequence of functions f,(z) analytic in D, and satisfying

|fi(2)] = AR", zin Dy,
|g@—fa(@)| £ Ay/n**%,  zonT.
The fundamental theorem relating the degree of best polynomial approximation

on I to the existence of functions of class Ly(k, @) on I' was established by J. H.
Curtiss, W. E. Sewell, and J. L. Walsh [6, p. 27] and is stated as

THEOREM 9. Let I" be an analytic Jordan curve and f(z) a function defined on T.
Then the following statements are equivalent:

(i) f(2) is the set of boundary values on T of a function of class Ly(k, @) on T.

(i) There exists a sequence of polynomials p,(z) of respective degrees n such
that

|f@)—~pa2)| < A[n**%,  zonT.
(iii) There exists a domain Dq containing T and its interior and a sequence of
Sunctions f,(z) analytic in D, satisfying the inequalities
[fu(2)] £ AR, z in Dy,
[f@)—fu(2)| £ Ay/n*+*,  zonT.

An extension of Theorem 9 to the case v> 0 is given in

THeOREM 10. Let T' be an analytic Jordan curve and D its interior. If f(z) is
meromorphic in D with precisely v poles there and is otherwise finite and continuous
on D+ T, then the following statements are equivalent: '

(i) f(z) belongs to class L.(k, o) on T'.

(ii) There exists a sequence of rational functions r,(z) of respective types (n, v)

such that

[f(@)—r(2)| £ AlnFte, zonT.

(iii) There exists a domain D, containing D+1" and a sequence of meromorphic
Sunctions f,(z) of the form

M S(2) = fu(D)[fra2),

where f,1(2) is analytic in D, and f,:(z) is a polynomial of the form z*4-a,z"~*
+ .- 4ay, 0= A=, such that the following inequalities hold:

[fu1(2)] = 4,R™, z in Dy,
[f(@)—fu(2)] £ Agfr**e, zonT.



86 E. B. SAFF {July

Proof. Suppose f(z) € L,(k, ) on T, and let g(z) be the monic polynomial of
degree v whose zeros are the poles of f(z) in D. It is easy to see that g(z)f(2) € Lo(k, @)
on T', and hence there exists a sequence of polynomials p,(z) of respective degrees
n such that

lIA

|9(2)f(2) —pu(2)]

B/n¥*e, zon T,
Whence

|/@)—pu(2)q(2)| £ Afn***,  zonl,

and so (i) implies (ii).

Now assume (i) holds and write r,,(z) = P,(2)/ Qn(2), where P,(z) is a polynomial
of degree n and Q,(z) is the polynomial of the form z*+ - .- +a, 0Su<v, whose
zeros are the finite poles of r,,(z). Theorem 5 implies that the Q,(z) are uniformly
bounded on T, and since the r,,(z) are also uniformly bounded there, the same must
be true of the P,(z). Thus by the Generalized Bernstein Lemma [2, p. 77] we deduce
for z on any bounded domain Dy, |P,(z)| £ 4, R

It remains to show that (iii) implies (i). The uniform convergence of the f.(z)
on T' implies, by Theorem 5, that the zeros of the f,(z) approach the poles of f(z)
in D. Hence -there exists an annular region -D,; containing I' such that for »
sufficiently large each f,(z) is analytic in D; and satisfies there the inequality
| fn(2)| £ AgR™. Statement (i) now follows from Theorem 8.

Theorem 10, in contrast with Theorem 9, assumes not merely that f(z) be defined
on T, but that f(2) be the boundary values on I' of a meromorphic function known
to have precisely » poles interior to I'. This hypothesis can be weakened by assum-
ing, instead, that all the finite poles of the rational functions r,,(2) lie in D. In the
proof of such a result it is convenient to have for reference

Lemma 1. Suppose f(z) is meromorphic in U:|z| <1 with precisely u (Z0) poles
there, and is otherwise finite and continuous on |z| £1. If oy, as, . . ., o, are the poles
of f(2)in Uandifr(z) is a rational function of type (n,v), nZv, having all its finite
poles in U, then there exists a rational function R(z) of the form

coz"+”+clz"+“‘1+- ceHCran

R@ = o emm) )

such that
[max | /()= R@)|; |2] = 1] S 2[max |f@)—r@)]; |2 = 11
Proof. If r(z) has no finite pole, we simply take R(z)=r(z). Otherwise let
B4, Bz, . . ., Bx be the finite poles of #(z) and let

() = H G-a-ad), B =T ] ] A1~z

We note that So(z) =B(2)r(z) is a rational function of the form

So(2) = qo(D)/(1 =& 2)- - - (1~ &,2)(1—B12)- - -(1=F2),
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where qo(z) is a polynomial of degree n+p. Setting M =[max |f(z)—r(z)|; |z] =1]
we obtain from the Maximum Principle
®) [B@)f(2)=So(2)| = M, |z] =1
Since B(B,)f(8,) =0, the triangle inequality yields
|B(2)f(2) = (So(2) =SB = 2M, |z =
and hence
) [[(1-Ba)/z—BIIB@)f (D)~ S:(2)] < 2M, |2 =

where S,(z) =(So(2) — So(B))(1 — Ba2)/(z—B,). Note that S;(z) is a rational function
of the form

S1(2) = 1(@/(1—a,2)- - - (1 —&2)(1 —B12)- - - (1 —Br-12),

where ¢,(z) is a polynomial of degree n+p.
Since mequalxty (9) holds for |z| =1, the same reasoning used to deduce 9 asa

consequence of (8) yields

[1_%1 llz] [l %Z]B( V(@) —S2)| < 4M,  |z] =

where Sy(2) is a rational function of the form

S2(2) = g22)/(1 —3,2)- - - (1 =&, 2)(1 = B12)- - - (1 = Br_52),

and g,(z) is a polynomial of degree n+ .
After A steps we obtain a polynomial ¢,(z) of degree n+ p which satisfies

_ q)\(z) < A < Qv .
T O~ ey | S2M S 2M. 1A = 1,
and so Lemma 1 follows by taking R(z) =q,(2)/(z—«y)- - - (z—a,).
We may now prove
THEOREM 11. Let g(z) be a function defined (finite) on an analytic Jordan curve T

with interior D. Then the following statements are equivalent:
() g(z) is the set of boundary values on T" of a function which belongs to class

Lk, o) onT.
(i) There exists a sequence of rational functions r,(z) of respective types (n, v)

having all their finite poles in D and satisfying
[8(2) —ru(2)] £ AlnFte, zonT.

(iii) There exists a domain D, containing D+T' and a sequence of meromorphic
Junctions f,(z) of the form (1), where all the zeros of f,2(2) lie in D, such that

(10) [fu(@)] S 4,R, zin Dy,
(11 lg(z)—fr(2)] & Aqfn*+e, zonT.



88 E. B. SAFF [July

Proof. That (i) implies (ii) and (jii) is immediate from Theorem 10. Therefore
since (ii) clearly implies (iii), we need only show (iii) implies (i).

Assuming statement (iii) holds, Theorem 3 asserts the existence of a function
£(z) which is meromorphic with precisely u (Sv) poles in D, is continuous on D+ r,
and equal to g(z) for z on I'. Let z=y{(w) map U:|w|<1 conformally onto D,
and set F(w)=f(}(w)). We shall prove F(w)e L,(k, ) on C:|w|=1, which is
equivalent to statement (i).

Since T is analytic, there exists a constant p (> 1) such that Ji(w) is analytic on
|w|<p and such that the image of |w|<p under z=y(w) lies in Do. From (10)
and the fact that all the zeros of f,4(2) lie in D we have

(12) |fbw)| £ MR,  won Cy:lw| = p.

The function s,(w)=f,(:(w)) is analytic on |w|<p except for a finite number of
poles, say at the points Bu1, Bnzs - - -» Br.acw- Since $(w) is schlicht and since all the
poles of f,(z) lie in D, it follows that A(n) Sv, and that [B,,] <1 forj=1,2,..., A(#n).

Now let P, y(w) be the polynomial in w of degree N-+A(n)—1 which interpolates
to the analytic function

Sn(w) = S"(W)(W—Bnl)(w—ﬁn2)~ ) '(W_Bn,)\(n))

in the points Ba1, Bazs - - -» Braw and in the origin taken of multiplicity N. The
Hermite Interpolation Formula asserts

. 1 (W_Bnl)' : '(W—‘;Bn,l\ n)WNSn(t)
S =Pan®) = 55 | )P —m)

for w on C, and so
_ Py, v(w) b whs()
90 =GB -0 —Bo) 271 Jo, T—)

for w on C. Thus from (12) we deduce

dt,

|$,(W) = T w(W)| S M R*pY,  wonC,

where Ty y(W) =Py y(W)[(W—Br0) - - - (W =B, am)-
Now choose a positive integer 7 so large that y=R/p*< 1. Then

lsn(w)—Tn,m(w)l = My, won C,
and hence from (11) and the triangle inequality there follows
|F(W)_Tn,m(w)l é A2/nk+“+M1)’" é As/nk+a,

for w on C. We note that T, ,,(w) is a rational function of type (n+v—1, v) having
all its finite poles in U. Thus since F(w) is meromorphic with precisely p poles
in U and is continuous on |w| =1, Lemma 1 implies that there exists a sequence of
rational functions R,(w) of respective types (7n+v—1+u, p) satisfying

|[F(w)— R, (w)| = Aufn**e, won C,
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and having all their finite poles on a closed set interior to C. It is easy to see that
for 8(>0) sufficiently small we have

[R,,(W)[ = M2(Pr)n’ 1-8 < |WI <p
and so Theorem 8 implies F(w) € L,(k, «) on C, which completes the proof.
Theorem 11 and {2, §9.7, Lemma I] yield

COROLLARY 5. Suppose g(z) is defined on an analytic Jordan curve T' and r,,(z)
is a sequence of rational functions of respective types (n, v) satisfying
|g(z)—r,w(z)] = A/nk+a, zZon F,
where k is a nonnegative integer and 0 < a < 1. If no point of I is a limit point of those

poles of the r,(z) which lie exterior to I, then the kth derivative of g(z) exists on I’
and satisfies a Lipschitz condition of order o there.

In the theorems of this section the case a=1-is excluded. However, Theorem 9
holds [7] if the Lipschitz condition of order unity on I is replaced by the Zygmund
condition

[fe+h)+f(x~m)—2f(x)| £ L|A],
with respect to arc length on I'. The extensions of Theorem 10 and Theorem 11
to this exceptional case are immediate.

4. Overconvergence. The theorems of §2 and §3 dealt with approximation to a
function meromorphic interior to a closed curve I' and continuous on I'. We turn
now to the questions of analyticity on I" and its relationship to the overconvergence
of sequences of rational functions. The term overconvergence is here meant to
describe the phenomenon that certain sequences which converge sufficiently
rapidly on I' necessarily converge on a point set containing T in its interior.

Of fundamental importance in the study of overconvergence of sequences of
rational functions of type (n, v) is a lemma [8] due to J. L. Walsh. We state this
result in the following slightly more general form:

LEMMA 2. Let E, with boundary T, be a closed bounded point set whose complement
(with respect to the extended plane) K is connected and regular in the sense that K
possesses a Green’s function G(z) with pole at infinity. Let I (¢ > 1) denote generically
the locus G(z)=log o, and suppose that rational functions r,,(z) of respective types.
(n, v) satisfy the inequality
(13) lim sup [max |r,,(2)|; z on 1™ < 1/p, 1<p

17—+

lIA

0.

Let S be a closed set in the interior of I';, 1 <o < p, and containing no limit point
of the poles of the r,,(2). Then the sequence r,,(z) converges uniformly to zero on S,
and we have
(14) lim sup [max |r,(2)|; z on STV £ ofp.

n—w

The r,,(z) need not be defined for every n.
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Because of the lemma’s frequent use we submit a new and brief

Proof. Let o <p<oo and let ¢,(z) be the polynomial of the form g,(z)=2z""
+ -+ +a,, 0= A, =v, whose zeros are those poles of +v(2) which lie interior to T,
We note that the function s,(z) =¢,(z)r,,(z) is a rational function of type (n, n)
whose poles lie on or exterior to I',. From (13) and the uniform boundedness of the
g.(z) on I' we have

lim sup [max |s,(z)|; z on EJ¥* £ 1/p,
n—

and so from [2, §9.7, Lemma I] there follows

lim sup [max |s.(z)|; z on STV = (uo—1)/(p—o0)p.

Since S contains no limit point of the poles of the r,,(z), the functions g,(z) are for
n sufficiently large uniformly bounded below in modulus by a positive constant
on § and hence

lim sup [max |r,(2)|; z on ST £ (no—1)/(r—0)p.
Letting u — 00 we obtain (14).
An easy application of Lemma 2 to analytic continuation is

THEOREM 12, Let E, T, and I, be as in Lemma 2 and let E, denote the interior of
T',. Suppose that g(2) is a function defined (finite) on I' and r,(2) is a sequence of
rational functions of respective types (n, v) which satisfy the inequality

(15) lim sup [sup |g(@) —rw(2)|; zon TV £ 1fp < L.
If no point of T, is a limit point of those poles of the r,,(z) which lie in E,, then

there exists a function f(z) which is meromorphic with at most v poles in E, such
that f(z)=g(z) for z on T.

Proof. Set 1,(2) =r,,(z)—r._1+(2), and note that the ¢,(z) form a sequence of
rational functions of respective types (n+v, 2v) which satisfies

lim sup [max |¢,(2)|; z on T'I'" < 1/p.
n—+w

For >0 sufficiently small, none of the poles of the »,,(z) and hence of the z,(2)
lie on T, _,. Thus from Lemma 2 we deduce

lim sup [max |£,(2)|; z on T, = (p—2)/p,
n-+ 0

which implies that the r,,(z) are uniformly bounded on I, _,.
Now write r,)(2) =h.(2)/q.(2), where h,(2) is analytic in E,_, and g¢,(z) is the
monic polynomial whose zeros are those poles of r,,(z) which lie in E,_,. The



1969] RATIONAL AND MEROMORPHIC FUNCTIONS 91

uniform boundedness of the r,,(z) and the ¢,(z) on T', _, implies that the 4,(z) form
a normal family in E,_,. Thus there exists a subsequence s,(z) of the r,,(z) and a
function f{z) meromorphic with at most v poles in E,_, such that lim,_, ., s5,(2)
=f(2) uniformly on each closed subset of an open set D obtained from E, _, by the
omission of at most » points. Clearly the identity f(z)=g(z) holds with at most »
exceptions for z on I', and hence by the continuity of f(z) and g(z) on T the identity
holds everywhere on I'. Theorem 12 now follows from the arbitrariness of «.

COROLLARY 6. With the geometric conditions of Lemma 2 suppose that the function
F(z) is meromorphic with precisely v poles in the interior T of E and is otherwise
finite and continuous on E. If there exists a sequence of rational functions r,,(z) of
respective types (n, v) satisfying

lim sup [max |F(2)—r,(2)|; zon T £ 1/p < 1,

then F(z) can be extended so as to be analytic on E,—T.

Proof. By Theorem 5 the sequence r,,(z) converges to F(z) on E and the finite
poles of the r,,(z) approach the » poles of F(z) in T. It then follows from the proof
of Theorem 12 that there exists a function f(z) meromorphic with at most » poles
in £, such that f(z)=F(z) for z on E. Since f(z) must be analytic on E,—T it is
the desired continuation.

We conclude with an extension of [1, Theorem 3]:

THEOREM 13. With the geometric conditions of Lemma 2 suppose the function
S(2) is analytic on I' and is meromorphic with precisely v poles in E, (p>1). Suppose
r.(2) is a sequence of rational functions of respective types (n, v) which satisfy

lim sup [max | f(z) —#,(2)|; z on T} < 1/p.

Then for n sufficiently large each r,,(z) has precisely v finite poles, which approach
respectively the v poles of f(2) in E,; and the r,,(z) converge uniformly to f(z) on
each compact subset of E, which contains no pole of f(z).

Theorem 13 generalizes [1, Theorem 3] since it does not assume that f(z) is
analytic on E. The proof of Theorem 13, which is left to the reader, follows from
Theorem 5, Lemma 2, and the methods used in [1].
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